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Abstract

Semi-supervised object detection methods are widely
used in autonomous driving systems, where only a frac-
tion of objects are labeled. To propagate information from
the labeled objects to the unlabeled ones, pseudo-labels for
unlabeled objects must be generated. Although pseudo-
labels have proven to improve the performance of semi-
supervised object detection significantly, the applications
of image-based methods to video frames result in numer-
ous miss or false detections using such generated pseudo-
labels. In this paper, we propose a new approach, Pseudo-
Prop, to generate robust pseudo-labels by leveraging mo-
tion continuity in video frames. Specifically, PseudoProp
uses a novel bidirectional pseudo-label propagation ap-
proach to compensate for misdetection. A feature-based fu-
sion technique is also used to suppress inference noise. Ex-
tensive experiments on the large-scale Cityscapes dataset
demonstrate that our method outperforms the state-of-the-
art semi-supervised object detection methods by 7.4% on
mAP75.

1. Introduction
In autonomous driving system design and development,

it is common to collect multiple video sequences and only
label key frames to train a deep neural network (DNN)
based object detector. However, the efficacy of the de-
tector may be limited by the size of the human-annotated
dataset. Therefore, we have witnessed the tour de force
of modern DNNs with semi-supervised learning (SSL) in
the past that have been applied to autonomous driving
[8, 20]. SSL uses available human-annotated data to guide
the model training with unlabeled data. One dominant idea
in SSL is pseudo-labeling, where pseudo-labels of unla-
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Figure 1. An illustrative example comparing the proposed Pseu-
doProp model for robust pseudo-label generation and the legacy
semi-supervised object detection, where both models leverage
the teacher-student training framework. Images are from the
Cityscapes dataset [9].
beled data are repeatedly generated by a pre-trained model.
The model is then updated by training on a mixture of
pseudo-labels and human-annotated data. Since the pre-
trained model can generate highly confident pseudo-labels,
SSL-based models can improve the performance of both
image [27, 32] and video [8] object detection. Notwith-
standing this tremendous success, pseudo-labels generated
by conventional SSL-based object detection models from
unlabeled data are not all reliable. Hence they cannot be di-
rectly applied to the training procedure of the detector net-
work to improve performance [1,3]. In particular, misdetec-
tions and false detections can easily appear in the pseudo-
labels, due to the performance bottleneck of the selected
pre-trained object detector. In this paper, we propose to
leverage motion cues to gather useful information among
sequential frames for robust pseudo-label generation. Our
hypothesis is that motion continuity can effectively improve
the quality of pseudo-labels for the critical task of object de-
tection in autonomous driving systems.

Despite the idea being intuitive, motion cue is often over-
looked in the design of SSL-based object detectors for au-
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tonomous driving. Most existing SSL-based object detec-
tion methods worked on single images individually [25,
27, 31, 32], thus the relationship among images is not con-
sidered thoroughly. A few object detection works [8, 20]
leverage SSL-based methods on videos to generate pseudo-
labels during the training, where the original labeled data
are mostly composed of sparse video frames [9]. Each
frame from the video can be viewed as an image, and then
image-based SSL models can be applied for object detec-
tion. However, such methods suffer from unwanted misde-
tections and false detections.

In this paper, we propose a novel effective algorithmic
model by leveraging motion information for robust pseudo-
label generation; our model can effectively improve SSL-
based object detection for autonomous driving. Our model
is named PseudoProp, as it exploits motion as a unique
property from the autonomous driving data to robustly prop-
agate pseudo labels. Fig. 1 overviews PseudoProp and com-
pares it against a legacy baseline. We adopt a teacher-
student framework in PseudoProp, where a teacher model
annotates pseudo-labels and a student model learns and ben-
efits from the pseudo-labels.

We developed a similarity-aware weighted boxes fu-
sion (SWBF) in PseudoProp based on a novel bidirectional
pseudo-label propagation (BPLP) to make pseudo-labels
more robust. BPLP can generate better pseudo-labels to
ease the misdetection problems. On the other hand, BPLP
might also generate too many redundant bounding boxes
and inevitably introduce false positives due to the exhaus-
tive forward and backward motion prediction. To this end,
we propose an approach to reduce confidence scores of
falsely transferred bounding boxes, based on the similarity
between their extracted features. With this similarity check,
we adapt the weighted boxes fusion (WBF) [28] originally
designed for bounding boxes reduction. Fig. 2 explains
how PseudoProp works in details. PseudoProp can alleviate
the misdetection problem and significantly reduce the con-
fidence scores for falsely detected objects. Experiments are
performed on the large-scale Cityscapes dataset [9], which
demonstrates the effectiveness of PseudoProp on generating
robust pseudo-labels for image-based SSL object detection.

