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Abstract

Despite the great scientific effort to capture adequately
the complex environments in which autonomous vehicles
(AVs) operate there are still use-cases that even SoA meth-
ods fail to handle. Specifically in odometry problems, on
the one hand, geometric solutions operate with certain as-
sumptions that are often breached in AVs, and on the other
hand, deep learning methods do not achieve high accu-
racy. To contribute to that we present CarlaScenes, a
large-scale simulation dataset captured using the CARLA
simulator. The dataset is oriented to address the chal-
lenging odometry scenarios that cause the current state
of art odometers to deviate from their normal operations.
Based on a case study of failures presented in experi-
ments we distinguished 7 different sequences of data. Car-
laScenes besides providing consistent reference poses, in-
cludes data with semantic annotation at the instance level
for both image and lidar. The full dataset is available at
https://github.com/CarlaScenes/CarlaSence.git .

1. Introduction
The research field of visual odometry (VO) and simulta-

neous localization and mapping (SLAM) has met immense
evolutions [14, 21, 30, 36], especially in the context of au-
tonomous driving (AD) [23, 24, 28, 32, 33]. A pivotal fac-
tor for this advancement has been the publication of large-
scale datasets [5, 10, 16, 27] oriented to AD. Though de-
spite the research activity and the effort dedicated to odom-
etry algorithms they fail to cover the wide range of use
cases being present in automotive scenarios and handle dy-
namically changing and challenging conditions. Extensive

benchmarks [10] may present low errors in pose estima-
tion though there are specific scenarios that cause even the
existing leading methods to deviate from the ground truth
pose. For instance, scenarios with featureless regions such
as the sky or uniform ground, dynamic objects populating
most of the region of expansion of the sensors, road sur-
faces with a big positive or negative slope, e.t.c, can cause
major drifts and wrong poses. The extensive evaluation of
the case study of failure, as presented in the experimental
section and Table 2, was the guideline for separating the
dedicated sequences to the categories that are presented in
Table 1.

The main contributions of the paper are summarized epi-
grammatically as follows:

1. Generate a benchmark dataset dedicated for odometry
methods in autonomous driving, including annotations
for other perception tasks

2. Showcase vulnerabilities of state-of-the-art odometry
algorithms in dedicated scenarios and present their be-
havior in the published dataset.

3. Discuss potential future directions to improve localiza-
tion methods.

2. Related Datasets
The most popular benchmarks related to autonomous

driving developed during the last decade [1–5,9–11,13,15–
17, 20, 22, 27, 34, 35] are summarized in Table 1 and an ex-
tensive description in chronological order is given below.

Kitti [10] was the pioneering dataset for applications re-
lated to autonomous driving systems by A. Geiger et al in
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Table 1. Summary of various autonomous driving datasets.

Dataset Sensors Metadata Weather Hours Environments
Kitti (2011)
[10], Seman-
tic Kitti -
(2019) [1, 2]

1 LiDAR: 64 channels, 4
Perspective cameras, 4 Op-
tics lenses, GPS, IMU

3D BBox, Semantic and Instance
segmentation, Lane marking,
Multi-object tracking, Visual
Odometry/SLAM

sunny,
cloudy

day urban, highway,
rural

Kitti-360
(2021) [17]

1 LiDAR: 64 channels, 1
SICK LMS 200, 2 Perspec-
tive cameras, 2 Fisheye cam-
eras, GPS,IMU

3D BBox, 2D/3D Semantic annota-
tions, 2D/3D Instance annotations

- - suburban

Cityscapes
(2016) [5]

2 Cameras, GPS Semantic segmentation, Outside
temperature, Vehicle odometry

day urban

nuScenes
(2018) [3]

1 LiDAR: 32 channels ,5
RADAR, 6 Cameras, GPS,
IMU

3D BBox, HD maps sunny,
cloudy,
rainy

day,
night

urban, residential,
nature, industrial

WoodScape
(2021) [34]

1 LiDAR: 64 channels, 4
Fisheye cameras, GNSS,
IMU, GNSS Positioning
with SPS

2D/3D BBox, Semantic and In-
stance segmentation, Motion seg-
mentation, Soiling detection, Depth
estimation, Odometry/SLAM, End-
to-end driving

- - urban, highway,
parking

A2D2
(2019) [11]

5 LiDAR: 16 channels, 6
Cameras, GPS, IMU, steer-
ing angle, brake, throttle,
odometry, velocity, pitch,
roll

Semantic segmentation, Point cloud
segmentation, 3D BBox

sunny,
cloudy,
rainy

day urban, highway,
country road

Argoverse
(2019) [4]

2 LiDAR: 32 channels, 7
ring Cameras, 2 stereo Cam-
eras, GPS

3D track annotations, Motion fore-
casting, Stereo depth, HD maps

multiple
conditions

day,
night

urban

BDD100K
(2018) [35]

