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Abstract

Automated driving is one of the most promising technolo-

gies for improving road safety. In real driving scenarios,

knowledge about the road friction is crucial. For the esti-

mation of the road friction, two properties are of main in-

terest: the road surface type and the road condition. We

propose a novel large-scale dataset to enable camera-based

road surface and wetness estimation. It consists of video

data captured by in-vehicle cameras and ground truth for

the current surface type and wetness which is determined by

the MARWIS (Mobile Advanced Road Weather Information

Sensor). The wetness measurements are associated to high-

resolution bird’s eye view road image patches, derived from

a calibrated sensor setup. Additionally, data for different

distances to the vehicle is provided. The dataset is evaluated

with state-of-the-art real-time capable approaches for road

condition classification and uncertainty estimation. The re-

sults provide a valid baseline, but also demonstrate limi-

tations of the generalization performance. The dataset en-

ables new possibilities for future research on camera-based

road friction estimation. It is the first dataset including ac-

curate measurements for the wetness in real driving scenar-

ios.

1. Introduction

Knowledge about the road friction is important for au-

tomated driving as well as for driver assistance systems to

react reliably in any situation. The road friction is mainly

influenced by the road surface and the road condition, e.g.,

the stopping distance of a vehicle driving 50 km/h on wet

cobble with 33.30m is much larger than on dry asphalt with

21.37m [25]. In most cases, i.e., moderate outside temper-

ature, the condition is determined by the amount of water

on the road section the tires are in contact with.

For vehicles, there exists a large variety of approaches

(a) Water film height for each frame fi

(b) Asphalt, very wet (68 µm), f562

(c) Asphalt, damp (21 µm), f862

Figure 1. The ground truth measurement for the water film height

(a) for the selected ROI in the camera images (b), (c). The image

patches on the right are derived from the input images (left) using

camera calibration. Horizontal gray lines in (a) indicate the pro-

posed split in four levels of wetness {dry, damp, wet, very wet}.
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Table 1. Comparison of available state-of-the-art datasets for road condition estimation and our proposed RoadSaW. The proposed dataset

provides controlled conditions on a test track, Bird’s Eye View (BEV) perspective for Regions of Interest (ROI), three surface classes, and

accurate MARWIS wetness measurements. Additionally, wetness is split in two and four classes for comparative studies.

Dataset Image Source Calibration Annotation Label Resolution # Surfaces # Wetnesses

Tumen et al. [29] Google Street View ✗ best guess full image 6 0

Roychowdhury [24] YouTube ✗ best guess full image 0 4

Busch et al. [8, 22] compiled ✗ best guess full image 4 2

RoadSaW (ours) test track recording ✓ MARWIS ROI, BEV 3 2/4/∞

for wetness estimation. They use active control sys-

tems [32], microphones [6, 18, 23], capacitive [13], opti-

cal [1, 2], or vibroacoustical onboard sensors [4]. The Mo-

bile Advanced Road Weather Information Sensor (MAR-

WIS) [1] currently provides the most accurate measure-

ments available on the market using optical methods based

on the infrared spectrum [27]. However, usage of the MAR-

WIS in commercial vehicles is impossible due to its size and

cost. It is an established reference system with no potential

for usage in mass production [27].

Current solutions for road condition estimation are only

capable of reacting to the actual friction situation. Mea-

surements are taken under or directly in front of the vehi-

cle. In contrast, camera-based approaches, e.g., observing

the road from the driver’s perspective, are able to make a

prediction, i.e., to estimate the condition of a road section

before approaching it. This enables the driver assistance

system to mitigate the risk of road condition changes be-

fore they occur. Camera-based approaches using polariza-

tion filters [17] require a stereo configuration which is often

not available in current vehicles. A monocular front camera

is part of the basic hardware in many vehicles making it a

very attractive sensor for road condition estimation.