Note that we do not aim to develop a full-scale object
tracking algorithm, where the goal is to find the motion tra-
jectories for objects in the video. Instead, we focus on how
best to associate motion objects across frames to generate
pseudo-labels to improve SSL object detection. Our work is
distinct from the conventional video object detection meth-
ods, which execute only one round of detection on all video
frames.

The main contributions of our work can be summarized
as follows:

1. We present a novel framework – PseudoProp for robust
pseudo-label generation for per-image object detection

based on motion propagation and SSL.

2. The proposed SWBF method based on the BPLP ap-
proach can solve the misdetection problem and signif-
icantly reduce the confidence scores of the false posi-
tives in the generated pseudo-labels.

3. Experiments on the Cityscapes dataset demonstrate
the effectiveness of our model in generating robust
pseudo-labels and boosting SSL object detection per-
formance.

2. Related Work
This section surveys relevant works of semi-supervised

learning, pseudo-label generation, and video motion predic-
tion.

2.1. SSL with Pseudo-Label Generation

Object detection is widely used in autonomous driv-
ing and video surveillance systems. Deep learning meth-
ods [10–13, 15, 24, 34, 35] have become de facto for object
detection because of their dominant performance and scal-
ability. However, training deep neural networks requires
a large amount of annotated data, and to this end Semi-
Supervised Learning (SSL) has growing popularity in gener-
ating or augmenting annotations for training powerful net-
works.

SSL has been widely applied to computer vision tasks
such as object detection [25, 32] and semantic segmenta-
tion [8,22,33]. One important idea in this domain is pseudo-
labeling [1, 3]. For object detection, the pseudo-labels are
the bounding boxes of objects in unlabeled data repeat-
edly generated by a pre-trained model. Most SSL-based
object detection methods focus on images. For example,
STAC [27] and Humble teacher [32]. There are few exist-
ing works [8, 20] on object detection by leveraging SSL-
based methods on videos to generate pseudo-labels on un-
labeled data. In [20], the authors assume that the train-
ing videos contain only sparsely labeled bounding boxes
and apply a traditional detector (Exemplar-SVM) instead of
deep learning-based models for object detection. This re-
sults in lower performance for the final model. In addition,
the teacher-student framework in Naive-Student [8], can be
applied to object detection and semantic segmentation on
videos. However, this work does not consider the relation-
ship among frames in the same video. Therefore, the gen-
erated pseudo-labels may include many misdetections and
false detections.

2.2. Video Motion

The spatially-displaced convolution network (SDC-Net)
in [23] can predict future video frames based on a two-stage
process of first estimating motion then predicting frames. A
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Figure 2. Overview of our proposed PseudoProp model for robust pseudo-label generation in semi-supervised object detection. (Left)
Teacher-student framework for semi-supervised learning. The dash lines represent operations (‘Train’ and ‘Replace’) only working on
specific iterations (Iteration 0 and Iteration T+1). (Right) Details of the proposed similarity-aware weighted boxes fusion (SWBF). The
figure is better viewed in color.

follow-up work [38] is proposed to enhance semantic seg-
mentation via ground truth label propagation, where the se-
mantic labels are propagated through video motion built on
top of the SDC-Net. The spatial-temporal algorithm of [6]
achieves fast object detection on videos through motion-
assisted supervised learning. In [18], the authors propose
to generate pseudo-labels and adopt those to train a multi-
object tracking model with unlabeled videos. Their pseudo
bounding boxes are derived from hallucination of videos,
where the videos are generated by motion transformations
to simulate various effects. A deep neural tracker is trained
with hard example mining.

There is a large literature on video object tracking [2, 4,
18]. However, a full-blown tracking algorithm is not re-
quired in this study, since generating pseudo-labels does
not require creating accurate trajectories of objects in ev-
ery video frame. Our method is more efficient and pertinent
to the requirement of the SSL tasks.

3. Methodology
The PseudoProp model contains two parts: (1) a teacher-

student framework for training semi-supervised object de-
tector (§ 3.1), (2) Motion Prediction (§ 3.2) and (3) the
similarity-aware weighted boxes fusion (§ 3.3). Fig. 2 il-
lustrates detailed components of the parts.

3.1. Teacher-Student based SSL

The teacher-student framework [8,36], which starts with
the idea of knowledge distillation [14] has been widely ap-
plied in SSL. In this paper, we use a state-of-the-art teacher-
student architecture from [8] for video object detection, but
our method introduces motion propagation to generate ro-
bust pseudo-labels.

