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Abstract

Depth estimation from a stereo image pair has become
one of the most explored applications in computer vision,
with most previous methods relying on fully supervised
learning settings. However, due to the difficulty in acquir-
ing accurate and scalable ground truth data, the training of
fully supervised methods is challenging. As an alternative,
self-supervised methods are becoming more popular to mit-
igate this challenge. In this paper, we introduce the H-Net,
a deep-learning framework for unsupervised stereo depth
estimation that leverages epipolar geometry to refine stereo
matching. For the first time, a Siamese autoencoder archi-
tecture is used for depth estimation which allows mutual
information between rectified stereo images to be extracted.
To enforce the epipolar constraint, the mutual epipolar at-
tention mechanism has been designed which gives more em-
phasis to correspondences of features that lie on the same
epipolar line while learning mutual information between
the input stereo pair. Stereo correspondences are further
enhanced by incorporating semantic information to the pro-
posed attention mechanism. More specifically, the optimal
transport algorithm is used to suppress attention and elim-
inate outliers in areas not visible in both cameras. Exten-
sive experiments on KITTI2015 and Cityscapes show that
the proposed modules are able to improve the performance
of the unsupervised stereo depth estimation methods while
closing the gap with the fully supervised approaches.

*Baoru Huang and Jian-Qing Zheng contribute equally to this paper
†jianqing.zheng@kennedy.ox.ac.uk

1. Introduction
Humans are remarkably capable of inferring the 3D

structure of a real world scene even over short timescales.
For example, when navigating along a street, we are able to
locate obstacles and vehicles in motion and avoid them with
a fast response time. Years of substantial interest in geo-
metric computer vision has not yet accomplished compara-
ble modeling capabilities to humans for real-world scenes
where reflections, occlusions, non-rigidity and textureless
areas exist. So what can human ability be attributed to? A
central concept is that humans learn the regularities of the
world while interacting with it, moving around, and observ-
ing vast quantities of scenes. Consequently, we develop a
rich, consistent and structural understanding of the world,
which is utilized when we perceive a new scene. Our binoc-
ular vision is one supporting feature, from which the brain
can not only build disparity maps, but can also combine to
obtain structural information. These two ideas can help to
solve one of the fundamental problems in computer vision
— depth estimation — whose quality has a direct influence
on various application scenarios, such as autonomous driv-
ing, robotic manipulation [25], surgery navigation [9], aug-
mented reality and 3D reconstruction.

Thanks to advanced deep learning techniques, the perfor-
mance of depth estimation methods has improved signifi-
cantly over the last few years. Most previous work relied on
ground-truth depth data and considered deep architectures
for generating depth maps in a supervised manner [13, 24].
However, collecting vast and varied training datasets with
accurate per-pixel ground truth depth data for supervised
learning is a formidable challenge. To overcome this limi-
tation, some recent works have shown that self-supervised
methods are instead able to effectively tackle the depth esti-
mation task [19,27]. The approaches proposed in [7,11] are
particularly inspirational, where they took view synthesis as
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a supervisory signal to train the network and exploited dif-
ferences between the original input and synthesized view as
penalties (i.e. a photometric image reconstruction cost and
a disparity smoothness cost) to force the system to generate
accurate disparity maps. However, although some works
have tried to emphasize the complementary information in
the stereo image pair and used shared weights when ex-
tracting features from input images [2, 19], the contextual
information between the multiple views — especially some
strong feature matches have not been effectively explored
and exploited.

In this paper, we use an unsupervised learning setting
and introduce the H-Net, an end-to-end trainable network
for depth estimation given rectified stereo image pairs. The
proposed H-Net effectively fuses information in the stereo
pairs and combines epipolar geometry with learning-based
depth estimation approaches. In summary, our main contri-
butions in this paper are:

• A Siamese encoder-Siamese decoder network archi-
tecture in self-supervised learning schema was pro-
posed, which fuses the complementary information in
the stereo image pairs while enhancing the communi-
cation between them.

• A new mutual epipolar attention module was proposed
to enforce the epipolar constraints in feature matching
and emphasize the strong relationship between the fea-
tures located along the same epipolar lines in rectified
stereo image pairs.