Since camera images contain high-resolution texture in-

formation, it is possible to distinguish between different

road surfaces in addition to estimating their condition. Ex-

isting approaches have shown that deep convolutional neu-

ral networks (DCNN) are capable of making a distinction

into two {dry, wet} or four {dry, damp, wet, and very wet}
road wetness classes and provide a classification of the road

surface type [8, 9, 21, 22, 25]. Existing datasets collect im-

ages from Google Street View, YouTube, or combine multi-

ple datasets, cf. Tab. 1. However, the annotation is provided

as a best guess only. Thus, the comparability of the results is

impaired and the generalizability of the approaches is hard

to evaluate. A main reason is the difficulty of capturing

reasonable video data in combination with ground truth in-

formation, such as different levels of wetness, within the

driving scenario. The differentiation into multiple degrees

of wetness in combination with different road surfaces is of

high interest, since these cause significant changes in the

driving characteristics. Hence, the objective is to build a

dataset with ground truth information from accurate, syn-

chronized measurements using vehicles driving on a test

track under controlled surface and wetness conditions.

Contributions We provide a novel dataset, combining

ground truth information for water film heights and road

surface types. The data is recorded on 10 different days on

a test track using cameras mounted on vehicles (truck / car)

together with a reference sensor (MARWIS) measuring the

water film height. This sensor is currently the best refer-

ence system for this task [27] and provides high resolution

measurements for the wetness of road regions. The syn-

chronized sensor data (video, MARWIS, and vehicle speed)

is captured under controlled conditions using sprinklers on

three different road surface types.

Accurate camera calibration enables the construction of

bird’s eye view road patches with ground truth water film

heights and surface types as visualized in Fig. 1. The po-

sitions of a road patch and a MARWIS measurement are

aligned using the distance traveled by the vehicle, computed

by integrating its velocity. We are sure that the proposed

dataset is very valuable for future research on road condi-

tion and friction estimation. It is the first dataset provid-

ing accurate water film height measurements combined with

road surface types.

We evaluate the use of deep convolutional neural net-

works to jointly estimate the combined road surface and

road condition. As a baseline, a real-time capable approach

using the MobileNetV2 [26] architecture and uncertainty

estimation with RBF networks [30] is employed. To in-

vestigate the uncertainty estimation, we show evaluations

using (a) an out-of-distribution (OoD) dataset with images

that do not belong to the input domain as well as (b) close-

to-distribution datasets, i.e., real scenes recorded under dif-

ferent conditions, such as lighting (different seasons) and

perspective (car instead of truck).

To summarize, our contributions are as follows:

• New dataset for road condition estimation, including

accurate water film height measurements combined

with road surface types

• Baseline for image-based road condition classification

and uncertainty estimation
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• Evaluation of close-to-distribution data demonstrating

domain changes and generalization performance

• The dataset is available at:

https://roadsaw.viscoda.com

2. Related Work

Datasets Due to an increasing usage of machine learn-

ing based approaches for automated driving tasks, there is a

high demand for datasets. For camera-based road condition

estimation, several datasets are used, but only a few of them

are suited for achieving reproducible results. These datasets

are summarized in Tab. 1. In [29] images are selected from

Google Street View with different surface types. The ap-

proach in [24] uses videos from YouTube which are classi-

fied into a number of wetness degrees. In [8, 22] images

from several existing datasets in combination with the au-

thor’s own recordings and open-source images are used. In

all three cases, the best guess for class annotations for a full

image is provided. Regarding the availability of datasets,

research of road surface and condition estimation appears

to be at a very early stage. For the estimation of combined

road surface and wetness, there is no dataset demonstrat-

ing its usability in comparable research yet. Thus, algo-

rithms targeting the road surface and condition estimation

are currently not reproducible. Our aim is to fill this gap

and provide a dataset for comparable research on this im-

portant topic.

Uncertainty Estimation While deep neural networks

achieve very impressive results in various tasks, the quan-

tification of predictive uncertainty is still a challenging re-

search topic. However, for automated driving the estima-

tion of uncertainty is a crucial topic. Uncertainty is clas-

sified into two different categories: aleatoric uncertainty

and epistemic uncertainty [3]. Aleatoric uncertainty oc-

curs due to inherent effects inside the data domain such

as noise in the input data. Epistemic uncertainty is also

known as knowledge or model uncertainty and occurs due

to the lack of training data. In the context of automated

driving, this type of uncertainty is important since novel

situations are unavoidable in real-world scenarios. In this

case, the system should react with high uncertainty. Sev-

eral works have been proposed for uncertainty estima-

tion [3, 5, 14–16, 28]. Bayesian neural networks and Deep

Ensembles have emerged to be two of the most popular

methods [16,19]. Bayesian neural networks provide a natu-

ral way of modelling uncertainty by learning the distribution

over weights. However, they require significant modifica-

tions to the training procedure and are computationally ex-

pensive. A more efficient approach for deterministic neural

networks is the usage of Deep Ensembles [19]. For many

real-time applications, they are still not efficient enough

(a) Asphalt, dry (b) Cobblestone, dry (c) Concrete, dry

(d) Asphalt, wet (e) Cobblestone, wet (f) Concrete, wet

Figure 2. Examples for road surface patches and their conditions;