1 Camera, GPS, IMU 2D BBox, Semantic and Instance
segmentation, Lane marking, Mul-
tiple object tracking

sunny,
cloudy,
rainy

day,
night

city, residential,
highway, parking
lot, tunnel

ApolloScape
(2018) [15]

2 LiDAR: 64 channels, 6
Cameras, GNSS, IMU

3D BBox, Semantic segmentation,
Lane marking

multiple,
conditions

day urban

Mapillary
(2017) [22]

- Semantic and Instance segmenta-
tion

multiple
conditions

day,
night

urban, countryside,
off-road

Waymo (2019)
[9, 27]

5 LiDAR: 64 channels, 5
Cameras

2D/3D Tracking IDs, 2D/3D BBox,
HD Maps, rainy

sunny,
cloudy

day,
night

suburban, down-
town

Lyft (2019)
[13, 16]

3 LiDAR: 2x40, 1x64 chan-
nels, 7 Cameras, 5 Radars

3D BBox ,HD Maps, Trajectories multiple
conditions

day urban

4Seasons
(2020) [31]

1 stereo Camera, GNSS Trajectories multiple
conditions

multiple
condi-
tions

garage, highway,
urban, tunnels,
countryside

ONCE (2021)
[20]

1 LiDAR: 40 channels, 7
Cameras

2D/3D BBox sunny,
rainy

multiple
condi-
tions

downtown, high-
way, suburban,
tunnel, bridge

CarlaScenes
(2021)

2 LiDAR: 1x16, 1x64 chan-
nels, 1 Camera, GPS, IMU

Semantic segmentation, Point cloud
segmentation, Depth Estimation,
Odometry/SLAM, Lane marking

sunny,
cloudy
,rainy, wet

day,
noon,
sunset,
night

urban, tunnel,
slopes, highway,
complex scenes,
infinite loop
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2011. They provided valuable information for challenging
computer vision tasks, such as object detection and track-
ing, semantic and instance segmentation, visual odome-
try, etc. To accomplish that, they utilized a Velodyne li-
dar scanner, a GPS/IMU, and two high-resolution color
and grayscale video cameras. They collected data from ru-
ral areas and highways during the daytime. Even though
Kitti was a very important tool for the research community,
it could not capture the complexity of real-world scenes.
Hence five years later, M. Cordts et al built the Cityscapes
[5] dataset, which focuses on semantic understanding of ur-
ban areas. The dataset consists of 5000 annotated images
with fine annotations and 20.000 annotated images with
coarse annotations, capturing 50 different cities during the
daytime. Aiming to capture the real-world complexity, the
authors provided a huge variety of annotations, like road,
person, car, building, ground, and some more. They pro-
vided some metadata for other tasks as well, such as ego-
motion data from vehicle odometry. In 2017 G. Neuhold et
al generated the Mapillary Vistas [22], which is five times
larger than Cityscapes. The authors provided 25.000 high-
resolution images annotated by 66 object classes, to be uti-
lized for the tasks of semantic and instance segmentation.
They have been captured using different weather and view-
point conditions. In addition, some other datasets have been
generated for other computer vision tasks [8,18,29]. More-
over, in 2018, H. Caesar et al aimed to create a dataset ex-
tracting information from a variety of sensors along with
images. As a result, they provided the nuScenes [3] dataset
combining lidar, cameras, and radars. It contains 3D bound-
ing boxes for 23 classes and has seven times more anno-
tations and one hundred times more images than the Kitti
dataset. To tackle the issue of real-world complexity, Fisher
Yu et al generated BDD100K [35] dataset. It is a diverse
driving dataset for heterogeneous multitask learning with
100k images. It also provides data from multiple weather
conditions, allowing deep learning models to be trained
properly. X. Huang et al generated the ApolloScape [15]
dataset which contains much richer information from the
previous ones. It contains 100k images, 80k lidar samples,
and 1000km trajectories from multiple cities, under vari-
ous conditions. Furthermore, J. Behley et al noticed that
there is a lack of a dataset aiming to provide 3D scene un-
derstanding from point clouds. Hence, they built the Se-
mantic Kitti [1, 2] dataset, by annotating all the sequences
of the Kitti benchmark. To support startups and academic
researchers, J. Geyer et al generated the A2D2 [11] dataset
providing 40.000 frames with semantic segmentation image
and point cloud labels and 3D bounding boxes annotations.
Overall, the majority of the previous authors did not take
into consideration the influence of HD maps for tracking
and motion prediction in applications related to AVs. How-
ever, M. Chang et al provided the Argoverse [4] dataset in-