• An optimal transport algorithm was explored and ap-
plied on the mutual epipolar attention module to make
a further enhancement and incorporate semantic infor-
mation in a novel fashion while filtering out outlier fea-
ture correspondences.

We demonstrate the effectiveness of our approach on the
challenging KITTI [5] and Cityscapes datasets [3]. An ab-
lation study was conducted by turning various components
of the model off in turn, indicating the respective positive
influence of each proposed module on the overall perfor-
mance.

2. Related work

Estimating depth maps from stereo images has been ex-
plored for decades [1]. Accurate stereo depth estimation
plays a critical role in perceiving the 3D geometric configu-
ration of scenes and facilitating a variety of real world com-
puter vision applications [12]. Recent work has shown that
depth estimation from a stereo image pair can be effectively
tackled by learning-based methods with convolutional neu-
ral networks (CNNs) [2].

Data forward for left & right image/depth Epipolar line

H-Net

ୢୱ
୪

Re-projective 
sampler

ୟ୮
୰

ୟ୮
୪

ୢୱ
୰

୰∗

୪∗
୪

୰

୪

୰

OT-MEA ,    & Feature maps in encoder, decoder & latent space

Figure 1. The network architecture of the proposed H-Net with
new Optimal Transport based Mutual Epipolar Attention module
(OT-MEA, as shown in Fig. 2) and self-supervised training details
are shown in Sec. 3.4. Siamese encoder-decoder architecture with
shared weights was used to extract features which are fed to the
OT-MEA modules for exploring long-range dependencies of the
epipolar geometry between stereo image pairs.

Due to the lack of per-pixel ground truth depth data,
much work has investigated self-supervised depth estima-
tion, where corresponding image reconstruction accuracy
forms the supervisory signal during training [11]. It has
been also shown that training with an added binocular
color image helps single image depth estimation without
requiring ground truth [7]. Andrea et al. [19] showed that
the depth estimation results could be effectively improved
within an adversarial learning framework, with a deep gen-
erative network that learned to predict the disparity map
for a calibrated stereo camera using a wrapping operation.
A pyramid stereo matching network was proposed in [2],
where spatial pyramid pooling and dilated convolution were
adopted to enlarge the receptive fields, while a stacked hour-
glass CNN was designed to further boost the utilization of
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Figure 2. The Optimal Transport based Mutual Epipolar Attention block (OT-MEA) computed the correspondence between pixels from
stereo image pairs (Eq. 1) while leveraging OT algorithm (Eq. 4) to assign varying weights for retrieval.

global context information. Duggal et al. [4] proposed a
differentiable PatchMatch module to abandon most dispari-
ties without requiring full cost volume evaluation, and thus
the specific range to prune for each pixel could be learned.
Kusupati et al. [15] improved the depth quality by lever-
aging the predicted normal maps and a normal estimation
model, and proposed a new consistency loss to refine the
depths from depth/normal pairs.

In the multi-view (stereo) depth estimation task, it is nat-
ural to employ complementary features from different views
to establish the geometric correspondences. Zhou et al. [28]
presented a framework that learned stereo matching costs
without human supervision by updating the network param-
eters in an iterative manner and guided by a left-right check.
Joung et al. [12] proposed a framework to compute match-
ing cost in an unsupervised setting, where the putative posi-
tive samples in every training iteration were selected by ex-
ploiting the correspondence consistency between two stereo
images. Although these methods tried to explore the feature
relationship between the stereo images, the concrete match-
ing matrices were not effectively exploited or applied to the
learning procedure, which leads to the loss of details and
geometric information, especially the strong constraints on
the epipolar line.