Given the labeled training data DL = {(X̃i, Ỹi)}ni=1,
where n is the size of labeled data. X̃i denotes a video
frame, and Ỹi is the corresponding human annotations (a set
of bounding boxes) of X̃i. Let DU = {Xi}mi=1 be an un-

labeled dataset, where m is the size of unlabeled data. DU

is extracted from multiple video sequences with no human
annotation. The human-annotated dataset DL is exploited
to train a teacher network θ1 by using loss L for object de-
tection, where L consists of conventional classification and
regression losses for bounding box prediction. Therefore,
we have

θ∗1 = argmin
θ1

1

n

∑
(X̃i,Ỹi)∈DL

L(Ỹi, fθ1(X̃i)),

where θ∗1 is the trained teacher network with a prediction
function f .

We apply θ∗1 to generate (or update) the pseudo-labels
for all unlabeled data in DU . Therefore, Yi = fθ∗

1
(Xi),

where Yi is a set of pseudo-labels (bounding boxes) of the
unlabeled data Xi. Next, we propose the similarity-aware
weighted boxes fusion (SWBF) based on a motion predic-
tion model and a noise-resistant pseudo-label fusion model,
to enhance the quality of the generated pseudo-labels. This
can be represented as Y i = SWBF(Yi),∀Xi ∈ DU , where
Y i is a set of high-quality pseudo-labels after performing
SWBF on Yi.

A student network is subsequently trained with the
pseudo-labeled frames using the same loss function L.
Thus, we have

θ∗2 = argmin
θ2

1

m

∑
Xi∈DU

L
(
Y i, fθ2(Xi)

)
.

Since the pseudo-labeled data are noisy, the trained student
network cannot achieve high performance yet. The student
network is next fine-tuned on DL before evaluated on the
validation or test dataset. This way,

θ∗∗2 = argmin
θ∗
2

1

n

∑
(X̃i,Ỹi)∈DL

L(Ỹi, fθ∗
2
(X̃i)).

Finally, we replace the teacher fθ∗
1

with the student fθ∗∗
2

and
iterate the procedure again until termination.
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3.2. Motion Prediction

To estimate motion from unlabeled video frames, we
adopt the SDC-Net [23] to predict the motion vector
(du, dv) on each pixel (u, v) per frame Xt at time t. SDC-
Net is proposed to predict a video frame Xt+1 based on past
frame observations as well as their estimated optical flow.
It can be trained easily using consecutive frames without
providing any manual labels. A later work [38] was pro-
posed to improve the SDC-Net by using video frame re-
construction instead of frame prediction, i.e., to apply bi-
directional frames to reconstruct the current frame. The pre-
dicted frame X̂t+1 and its corresponding predicted pseudo-
labels Ŷt+1 can be formulated as:

X̂t+1 = B(M(Xt−τ :t+1, Vt−τ+1:t+1), Xt),

Ŷt+1 = T (M(Xt−τ :t+1, Vt−τ+1:t+1), Yt),
(1)

where Xt−τ :t+1 are frames from time t − τ to t + 1,
Vt−τ+1:t+1 are the corresponding optical flows from time
t − τ + 1 to t + 1, M is a convolutional neural network
(CNN) to predict per-pixel motion vector (du, dv) on Xt, B
is a bilinear sampling operation to interpolate the motion-
translated frame into the predicted frame, and T is a floor
operation for deriving pseudo-labels from motion predic-
tion. We adopt the pre-trained optical flow estimation model
FlowNet2 [16] to generate V , and this video frame recon-
struction approach is used forM. We select τ = 1 through-
out all experiments unless specified otherwise. Once the
motion vectors on all pixels are available, we use T to pre-
dict (u, v) in Yt as (⌊u+ du⌋, ⌊v + dv⌋) in Ŷt+1, where ⌊·⌋
is the floor operation.

3.3. Similarity-aware Weighted Boxes Fusion
(SWBF)

In this section, we first propose a bidirectional pseudo-
label propagation method to generate candidate pseudo-
labels according to the motion predictions. Then we pro-
pose a robust fusion method to generate final pseudo-labels.