The data is recorded at various velocities. Often, significant mo-

tion blur occurs (b),(c). Depending on the viewing angle, diverse

reflections on wet surfaces are present (d),(f).

because several forward passes are required. Determinis-

tic Uncertainty Quantification (DUQ) as proposed in [30]

addresses this issue by learning a Radial Basis Function

(RBF) network that requires one single forward pass and

is just 25% slower at test time than standard classification

architectures without uncertainty estimation. DUQ is capa-

ble of covering aleatoric and epistemic uncertainty, making

it a good choice for the evaluation of our dataset.

3. Road Surface and Wetness Dataset

The Road Surface and Wetness (RoadSaW) dataset is

recorded on a test track using a camera mounted on a truck

together with Lufft’s MARWIS [1] which measures the wa-

ter film height. The wetness on the road is induced under

controlled conditions using sprinklers on three different sur-

faces, asphalt, cobblestone (basalt), and concrete. The data

is recorded on 10 different days resulting in a large-scale

dataset designed for road surface and wetness classification

and uncertainty estimation. Camera calibration and data

synchronization (MARWIS, video, and velocity) enables

the registration of regions of interest to the MARWIS mea-

surement. Various driving maneuvers are performed on all

surfaces at different wetness levels. In addition to measure-

ments taken at constant speed, acceleration and deceleration

runs are performed, providing speeds of up to 80 km/h. Ex-

amples for surfaces in dry and wet condition are shown in

Fig. 2. Additionally, Close-to-Distribution (CtD) datasets

are generated which enable the evaluation of the generaliz-

ability of approaches under examination.
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3.1. Image Acquisition

The camera (FLIR Blackfly 3.2MP, 30 fps) is installed

behind the windscreen of the truck at 2.66m height and the

car at 1.26m height. The basis dataset is built upon data

recorded on the truck. For the Close-to-Distribution dataset

as presented in Sect. 3.5 data recorded in the car is used as

well. The cameras are carefully calibrated in a preprocess-

ing step using accurately measured 3D landmarks, manually

annotated 2D positions of their projections, and minimiza-

tion of the mapping error as proposed in [10]. The cali-

bration enables the association between camera image and

3D world. It provides the mapping to generate the Bird’s

Eye View (BEV) on the road surface at any visible position

(cf. Fig. 1). The temporal synchronization with the data

recorded in the vehicle (MARVIS and velocity) is done us-

ing timestamps. Within the RoadSaW dataset, three differ-

ent patch sizes (2.56m2, 7.84m2, 12.96m2) extracted at

four different distances to the vehicle (7.5m, 15m, 22.5m,

30m) are provided. Example patches are shown in Fig. 2.

Different patch sizes are considered to evaluate the depen-

dency on the amount of texture required for the estimation.

The different distances are useful for the generalization with

respect to the reflectivity of the wet surface.

3.2. Water Film Height Measurement

The Mobile Advanced Road Weather Information Sensor

(MARWIS) [1] detects several road- and weather-related

parameters. The MARWIS is mounted at the front of the

vehicle, with its measurement unit 1m above the surface

(cf. Fig. 3). Water film heights are measured with a res-

olution of 1 µm. For the dataset RoadSaW12, the distinc-

tion of the wetness into four classes {dry, damp, wet, very

wet} is provided and combined with three surface types

{asphalt, cobblestone, concrete}. Additionally, a dataset

with a reduced number of classes, RoadSaW6, is provided

which employs two wetness degrees {dry, wet}, leading to 6

classes. Both sets use the same images. Due to the structure

of the surfaces, the maximum possible water film height is

only achievable on a concrete surface, leading to different

thresholds for each class as shown in Tab. 2.

3.3. Synchronization

In addition to data from the MARWIS and the front

camera, the current speed is recorded using the in-vehicle

CAN. The temporal synchronization of MARWIS, video,

and speed data is established by their timestamps. For the

spatial synchronization, i.e., the association of a MARWIS

measurement to the respective road surface as visible in an

image, the distance traveled by the vehicle is derived from

the integration of the speed data for the respective time in-

terval. Thus, the water film height of a region on the road

is associated to the respective MARWIS measurement at a

later point in time.