3. Method

3.1. H-Net architecture

In this paper, the encoder-decoder structure Monodepth2
[7] was adopted as the fundamental backbone, based on
the U-Net [20]. As shown in Fig. 1, the proposed archi-
tecture consisted of a double-branch encoder and a double-
branch decoder. To make the network compact and more
suitable for self-supervised stereo training, inspired by [2]

and [19], a Siamese Encoder - Siamese Decoder (SE-SD)
structure was designed with shared weights between the two
branches in both the encoder and the decoder which enabled
the extraction of mutual information from the pair of in-
put images. The Siamese Encoder (SE) of H-Net included
two branches of Resnet18 [8] with shared trainable param-
eters. The left and right rectified images Il, Ir ∈ R3×h0×w0

were fed into each branch of the SE to extract common fea-
tures from the input images, where h0, w0 denote the im-
age size. The outputs of the three deeper Residual-down-
sampling (Res-down) blocks in the SE were interconnected
with a novel mutual attention block proposed in this work
— the so-called Optimal Transport-based Mutual Epipolar
Attention (OT-MEA) block, shown in Fig. 2 and explained
in detail below.

The abstract latent features from the encoder were fused
in the middle part by concatenating the feature maps ex-
tracted from each SE block between the two branches. Each
concatenated map was then convolved by two separate con-
volution layers with different trainable parameters.

The decoder took the fused latent features as inputs and
generated sigmoid outputs for each input image similar
to [6] and [7]. It was composed of the same number of
Residual-up-sampling (Res-up) blocks as Res-down to re-
cover the full resolution, as well as OT-MEA blocks in-
serted in the first three Res-up blocks. Each sigmoid out-
put Ω of the decoder was transformed to scene depth as
D = 1/(aΩ + b). The parameters a and b were selected
to constrain depth D between 0.1 and 100 units.

3.2. Mutual Epipolar Attention

Here we introduce a mutual attention mechanism to give
more emphasis to feature correspondences which lie on the
same epipolar line.
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Recently, Wang et al. [23] proposed the Non-Local (NL)
block which allowed them to exploit global attention in an
image sequence. This was then extended with the introduc-
tion of the Mutual NL (MNL) block [26] to explore the mu-
tual relationships between different inputs in multi-view vi-
sion. However, global-range feature matching in the NL and
MNL blocks suffers from the high number of parameters,
memory requirement and training time. Furthermore, these
blocks can be misled by repeated textures in the scenes.

To overcome the above limitations, we designed the Mu-
tual Epipolar Attention (MEA) module to constrain feature
correspondences to the same epipolar line between a pair of
rectified stereo images. MEA was defined as:{

Yl→r := Ψ(Xl)⊗ Φ(Xl,Xr)

Yr→l := Ψ(Xr)⊗ Φ(Xr,Xl)
(1)

where ⊗ denotes the batch matrix multiplication, Xl,Xr ∈
Rh×c×w denote the transported and reshaped input signals
from the two branches, and Yl→r,Yr→l ∈ Rh×c×w are
the output signals from the MEA block. Φ : Rh×c×w ×
Rh×c×w → Rh×w×w, (X1,X2) 7→ M1→2 is a pair-wise
matching function — the so called retrieval function —
which evaluates the compatibility between the two inputs.
Ψ : Rh×c×w → Rh×c×w,X 7→ V is a unary function which
maps vectors from one feature space to another and is essen-
tial for fusion.

Following the settings in [23], the Embedded Gaus-
sian (EG) similarity representation was used to define our
matching function:

ΦEG(X1,X2) := softmax(C1(X1)⊤ ⊗ C2(X2)) (2)

where C is the 1 × 1 convolution, and was also used in the
unary function for vector mapping:

Ψ := C (3)

In the experimental work, the EG-based MEA and MNL
modules were compared and denoted as EG-MEA and EG-
MNL, respectively.

3.3. Optimal transport based mutual attention

In stereo vision, input images are captured from cameras
at different positions and view angles resulting in slightly
different fields of view. This can cause outliers in depth esti-
mation due to incorrect feature correspondences in the areas
which are not visible to both cameras. To eliminate outliers
in these areas, the MEA module was enhanced to suppress
the contribution of correspondences in these occluded areas
during feature matching. The EG similarity representation
defined in Eq.(2) cannot achieve this because all the areas
of the input signals are equally considered.