Bidirectional Pseudo-Label Propagation (BPLP).
Since the predicted pseudo-labels from the teacher model
may contain many false negatives, e.g., humans are misde-
tected as in Fig. 1, we apply the motion prediction in Eq. (1)
to propagate pseudo-label prediction. However, such mo-
tion prediction can only predict frames and labels in one
time step. To make the predicted pseudo-labels more ro-
bust at time t + 1, we propose the bidirectional pseudo-
label propagation to generate pseudo-label proposals across
frames, via interpolations from both forward propagation
from existing labels and time-reversed backward propaga-
tion. We also apply different propagation lengths k ∈ Z+.
Specifically,

Y t+1 = Yt+1 ∪ Ŷt+1, Ŷt+1 =
⋃
i∈K

Ŷ i
t+1, (2)

Ŷ i
t+1 = T

(∑
j∈J

M(Xt−j:t−j+2, Vt+1−j:o), Yt+1−i

)
, (3)

where K = {±1, · · · ,±(k-1),±k}, i ∈ K, as well as

J =

{
{1, · · · , i}, if i > 0
{i, · · · ,−1}, if i < 0

, o =

{
t+ 2− j, if i > 0
t− j, if i < 0

,

where ± indicates forward and backward propagation. In
Eq. (2), Yt+1 is the pseudo-label set of the unlabeled frame
Xt+1 from the teacher model prediction. Ŷt+1 is a set con-
taining pseudo-labels from the past and future frames after
using motion propagation from Eq. (3). Ŷ i

t+1 is the pseudo-
label set from Yt+1−i. We also show details on calculating
Ŷt+1 in the Appendix. Next, we calculate Y t+1 for frame
Xt+1 by taking the union of Yt+1 and Ŷt+1.

Robust Fusion. BPLP with different settings of k can
generate many candidates of pseudo-labels, which may in-
duce additional false positives (FP), which we categorize
into two types. For Type-A FP, refer to an example in
Fig. 3(a), where a person is detected at time t and t + 2,
but not detected at t + 1 due to occlusion by a tree. In
this case, BPLP can generate two bounding boxes at t + 1
however with low confidence scores caused by the occlu-
sion. For Type-B FP, refer to Fig. 3(b), where a billboard is
mistakenly detected as a truck at time t + 1 with a high
confidence score. Even worse, the number of candidate
pseudo-labels (bounding boxes) increases as the value of
k increases. Thus, many redundant bounding boxes Y t+1

can be predicted in frame Xt+1.
We propose a similarity-based approach to reduce the

confidence scores of these false pseudo-label predictions.
We define Yt+1−i := {(Lz

t+1−i, P
z
t+1−i, S

z
t+1−i)}

|Yt+1−i|
z=1 ,

where Lz
t+1−i, P z

t+1−i, Sz
t+1−i are the class, positions,

confidence score of the z-th bounding box in Yt+1−i,
respectively, and | · | denotes the number of bound-
ing boxes in the set. Similarly, we define Ŷ i

t+1 :=

{(L̂i,z
t+1, P̂

i,z
t+1, Ŝ

i,z
t+1)}

|Ŷ i
t+1|

z=1 . Note that Lz
t+1−i = L̂i,z

t+1,∀z,
because (1) we do not change the bounding box class dur-
ing the propagation and (2) P̂ i,z

t+1 (assume it is inside the
frame) can be obtained from P z

t+1−i by applying T from
Eq. (3). Recall that previously Sz

t+1−i = Ŝi,z
t+1,∀z, which

results in Type-A FPs. Therefore, we introduce a similar-
ity function sim(·) based on P̂ i,z

t+1 and P z
t+1−i to estimate

the bounding box confidence score when transitioned from
Sz
t+1−i to Ŝi,z

t+1. To calculate this similarity, we first crop
images at frame Xt+1−i and Xt+1 according to the posi-
tions P z

t+1−i and P̂ i,z
t+1, respectively. Then we use a pre-

trained neural network to extract the high-level feature rep-
resentatives from the cropped images. The similarity is ob-
tained by comparing these two high level feature represen-
tatives:

Ŝi,z
t+1 = Sz

t+1−i · sim
(
C(P i,z

t+1), C(P z
t+1−i)

)
, (4)

where C(·) is a function extracting the high-level feature

4393



t+1 t+2t t+1 t+2t

… … … …

S

61
%

 p
er

so
n

69
%

 p
er

so
n

61
%

 p
er

so
n

69
%

 p
er

so
nFe

at
ur

es

Features
S

Features Fe
at

ur
es

0.
69

%
 p

er
so

n

1.
22

%
 p

er
so

n

Similarity Score
(from Eq.(4)): 0.02

Similarity Score 
(from Eq.(4)): 0.01

Pseudo-Label 
Propagation

Pseudo-Label 
Propagation

Pseudo-Label 
Propagation

Pseudo-Label 
Propagation

42% car

Weighted Boxes Fusion

14% car

Type-A FP

Type-B FP

S Similarity Calculation Multiply Operator

Detected Bounding Box 
from the Teacher Model

Existing Bounding Box with 
A New Confidence Score

New Generated 
Bounding Box(a)

(b)

Figure 3. Examples of (a) Type-A FP and (b) Type-B FPs produced
from BPLP that can be solved by the proposed SWBF method.

representatives from the cropped images based on the box
positions, and sim(·) is a similarity function. The reason
we adopt a feature-based approach for similarity calcula-
tion is that we prefer assigning similar scores to objects
within the same class before and after pseudo-label prop-
agation. The use of such similarity scores can effectively
reduce Type-A FPs. Fig. 3(a) shows an illustrative exam-
ple.