Table 2. Overview of the 12 classes included in RoadSaW12 . De-

rived from the measurements, the assignment of the water film

heights has surface dependent thresholds. Some image examples

are shown in Fig. 2. RoadSaW6 merges {dry, damp} and {wet,

very wet}.

Class Water Film Height

Asphalt dry 0 µm ≤ h < 10 µm

Asphalt damp 10 µm ≤ h < 25 µm

Asphalt wet 25 µm ≤ h < 50 µm

Asphalt very wet 50 µm ≤ h
Cobble (basalt) dry 0 µm ≤ h < 10 µm

Cobble (basalt) damp 10 µm ≤ h < 25 µm

Cobble (basalt) wet 25 µm ≤ h < 75 µm

Cobble (basalt) very wet 75 µm ≤ h
Concrete dry 0 µm ≤ h < 10 µm

Concrete damp 10 µm ≤ h < 60 µm

Concrete wet 60 µm ≤ h < 200 µm

Concrete very wet 200 µm ≤ h

Figure 3. Measurement setup on the truck (left): the orange square

M shows the MARWIS and the blue cone C represents the cam-

era. The camera is mounted 2.66m above the road surface behind

the windshield. The mounting position of the MARWIS is outside

at the bottom right front of the vehicle (right).

3.4. Dataset Statistics and Balancing

The basis dataset is recorded on five different days

(≈ 250 videos) divided nearly equally into asphalt, cob-

blestone, and concrete with all possible wetness degrees in-

cluded. From the transformed bird’s eye view videos, a Re-

gion of Interest (ROI) patch is included in the dataset for

which a driving distance of 1m is passed.

Four different distances to the vehicle d2v and three

patch sizes (cf. Sect. 3.1) are considered. Overall, there are

about 720,000 image patches, each with accurate water film

height and velocity measurements. The data is divided into

training (≈ 70%), validation (≈ 20%), and test (≈ 10%)

sets. Patches recorded at different velocities are evenly dis-

tributed among the three sets. Images from the same se-

quence are assigned to the same set ensuring that similar
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CtD1 (truck) CtD2 (car) CtD3 (car)

Figure 4. Example images for the Close-to-Distribution datasets.

Datasets CtD
2 and CtD

3 are captured with a car (MARWIS vis-

ible in images). In the example for CtD
2, wipers occlude main

parts of the road.

images are not simultaneously used for both, training and

testing.

3.5. ClosetoDistribution Datasets

For validation, Close-to-Distribution (CtD) datasets are

generated. Like the basis dataset, they are recorded on

five different days and consist of synchronized BEV im-

ages with ground truth surface and wetness. They provide

domain gaps to evaluate the generalizability of approaches

for road condition and uncertainty estimation. Compared

to Out-of-Distribution (OoD) data [19, 30], these datasets

are close to the basis dataset with certain domain changes.

They fit to the targeted use case and should lead to more

interpretable results than OoD data. The data has the fol-

lowing domain changes compared to the basis dataset:

PC Perspective change: camera mounted on a different ve-

hicle (car) at lower height (1.26m instead of 2.66m)

SC Season change: data recorded in a different season

(May/June instead of November)

TA Temporary artefacts: wetness and raindrops on the

wind shield, occlusions due to windshield wipers

As shown in Tab. 3, three sets are generated with cer-

tain domain changes (PC, SC, TA). For each of the sets

{CtD1, CtD2, CtD3}, eight image sequences of 13 sec to

33 sec duration at 30 fps are incorporated. Example images

(from driver’s perspective) are shown in Fig. 4.

Table 3. Overview of the Close-to-Distribution (CtD) datasets:

Compared to the basis dataset, perspective change (PC), season

change (SC), and temporary artefacts (TA) are provided.

Dataset PC SC TA

CtD1 Truck 2021-05 ✓

CtD2 Car 2020-11 ✓ ✓

CtD3 Car 2021-06 ✓ ✓ ✓

4. Dataset Evaluation

As a baseline, we select state-of-the-art classification al-

gorithms for the evaluation of the RoadSaW (Road Surface

and Wetness) dataset. It is based on the real-time capable

architecture MobileNetV2 [26] and the uncertainty estma-

tion using RBF (Radial Basis Function) networks [30]. In

Sect. 4.1 the evaluation setup is described. The results are

presented in Sect. 4.2 (classification) and Sect. 4.3 (RBF).