For this purpose, we formulated the matching task in
Eq.(1) as an optimal transport (OT) problem, as it has al-
ready been proven that OT improves semantic correspon-
dence [16]. Thus, a new OT-based retrieval function is fur-
ther proposed, tailored to our stereo depth estimation prob-
lem:

ΦOT(X1,X2) := argmin
M

∥M ⊙ e1−C′
1(X1)⊤⊗C′

2(X2)∥1
s.t. u ⊗ M = Θ(X2), u ⊗ M⊤ = Θ(X1)

(4)
where ⊙ denotes a Hadamard product, C′ is a sequence op-
eration of convolution and channel-wise Euclidean normal-
ization, u ∈ {1}h×1×w is a matrix with all elements equal
to 1. Θ : Rh×c×w → Rh×1×w,X 7→ U is the sequence
operation of convolution, ReLU activation and pixel-wise
L1-normalization to generate the transported mass of pix-
els U. The matrix M is the variable to be optimised and
represents the optimal matching matrix M1→2.

Here, OT-based matching in Eq. (4) assigns to each pixel
the sum of each column of the similarity weights in match-
ing matrix M1→2, which is constrained by the mass:{

U1
ij =

∑
k M

1→2
ijk

U2
ik =

∑
j M

1→2
ijk

,∀i, j, k ∈ Z, i ≤ h, j, k ≤ w (5)

where U1
ij , U2

ik and M1→2
ijk are the elements of the U1, U2

and M1→2 respectively indexed by i, j, k. In contrast to
the equal consideration by EG-based matching in Eq. (2),
varying weights are assigned to different correspondences
in Eq. (5), determined by the latent semantic messages for-
warded from the input signals. This enables the OT module
to suppress the outliers and focus on correspondences with
more mass which lie on the semantic areas.

Since Eq. (4) is a convex optimization problem, the
Sinkhorn algorithm was used to obtain the numerical so-
lution of this OT problem [16]. OT matching based MEA
is denoted as OT-MEA and Fig. 2 illustrates the implemen-
tation sketch of the OT-MEA used in H-net. Both MEA
and OT modules can be used separately or in combination
and we present their impact with an ablation study in Sec-
tion 5.2. OT-MEA was also compared in our experimental
work to the OT matching based MNL (OT-MNL).

3.4. Self-Supervised Training

For the left and right input images Il, Ir ∈ R3×h0×w0 ,
the sigmoid outputs of the H-Net were transformed to depth
maps Dl,Dr ∈ R1×h0×w0 as explained in Section 3.1. By
combining one of the depth maps (e.g Dl) and the count-
part input image (Ir), we were able to reconstruct the initial
image (Il∗) using the re-projection sampler [10]. Here we
used the left image Il as an example to present the super-
visory signal and loss components. The final loss function
included the loss terms for both left and right images. The
similarity between the input image Il and the reconstructed
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image Il∗ provides our supervisory signal. A photometric
error function Ll

ap was defined as the combination of L1-
norm and structural similarity index (SSIM) [7]:

Ll
ap =

1

N

∑
i,j

γ

2
(1−SSIM(I lij , I

l∗
ij ))+(1−γ)∥I lij − Il∗ij ∥1 (6)

where, N denotes the number of pixels and γ is the weight-
ing for L1-norm loss term. To improve the predictions
around object boundaries, an edge-aware smoothness term
Lds was applied [7, 11]:

Ll
ds =

1

N

∑
i,j

|∂x(dl∗
ij)|e−|∂xIlij | + |∂y(dl∗ij)|e−|∂yIlij | (7)

where dl∗ = dl
√
dl represents the mean-normalized inverse

of depth (1/D) which aims at preventing shrinking of the
depth prediction [22].