Although this similarity screening can reduce the confi-
dence score for some Type-A FPs, it can not address Type-
B FPs. To further filter out redundant prediction boxes,
we adapt weighted boxes fusion (WBF) [28]. WBF also
reduces the confidence scores of the Type-B FP boxes by
averaging the localization and confidence scores of predic-
tions from all sources (previous, current, and future frames)
of the same object. Fig. 3(b) shows an illustrative example.

Before using WBF, we spilt Y t+1 into d parts according
to the bounding boxes classes, where d is the total number
of classes in Y t+1. We define Y t+1,c ⊆ Y t+1 as a subset
for the c-th class. For each subset, i.e. Y t+1,c, we briefly
introduce the fusion procedures as follows:

1. We first divide bounding boxes from Y t+1,c into dif-
ferent clusters. For each cluster, the intersection over
union (IoU) of each two bounding boxes should be
greater than a user-defined threshold Thr (in our ex-
periments, Thr = 0.5 is close to an optimal thresh-
old).

2. For boxes in each cluster r, we calculate their aver-
age confidence score Cr, and the weighted average
for the positions using Cr = 1

B

∑B
l=1 C

l
r and Pr =∑B

l=1 Cl
r·P

l
r∑B

l=1 Cl
r

, where B is the total number of boxes in

the cluster r. Cl
r and P l

r are the confidence score and
the position of the l-th box in the cluster r, respectively.

3. The above two steps can reduce the redundant bound-
ing boxes. However, it cannot solve the Type-B FP
problems. To reduce the confidence score of false de-

tected boxes, we re-scale Cr by

Cr = Cr ·
min(B, |K|+ 1)

|K|+ 1
, (5)

where |K| is the size of the set K. The interpretation is
that, if a small number of sources can provide pseudo-
labels on an object, this detection is most likely a false
detection. An illustrative example is shown in Figure
3(b).

4. Finally, Y t+1,c only contains the averaged bounding
box information (c, Pr, Cr) from each cluster.

Therefore, the final Y t+1 only contains the updated
Y t+1,c from each class. The details of this fusion method
can be found in Appendix. The pseudo-code of our pro-
posed SWBF method for Y t+1 is described in Algorithm
1.

Algorithm 1: Similarity-aware Weighted Boxes
Fusion (SWBF) for Y t+1.

Input: k, d, Thr, X , Y (from the teacher model
prediction).

Output: The new pseudo-labels Y t+1 on Xt+1

1 for i ∈ {±1, · · · ,±(k − 1),±k} do
2 Create or update Ŷt+1 based on Eq.(2), Eq.(3),

and Eq.(4).
3 end
4 Create Y t+1 based on Eq.(2).
5 for c = 1, · · · , d do
6 Y t+1,c ←WBF(Y t+1,c, Thr) .
7 end
8 Update Y t+1 based on Y t+1,c,∀c.
9 return Y t+1

4. Experiments
We evaluate PseudoProp for SSL-based object detection

in autonomous driving applications. PseudoProp can be ap-
plied in any video dataset of autonomous driving with se-
quential frames. Our experiments are performed on the pop-
ular large-scale Cityscapes dataset [9], as it fits our scenario
well. Due to space limitations, we only present significant
results and leave additional results in the supplementary ma-
terial.

4.1. Experimental Settings

Datasets and Evaluation Metrics. The Cityscapes
dataset [9] contains diverse street-views recorded from 50
cities in Germany. We use the annotated 2, 975 training im-
ages as our training set and the annotated validation 500 im-
ages as our test set. Each image is selected from the 20-th
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frame of a 30-frame video snippet. Therefore, the training
video set contains 2, 975 videos. For each training video,
we estimate motion vectors and randomly select 3 frames
(excluding the frames already in the training set) without re-
placement as the pseudo-labeled frames. To generate robust
pseudo-labels for the student model, we first use the pseudo-
labels of the selected frames with confidence scores > 0.4
produced from the teacher model. Note that the threshold of
0.4 yields nearly the best performance in our experiments,
and is also widely used in the literature [30]. This proce-
dure is important to suppress noisy labels as in [39]. We
next apply SWBF on these noisy labels and obtain the ro-
bust pseudo-labels. We then use these frames with robust
pseudo-labels to construct the pseudo-labeled sets with 1×,
2×, 3× sizes of the original training set. We report the mean
average precision (mAP), mAP with IoU 0.5 (mAP50), and
mAP with IoU 0.75 (mAP75) [17] as the object detection
evaluation results.