A short discussion concludes this section.

4.1. Evaluation Setup

The targeted use case of automated driving demands

minimal inference time such that the onboard system is able

to react to the detected situation in a reasonable time. As a

good compromise between complexity and inference time,

MobileNetV2 [26] is chosen which runs in ≈ 20.5ms on

a NVIDIA Jetson TX1 [7]. The network is pretrained on

ImageNet [12]. The architecture is used as feature extractor

backbone, followed by a global average pooling layer and a

dense layer with softmax as activation function for the clas-

sification. All experiments are repeated five times and their

mean is reported.

Training For the target architecture MobileNetV2 an im-

age size of 244 × 244 pixel is used. Due to imbal-

anced classes, subsampling is performed to obtain an

even class distribution. To achieve a better generaliza-

tion of the trained weights, standard data augmentation

is applied during training, i.e., random flipping horizon-

tally, scaling [90%, 110%], shifting horizontally and verti-

cally [−10%, 10%], and shearing [−10%, 10%]. The train-

ing of the network is done in two steps. First, the weights

of the backbone are frozen and the classifier with randomly

initialized weights is trained for 10 epochs with learning

rate of 10−4. Then, the whole network is fine-tuned for

10 epochs and the learning rate is reduced by a factor of

1000. In both steps the learning rate is reduced by 10%

with each epoch. As loss function, the categorical cross-

entropy is employed. It is minimized using the RAdam [20]

optimizer. For DUQ, two important hyperparameters are

the length scale σ and a gradient penalty of λ. The length

scale is tuned using the accuracy on the validation set. The

gradient penalty is tuned based on the in-distribution uncer-

tainty using the AUROC measure. We use a length scale of

σ = 0.1 and the gradient penalty λ = 0.3. Here, splitting

the training process in two steps is not beneficial. There-

fore, the whole network is trained from the beginning with

a learning rate of 10−4 and is reduced by 10% every epoch.

Despite linear decay of the learning rate, the network starts

to overfit at a certain point. Early stopping is applied to

counteract this.
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(a) Confidences: all surfaces (b) Confidences: asphalt

(c) Confidences: cobblestone (d) Confidences: concrete

Figure 5. Histograms of confidences as computed with DUQ on the dataset RoadSaW12. The top left (a) shows the histogram for all

surfaces, the others (b),(c),(d) show histograms separated for each road surface type. The confidences on cobblestone are less accurate than

for asphalt and concrete.

4.2. Results: Classification

The classification performance for different patch dis-

tances to the vehicle d2v (cf. Sect. 3) for RoadSaW6 and

RoadSaW12 is shown in Tab. 4. The resulting accuracy de-

creases with increasing distance d2v. Results for differ-

ent patch sizes (cf. Sect 3.1) are shown in Tab. 5. Larger

road sections contain more contextual information, which

leads to an improvement of the classification. As expected,

the F1-Score for RoadSaW12 is generally smaller compared

to RoadSaW6. The limited accuracy on RoadSaW12 shows

that there is potential for a more detailed distinction of wet-

ness classes.

4.3. Results: RBF Networks

For uncertainty estimation, DUQ (Deterministic Uncer-

tainty Quantification) [30] is selected. DUQ is based on Ra-

dial Basis Function (RBF) networks and proved to provide

reasonable uncertainties on available datasets (MNIST, CI-

FAR, SVHN). Additionally, an Out-of-Distribution (OoD)

dataset is evaluated [19,30]. As OoD dataset, image patches

Table 4. F1-Scores for 6 classes and 12 classes at different dis-

tances to the vehicle d2v with medium image patch size.

d2v RoadSaW6 RoadSaW12

7.5m 91.58%± 0.26 64.24%± 0.57
15.0m 90.81%± 0.64 61.60%± 0.75
22.5m 84.77%± 0.60 57.72%± 0.71
30.0m 80.32%± 0.32 58.27%± 0.33

Table 5. F1-Scores for 6 classes and 12 classes with different

patch sizes extracted at d2v = 7.5m distance.