To overcome the gradient locality of the re-projection
sampler, we adopted the multi-scale estimation method pre-
sented in [7], which first upsamples the low resolution depth
maps (from the intermediate layers) to the input image res-
olution and then reprojects and resamples them. The errors
were computed at the higher input resolution. Finally, the
photometric loss and per-pixel smoothness loss were bal-
anced by the smoothness term λ and the total loss was aver-
aged over each scale (s), branch (left and right) and batch:

Ltotal =
1

2m

m∑
s=1

(Ll
s + Lr

s)

=
1

2m

m∑
s=1

(
(Ll

ap + λLl
ds) + (Lr

ap + λLr
ds))

(8)

4. Experiments
We trained and evaluated H-Net on KITTI2015 [5],

where there were 22600 pairs for training and 888 for val-
idation. The same intrinsics were used for all images. The
principal point of the camera was set to the image center
and the focal length was the average of all the focal lengths
in KITTI. All of the images were rectified and the transfor-
mation between the two stereo images was set to be a pure
horizontal translation of fixed length. During the evalua-
tion, only depths up to a fixed range of 80m were evaluated
per standard practice [7]. As our backbone model, we used
Monodepth2 [7] and kept the original ResNet18 [8] as the
encoder. Furthermore, we also trained and tested H-Net on
the Cityscapes dataset [3] to verify its generalisability.

We compared our results with other supervised and self-
supervised approaches and both qualitative and quantitative
results were generated for comparison. The aim was to

prove that the proposed modules were able to benefit the
self-supervised depth estimation performance. Hence, to
better understand how each component influenced the over-
all performance, an ablation study turned various compo-
nents of the model off in turn.

4.1. Implementation Details

The H-Net was trained using the PyTorch library [17],
with an input/output resolution of 640 × 192 and a batch
size of 8. The L1-norm loss term γ was set to 0.85 and the
smoothness term λ was 0.001, which were determined by
experiments and were consistent with related methods [7].
The number of scales m was set to 4, which meant that
there were 4 output scales in total with resolutions 1

20 , 1
21 ,

1
22 and 1

23 of the input resolution. The model was trained
for 20 epochs using the Adam optimizer [14] requiring ap-
proximately 14 hours on a single NVIDIA 2080Ti GPU.
The learning rate was set to 10−4 for the first 15 epochs and
dropped to 10−5 for the remainder. As with previous pa-
pers [7], a Resnet encoder with pre-trained weights on Im-
ageNet [21] proved able to improve the overall accuracy of
the depth estimation and to reduce the training time [7, 11].

5. Results and Discussion

5.1. KITTI Results

The qualitative and quantitative results on the KITTI
2015 [5] are shown in Table 1 and Figure 3. In Table 1,
it can be seen that the proposed H-Net provides a superior
overall performance, which indicates that our model can
learn from the geometric constraints and benefits from the
optimal transport solution. To prove that the improvements
were not just from the stereo input, we modified the input of
the Monodepth2 [7] to concatenate stereo images with the
rest settings unchanged. From the fourth row it is clear that
although the stereo input benefited Monodepth2, the perfor-
mance was still not as good as H-Net. For the quantitative
results the depth maps generated by our model contained
more details, i.e. the structural characteristics of buildings,
bushes, and trees.

5.2. KITTI Ablation Study Results

The results of ablation study on the KITTI dataset
are shown in Table 2. The impact of the Siamese
encoder- Siamese decoder (SE-SD), mutual epipolar atten-
tion (MEA) and optimal transport (OT) were evaluated. The
backbone Monodepth2 model [7] performed the worst with-
out these contributions, but by changing the architecture to
a Siamese encoder - Siamese decoder, the evaluation mea-
sures steadily improved. The reason might be that fusing the
complementary information between the stereo image pair
gave the framework a higher chance to generate accurate
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Table 1. Quantitative results. Comparison of our proposed H-Net to existing methods on KITTI2015 [5] using the Eigen split unless
marked with ‘Full Eigen’, which indicates the full Eigen dataset. The best result in each category are presented in bold while the second
best results are underlined. Metrics labeled by red mean lower is better while labeled by blue mean higher is better. S:Stereo; M:Mono.

Method Train Infer Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Pilzer [19] S S 0.152 1.388 6.016 0.247 0.789 0.918 0.965
PFN [18] S S 0.102 0.802 4.657 0.196 0.882 0.953 0.977

Monodepth2 [7] (backbone) S M 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Monodepth2 [7] (Concat) S S 0.082 0.752 4.407 0.183 0.914 0.960 0.978

H-Net (Ours) S S 0.076 0.607 4.025 0.166 0.918 0.966 0.982
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Figure 3. Qualitative results on the KITTI Eigen split. The depth prediction are all for the left input image. Our H-Net in the last row
generates the depth maps with more details and performs better on distinguishing different parts in one object, i.e. buildings, kerbs bushes
and trees, which reflects the superior quantitative results in Table 1.

predicted depth maps, especially in self-supervised training
setting.