Computing Infrastructure. The algorithm in this pa-
per is implemented with Python 3.6, and it is trained and
tested on an Intel(R) Xeon(R) Gold 6150 CPU @2.70GHz
with 128GB RAM, and one NVIDIA Tesla V100 GPU
with 32GB VRAM. The TensorFlow version is 2.5.0 for
EfficientDet-D1 (object detection). The PyTorch version is
1.7.0 for SDC-Net (motion prediction).

Teacher and Student Models. We train a deep neu-
ral network object detector as our initial teacher model.
We adopt the EfficientDet-D1 [30] as the teacher network,
with backbone pre-trained on ImageNet [26] and the whole
network fine-tuned on Cityscapes with batch size 8. The
maximum number of epochs is 180. Random image hor-
izontal flip and scaling are applied as our data augmen-
tation strategy. We also adopt the stochastic gradient de-
scent optimizer and a cosine decay learning rate scheduler
in the training loop. The learning rate is set to 0.08, after
1 epoch warmup with an initial learning rate 0.008. Af-
ter fine-tuning, we obtained 0.355 mAP50 performance for
Cityscapes on the test set, which is close to the state-of-the-
art performance [7, 19].

EfficientDet-D1 is also adopted as our student network.
We train it with the pseudo-labeled data with a maximal
180 number of epochs. After that, we fine-tune the student
model on the training dataset. The maximum number of
epochs is also 180. Note that SWBF is a post-processing
method to generate pseudo-labels. Any object detector pro-
ducing detection boxes can be integrated with our method
to take advantage of the improved pseudo-labels. Since the
pseudo-labels generation is only used in the training pro-
cedure, the inference speed of PseudoProp is the same as
EfficientDet-D1.

Motion Prediction and Feature Extraction. A pre-
trained SDC-Net [23] is used to predict pseudo-labels ac-
cording to the motion vectors presented in Eq. (1). For cal-

culating the similarity in Eq. (4) between two cropped im-
ages, we use EfficientNet-B1 [29], which is also the back-
bone of EfficientDet-D1 for feature extraction. Cosine sim-
ilarity is used to calculate the value of sim(·). Feature
values are normalized into [0, 1] to ensure sim(·) ∈ [0, 1].
Other similarity functions can also be applied.

Comparisons. We compare PseudoProp with two exist-
ing SSL object detectors based on pseudo-label generation.

• Naive-Student [8]: The original Naive-Student model
uses a teacher-student model with a test-time augmen-
tation. However, their test-time augmentation does
not fit directly to object detection. We also use the
same selected frames and pseudo-labels with confi-
dence scores higher than 0.4 to construct the pseudo-
labeled datasets. Naive-Student can be viewed as a
variant of PseudoProp without SWBF.

• VideoProp [38]: It was originally proposed to improve
the semantic segmentation. Here we use it to increase
the pseudo-labeled data size via their label propaga-
tion. Since this method can only generate pseud-labels
according to the ground truth (GT), we follow the ap-
proach in their original paper by only considering the
19-th, 20-th, 21-th, and 22-th frames in each video.
Specifically, for each training video, we use the 20-th,
21-th frames, and GT labels (from 20-th frame) to pre-
dict the labels in the 19-th frame. Similarly, we use the
19-th, 20-th frames, and GT labels to predict the la-
bels in the 21-th frames. We also reconstruct the 21-th
frame and combined it with the 19-th and 20-th frames
to predict pseudo-labels for the 22-th frame. The eval-
uation pseudo-labeled set is thus constructed for exper-
imental comparison.

Since PseudoProp is a pure image-based object detector,
we also compare the inference performance with state-of-
the-art supervised object detection models SSD and DSP-
Net [7] as baselines.

4.2. Results

General Performance. We set 2 iterations for the
Naive-Student and PseudoProp for the setting of 1×
pseudo-label size. We also test model performance on the
size of pseudo-labeled data with 2× and 3× settings. Since
VideoProp can also generate pseudo-labeled data accord-
ing to the GT labeled data, we proposed to combine 1×
pseudo-labeled data from PseudoProp and 1× (2×) pseudo-
labeled data from VideoProp as a new 2× (3×) pseudo-
labeled data. We then train the student models on these new
datasets and name them PseudoProp*. A similar approach
is applied to the Naive-Student model (Naive-Student*).
The performance of all models is shown in Table 1. Ob-
serve that PseudoProp and PseudoProp* achieve superior
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(a) Ground Truth (b) Naive-Student (c) VideoProp (d) PseudoProp
Figure 4. Visual comparison among the (a) ground truth, (b) Naive-Student, (c) VideoProp, and (d) the proposed PseudoProp in the
Cityscapes evaluation. Red and yellow dotted ovals indicate the objects misdetected and falsely detected, respectively.