Patch size RoadSaW6 RoadSaW12

Small 89.56%± 0.47 57.43%± 1.12
Medium 91.58%± 0.26 64.24%± 0.57
Large 92.85%± 0.53 64.33%± 1.07

from Cityscapes [11] are used. This data should receive

lower confidence scores than all images from the original

dataset. The AUROC (Area Under the Receiver Opera-
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(a) RoadSaW6 (b) RoadSaW12

Figure 6. Visualization of the embeddings of the RBF network DUQ on RoadSaW using t-SNE. The three surfaces asphalt, cobblestone,

and concrete are represented by the different markers. The four subclasses dry, damp, wet, and very wet are visualized with four shades of

blue.

tor Characteristic) metric is used to evaluate this property.

For the visualization of the resulting cluster configuration,

t-SNE (t-Distributed Stochastic Neighbor Embedding) [31]

is employed. Finally, results on the CtD datasets as intro-

duced in Sect. 3.5 are shown.

The evaluation (7.5m d2v, medium patch size) us-

ing F1-score leads to 95.77% ± 0.8 on RoadSaW6 and

70.79% ± 1.56 on RoadSaW12. This means an improve-

ment of 6.22 percentage points compared to the results

achieved with the standard MobileNetV2 architecture, cf.

Sect. 4.2. The results using AUROC for In-Distribution

and Out-of-Distribution data are shown in Tab. 6. For an

analysis of the dependencies of the results on the differ-

ent surfaces, histograms for the confidence estimation on

RoadSaW12 are visualized in Fig. 5. While for asphalt and

concrete (Fig. 5b, 5d), the estimation provides reasonable

confidences (mostly correct classifications for confidences

close to 1.0), the differentiation between correct and wrong

classifications is less accurate for cobblestone (Fig. 5c). The

analysis using t-SNE visualization in Fig. 6b confirms this

observation: the four wetness classes of asphalt and con-

crete are well separated while for cobblestone, only two

distinct clusters are visible. Thus, there are many misclassi-

fications between wetness classes of cobblestone. This also

degrades the confidence estimation accuracy. For Road-

SaW6 as visualized in Fig. 6a, all six clusters are well-

separated leading to high accuracies in classification and

uncertainty estimation compared to RoadSaW12 (cf. Tab. 6).

Only a few isolated errors occur.

Table 6. Uncertainty estimation results for the RBF network DUQ.

We measure the AUROC score on In-Distribution (ID) and Out-of-

Distribution (OoD) datasets.

Dataset RoadSaW6 RoadSaW12

ID 81.87%± 5.06 74.86%± 3.00
OoD 98.59%± 0.84 96.17%± 3.29

In many applications, confidences are used to reject un-

certain classifications. The required safety level determines

the number of rejections. The accuracy as a function of

the percentage of rejections is shown in Fig. 7. For Road-

SaW6 (Fig. 7a), the threshold of 0.7 provides an accuracy

of 98.3%, rejecting 11% of measurements. For Road-

SaW12 (Fig. 7b), rejecting all classifications with a confi-

dence lower than 0.7, leads to an accuracy of 82%. Then,

approximately half of all images are not considered.

The results for the Close-to-Distribution (CtD) datasets

as described in Sect. 3.5 are shown in Tab. 7. Current mod-

els are not able to generalize which leads to insufficient

performance on the CtD datasets. The confidences indi-

cate a reasonable trend. This result clearly shows issues on

the generalization performance of current approaches. New

methods can be developed and analyzed using RoadSaW.
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(a) RoadSaW6 (b) RoadSaW12

Figure 7. Rejection classification plots of the water film height dataset for 6 classes (a) and for 12 classes (b). The x-axis represents the

proportion of data rejected based on the uncertainty score. The red vertical lines indicate the corresponding confidence threshold.

Table 7. F1-Scores / Mean Confidences for the Close-

to-Distribution (CtD) datasets using DUQ classification with

6 classes (RoadSaW6) and 12 classes (RoadSaW12).

CtD dataset RoadSaW6 RoadSaW12

CtD1 88.28% / 0.76 20.93% / 0.44
CtD2 28.88% / 0.58 15.94% / 0.47
CtD3 51.18% / 0.54 0.78% / 0.37

4.4. Discussion

The experiments demonstrate the usability of the pro-

posed RoadSaW dataset in the context of classification us-

ing 6 classes (RoadSaW6) or 12 classes (RoadSaW12). The

class selection is inspired by state-of-the-art road condition

estimation approaches [8, 24, 25, 29]. The evaluations and

visualizations are aligned with approaches in the field of

classification and uncertainty estimation such as [19,30,31].