The MEA and OT modules were all incorporated in the
SE-SD architecture. The comparison between Row 2 and
Row 4 shows that the MEA module benefits depth esti-

mation performance in all the evaluation measures, espe-
cially on metrics that are sensitive to large depth errors e.g.
RMSE. The significantly large improvement of the SE-SD
architecture with MEA is likely due to the epipolar con-
straint, which allowed the network to learn strong corre-
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Table 2. Ablation Study for different variants of H-Net on KITTI2015 [5] using full Eigen dataset with comparison to our backbone
Monodepth2 [7]. We evaluate the impact of the Siamese encoder- Siamese decoder (SE-SD), mutual epipolar attention (MEA) and optimal
transport (OT). Metrics labeled by red mean lower is better while labeled by blue mean higher is better

Setting SE-SD MEA OT Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [7] ✗ ✗ ✗ 0.109 0.873 4.960 0.209 0.864 0.948 0.975
SE-SD ✓ ✗ ✗ 0.096 0.700 4.403 0.189 0.894 0.960 0.979

SE-SD w/ EG-MNL ✓ ✗ ✗ 0.086 0.701 4.289 0.178 0.912 0.964 0.980
SE-SD w/ EG-MEA ✓ ✓ ✗ 0.080 0.665 4.086 0.173 0.917 0.964 0.981
SE-SD w/ OT-MNL ✓ ✗ ✓ 0.082 0.725 4.279 0.180 0.917 0.962 0.979

H-Net (Ours) ✓ ✓ ✓ 0.076 0.607 4.025 0.166 0.918 0.966 0.982
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Figure 4. Qualitative results on the Cityscapes dataset. Our H-Net generates very close predictions compared with the ground truth.

spondences limited to the same epipolar lines in the recti-
fied stereo images. The impact of the OT-MNL is presented
in Row 5, where there is a dramatic increase in most evalu-
ation metrics compared to the SE-SD in Row 2. The reason
might be that the optimal transport algorithm further im-
proved the MEA by increasing the correct correspondence
weights, merging the semantic features while suppressing
outliers. In the last row, by combining the backbone with all
of our components, the effectiveness of the final framework
was significantly improved, as expected, and state-of-the-
art results were observed. Besides, although our OT-MEA
module was inspired by the MNL, our results outperformed
the same SE-SD architecture with MNL.

The number of parameters for each of the examined set-
tings was also estimated. While all of our proposed com-
ponents contributed to the overall performance in the self-
supervised depth estimation task, the number of parame-
ters was barely increased. Table 3 shows that our OT-MEA
module costs 0.6 million (2.0%) additional parameters com-
pared with the pure SE-SD architecture.

Table 3. Number of Parameters (M:million) for our models with
different settings of the mutual attention module.

Setting Num of Parameters
SE-SD (baseline) 30.7M

EG-MNL +0.3M(1%)
EG-MEA +0.6M(2%)
OT-MNL +0.3M(1%)

OT-MEA (Ours) +0.6M(2%)

5.3. Cityscapes results

The performance of H-Net was further evaluated on the
Cityscape dataset. The results in Figure 4 show the accuracy
of the depth estimated by H-Net compared to the ground
truth, with detailed reconstructions of objects such as cars,
humans, and trees.
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6. Conclusion
In this paper we presented a novel network, the H-

Net, for self-supervised depth estimation. By designing
the Siamese encoder-Siamese decoder architecture, exploit-
ing the mutual epipolar attention, and formulating the op-
timal transport problem, the global-range correspondence
between stereo image pairs and the strongly related feature
correspondences satisfying an epipolar constraint were ex-
plored and fused. This was shown to benefit the overall per-
formance on public datasets and gave a large improvement
in evaluation measures, indicating that the model effectively
overcame the limits of other self-supervised depth estima-
tion methods.
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