Ratio Models Training
Methods

Test Set
mAP (%) mAP50 (%) mAP75 (%)

1×

EfficientDet-D1 s 19.0 35.5 17.2
SSD s - 36.7 -

DSPNet s - 36.9 -
VideoProp ss 21.7 40.3 19.9

Naive-Student (iteration 1) ss 20.8 39.0 18.8
Naive-Student (iteration 2) ss 22.2 40.8 20.3

PseudoProp (iteration 1, ours) ss 21.6 40.4 19.9
PseudoProp (iteration 2, ours) ss 22.6 (+1.8%) 41.4 (+1.5%) 20.9 (+3.0%)

2×

VideoProp ss 21.9 43.0 19.6
Naive-Student (iteration 1) ss 21.2 38.9 19.6
Naive-Student* (iteration 1) ss 22.8 43.3 19.8

PseudoProp (iteration 1, ours) ss 21.7 41.0 20.2
PseudoProp* (iteration 1, ours) ss 23.2 (+1.8%) 44.4 (+2.5%) 20.9 (+5.6%)

3×

VideoProp ss 22.3 42.0 19.8
Naive-Student (iteration 1) ss 21.0 39.7 18.7
Naive-Student* (iteration 1) ss 23.1 43.2 21.5

PseudoProp (iteration 1, ours) ss 21.7 40.0 19.8
PseudoProp* (iteration 1, ours) ss 23.1 (+0%) 43.9 (+1.6%) 23.1 (+7.4%)

Table 1. Comparison of mAP, mAP50, and mAP75 of different ob-
ject detection models in the Cityscapes evaluation when using 1×,
2×, and 3× pseudo-labeled data and k=1. The improved percent-
age is also reported when compared with the best baseline result
under the same conditions. “-” represents that no performance
is provided in the existing works. “s” stands for supervised and
“ss” for semi-supervised training. All “ss”-based models are im-
plemented based on the EfficientDet-D1. Best results are shown in
bold.

performance in all settings. They achieve larger perfor-
mance gains in mAP75, which implies our generated bound-
ing boxes are more accurate than the others. Fig. 4 shows
qualitative comparison results.

Discussions. We next discuss observations and anal-
ysis of our experiments. First, SSL models outperform
supervised learning-based models. This is because SSL
models use not only the original labeling but also high-
quality pseudo-labeled data for training. Second, Pseu-
doProp improves the pseudo-label quality of the ordinary
Naive-Student thanks to the SWBF. Comparing VideoProp
and PseudoProp (iteration 2) in the 1× setting, we find the
improved performance of the motion-based model in the
teacher-student architecture. PseudoProp is more general
and flexible than VideoProp, as VideoProp only generates

pseudo-labels near the GT. Third, performance for all SSL-
based models can be improved by increasing the pseudo-
labeled data size. Fourth, PseudoProp* achieves the best
performance, as the most high-quality pseudo-labeled data
propagated from the GT are used. SWBF generates more
random pseudo-labels, which increases the diversity of the
data. When the generated data ratio increases 2× to 3×,
PseudoProp performance decreases slightly, and a reason is
that more noisy data were used for training. Finally, the in-
ference time of PseudoProp is no different than any teacher
model.

4.3. Ablation Study

Performance on Different Score Thresholds. After us-
ing SWBF to generate the robust pseudo-labels, we set a
threshold to remove noisy pseudo-labels based on their con-
fidence scores before passing them to the student model.
We compare Naive-Student and PseudoProp using 4 dif-
ferent thresholds {0, 0.1, 0.2, 0.3} and report the results in
Fig. 5(a). Observe that even without setting the thresh-
old, PseudoProp outperforms Naive-Student on all evalu-
ation metrics. This means SWBF generates more reliable
pseudo-labels. Furthermore, PseudoProp can be more ro-
bust by tuning the threshold w.r.t. the observed mAP50 per-
formance.