The results show that the selected approaches solve the

problem for In-Distribution (ID) data with reasonable accu-

racy. However, for the class cobblestone the classification

appears more difficult when four levels of wetness are used.

We also tested standard regression approaches to predict the

exact water film heights, but were not able to improve the

classification accuracy after their mapping to the respective

classes. There is substantial potential for accuracy improve-

ments on RoadSaW12.

The experiments on CtD data show that the generaliza-

tion to data with certain domain gaps is an open problem.

New augmentation or self-supervised learning approaches

[33] are promising for the improvement of the feature rep-

resentation. RoadSaW provides the data for future improve-

ments and evaluations.

5. Conclusion

Although the application of road friction estimation

for automated driving is an important topic, research on

camera-based road surface condition estimation is at an

early stage. Currently, there is no dataset available for the

comparative study and evaluation of road condition estima-

tion approaches. Thus, a new dataset is proposed targeting

the combined Road Surface and Wetness estimation, called

RoadSaW. It includes 720,000bird’s eye view patches

recorded on a test track together with high resolution video

and synchronized, accurate water film height measure-

ments. As surface types, asphalt, concrete, and cobblestone

are included. The dataset is evaluated using state-of-the-

art, real-time machine learning based approaches for clas-

sification and uncertainty estimation. While reasonable un-

certainties are achieved on In-Distribution (ID) and Out-of-

Distribution (OoD) data, the performance on the provided

Close-to-Distribution (CtD) datasets is insufficient. For the

application of road condition estimation, more robustness

is required. We would like to create the possibility to de-

velop and benchmark new methods which is important for

the research community working on automated driving.
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[13] J. Döring, L. Tharmakularajah, J. Happel, and K.-L. Krieger.

A novel approach for road surface wetness detection with

planar capacitive sensors. Journal of Sensors and Sensor

Systems, 8(1):57–66, 2019. 2

[14] N. Durasov, T. Bagautdinov, P. Baque, and P. Fua. Masksem-

bles for uncertainty estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13539–13548, 2021. 3

[15] S. Farquhar, M. A. Osborne, and Y. Gal. Radial bayesian

neural networks: beyond discrete support in large-scale

bayesian deep learning. In International Conference on Ar-

tificial Intelligence and Statistics, pages 1352–1362. PMLR,

2020. 3

[16] Y. Gal and Z. Ghahramani. Dropout as a bayesian approxi-

mation: Representing model uncertainty in deep learning. In

international conference on machine learning, pages 1050–

1059. PMLR, 2016. 3

[17] M. Jokela, M. Kutila, and L. Le. Road condition monitoring

system based on a stereo camera. In 2009 IEEE 5th Inter-

national conference on intelligent computer communication

and processing, pages 423–428. IEEE, 2009. 2

[18] M. Kalliris, S. Kanarachos, R. Kotsakis, O. Haas, and

M. Blundell. Machine learning algorithms for wet road sur-

face detection using acoustic measurements. In 2019 IEEE

International Conference on Mechatronics (ICM), volume 1,

pages 265–270. IEEE, 2019. 2

[19] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple

and scalable predictive uncertainty estimation using deep en-

sembles. arXiv preprint arXiv:1612.01474, 2016. 3, 5, 6, 8

[20] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han.

On the variance of the adaptive learning rate and beyond.

arXiv preprint arXiv:1908.03265, 2019. 5

[21] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. arXiv preprint arXiv:1611.06440, 2016. 2

[22] M. Nolte, N. Kister, and M. Maurer. Assessment of deep

convolutional neural networks for road surface classification.

In 2018 21st International Conference on Intelligent Trans-

portation Systems (ITSC), pages 381–386. IEEE, 2018. 2,

3

[23] G. Pepe, L. Gabrielli, L. Ambrosini, S. Squartini, and L. Cat-

tani. Detecting road surface wetness using microphones and

convolutional neural networks. In Audio Engineering Society

Convention 146. Audio Engineering Society, 2019. 2

[24] S. Roychowdhury, M. Zhao, A. Wallin, N. Ohlsson, and

M. Jonasson. Machine learning models for road surface and

friction estimation using front-camera images. In 2018 In-

ternational Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2018. 2, 3, 8
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