Performance on Low-Data Regime (training with only
a small amount of labeled data). We explore the model per-
formance with different amounts of training data together
with a fixed amount of pseudo-labeled data. This way, we
can understand how many labeled data points are needed to
fine-tune our model that can effectively speed up the whole
training process. Therefore, we randomly extract small sets
of labeled data with different sizes such as 500, 1000, 2000
from the original training set. Then we compare Naive-
Student and PseudoProp models on each of these sets when
performing the fine-tuning of the student model. We show
the comparison results in Fig. 5(b). Note that PseudoProp
outperforms Naive-Student in all evaluation metrics, even
in the low-data regime.
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Figure 5. Comparison of mAP, mAP50, and mAP75 of Naive-
Student and PseudoProp models on the Cityscapes dataset with
1 iteration when using 1× pseudo-labeled data, k = 1, and (a)
different thresholds and (b) different size of labeled data.
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Figure 6. (a) Confidence score distributions with different k. (b)
Comparison of mAP, mAP50, and mAP75 of Naive-Student (k=0)
and PseudoProp models (k=1,2,3) on the Cityscapes dataset with
1 iteration, 1× pseudo-labeled data, and threshold 0.1.

Performance on Different Motion Propagation
Length k. We compare the model performance with differ-
ent k values, which control the BPLP time steps. First, in
Figure 6(a), we explore the pseudo-label confidence score
distributions with different k. Note that k=0 represents
the Naive-Student. As discussed before, we select pseudo-
labels with confidence scores larger than 0.4 to remove the
noisy labels. Therefore, the density curve starts from 0.4
for k=0. In addition, since we use a similarity function in
Eq.(4) and different k for the fusion method to reduce the
false positives, we should expect that our confidence scores
for pseudo-labels are smaller than the original ones. Fig.
6(a) verifies this phenomenon in that the curves shift to
the left as k increases. The more neighboring frames we
use to propagate pseudo-labels, the more likely the fused
final confidence score would decrease. In other words, the
confidence score for non-robust pseudo-labels would be
suppressed further.

Observe in Fig. 6(b) that PseudoProp outperforms
Naive-Student model (k=0) in mAP50 by setting k > 0.
We also observe that increasing k does not always increase
performance. This can be explained by the fact that larger k
also induces more noise (false positives) from neighboring
frames. Nevertheless, our method achieves the best perfor-
mance in mAP and mAP75 when setting k=3. Since both
metrics consider higher requirements for predicting accu-
rate bounding box positions, the proposed SWBF yields
better estimation for bounding box coordinates when fus-
ing with a larger k. The advantage of accurate bounding
box coordinates outweighs the introduced noise.

Fusion Methods Test Set
mAP (%) mAP50 (%) mAP75 (%)

NMS 21.0 39.7 19.1
NMW 21.0 39.8 19.1
SNMS 21.2 39.8 19.3
WBF 21.0 39.6 19.1

SWBF (ours) 21.6 (+1.9%) 40.4 (+1.5%)19.9 (+3.1%)

Table 2. Comparison of mAP, mAP50, and mAP75 for Pseudo-
Prop model with different fusion methods in the Cityscapes eval-
uation. The hyperparameters are 1 iteration, 1× pseudo-labeled
data, k = 1, and threshold 0.1. Best results are shown in bold.

Performance on Different Fusion Methods. A
similarity-based WBF approach is used in PseudoProp for
bounding boxes fusion. The following ablation study veri-
fies that our fusion module is indeed better than the state-
of-the-art fusion methods [28], including non-maximum
suppression (NMS) [21], soft-NMS (SNMS) [5], non-
maximum weighed (NMW) [37], and the original WBF
[28]. We replace our fusion module with each of the com-
parison methods and then evaluate performance on the test
dataset. Table 2 shows results of this experiment. It is clear
that our proposed SWBF method achieves the best perfor-
mance. Note the performance of the original WBF is very
close to other state-of-the-art methods. By adding the pro-
posed similarity modification on top of WBF, SWBF out-
performs all comparison methods.

5. Conclusion
In this paper, we develop the PseudoProp model to

generate robust pseudo-labels that can effectively improve
semi-supervised, per-image based object detection. We pro-
pose a BPLP method to resolve the misdetection problem in
the pseudo-labels. In addition, the proposed similarity ap-
proach combined with the WBF method can effectively sup-
press the confidence scores of the falsely detected bounding
boxes. Experimental evaluations on the Cityscapes dataset
demonstrate that PseudoProp can improve not only tradi-
tional teacher-student based but also motion-based semi-
supervised models. Our generated pseudo-labels are reli-
able for model training, which is validated qualitatively and
quantitatively.

Future Works. There are several important future di-
rections to improve PseudoProp. First, we would consider
jointly training an end-to-end model for object detection
and motion prediction in our semi-supervised framework.
Second, motion prediction error can be taken into account,
in which we assume perfect prediction in this work. Third,
since the fusion mechanism naturally benefits from soft la-
bels, we believe that incorporating soft labels into Pseudo-
Prop will further improve its performance. Fourth, further
evaluation can be performed on quantifying how the feature
extraction module affects PseudoProp performance.
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