cluding HD maps with semantic metadata. They helped the
community to provide more robust perception mechanisms.
Motivated by the contribution of the large datasets on deep
learning systems, J. Houston and R. Kesten et al provided
the Lyft [13] dataset. It consists of a dataset for perception
and prediction, including over 1000 hours of movement of
traffic agents alongside their 3D bounding boxes. Following
the previous structure, P. Sun and S. Ettinger et al generated
the Waymo dataset [9,27] providing multiple 2D/3D labels,
object trajectories, and 3D maps. Another remarkable work
is Kitti-360 [17] dataset by Y. Liao et al. It is a successor of
the Kitti dataset and is comprised of 300k images and point
clouds with 2D/3D semantics of a suburban area. More-
over, to adapt deep learning algorithms for the fisheye cam-
era, S Yogamani et al generated WoodScape [34] dataset.
As metadata, it provides 2D/3D bounding boxes, semantic
segmentation, soiling detection, odometry data, and some
more. Finally, J. Mao et al provided the ONCE [20] dataset
which is twenty times longer than the nuScenes or Waymo.
It is composed of 1 million point clouds and 7 million im-
ages, capturing data for 144 hours.

The work closer to ours is the one presented in [31]
by Wenzel et al. and focuses on covering seasonal and
demanding perceptual conditions for AD oriented for vi-
sual odometry tasks. They provide multiple traverses of
the same path covering it that way a large variation caused
by weather or the changes in the scene. They also provide
nine different environments ranging from multi-level park-
ing garages over urban (including tunnels) to countryside
and highways. The main weak point is that GNSS-denied
environments, e.g. garages, tunnels, or urban canyons, can
not guarantee a high accuracy of the reference poses. The
sensor system consists of a stereo image sensor GNSS re-
ceiver. GNSS-denied environments are absent in a simu-
lated environment which is the case of CarlaScenes. Conse-
quently having the data annotated without any errors added
will allow us to know the exact uncertainty of the methods.

3. Overview of CarlaScenes Dataset
Even though there is a variety of datasets related to au-

tonomous driving, not many of them focus on the odom-
etry problem. Our goal is to provide a synthetic dataset
extracted from the CARLA [6] simulator dedicated specifi-
cally to odometry, global place recognition, and relocaliza-
tion tasks. Indicative plots of the trajectories are presented
in Figure 1.

3.1. Scenarios Dedicated for Odometry

There is a huge variety of odometry and mapping tech-
niques, aiming at achieving low-drift in motion estima-
tion. However, the majority of them provide robust results
only on a few use-cases with specific sensor configurations.
Hence, our goal is to showcase the vulnerabilities of these
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Figure 1. Indicative paths that are included in the dataset alongside images of the respective.

approaches and gather all the challenging scenarios in one
dataset. A brief description of these scenarios is given in
Table 2. More details are given below:

Roads with positive or negative slope The most com-
plex town, with a 5-lane junction, unevenness, a tunnel, and
more have been evaluated in this section. The SoA odom-
etry approaches in extreme conditions such as tunnels or
roads with a positive or negative slope will be examined
here.

Rural environment: A rural environment with narrow
roads, barns and hardly any traffic lights has been evalu-
ated here. This scenario investigates how SoA approaches
can handle an environment without many buildings or other
static features like poles, traffic lights, etc. However, only a
few clear objects are available for landmarks, especially in
real cases. One of the challenges of the odometer here is to
detect sufficiently discriminative features.

Sequence with an ”infinite” loop: A dedicated scenario
with an infinite loop, a looping trajectory that is traversed
multiple times, has been generated here to examine loop
closure, which is very important for global mapping. More
specifically, the loop closure is related to the drift correc-
tion of ego-vehicle based on the recognition of a previously
visited place.

Modify weather and lighting conditions: A basic town
layout consisting of ”T junctions” and multiple weather
conditions has been evaluated here. The weather and light-
ing conditions can be chosen from a set of predefined set-
tings, which are shown in Table 2. These weather conditions
can model seasonal changes. Hence, this scenario investi-
gates whether SoA odometry and slam methods are capa-
ble of handling dynamic environments and extracting robust
features against those changes. Two cases with dynamic
weather conditions have been generated here and they dif-
fer in the point cloud generation. The first one consists of
original point clouds. In the second case, points in the cloud
have been dropped off in order to simulate noise due to ex-
ternal perturbations. Abrupt changes in weather conditions

are included for the methods to be tested in extreme scenar-
ios.

Existence of moving objects on the 50% focus expan-
sion of cameras: Data from a basic town with multiple ve-
hicles that cover the 50% focus expansion of cameras have
been generated for this scenario. The scope of this exper-
iment is to examine the odometers in areas with many dy-
namic objects in the scene. For instance, some algorithms
may fail to detect whether the front vehicle is moving or
not.

Complex city environment: A city environment with
different environments such as an avenue or promenade and
more realistic textures have been evaluated here. The ex-
periments, in this case, will examine whether odometry and
slam approaches can extract robust landmarks in a map of
superb visual quality, with detailed buildings and realistic
roads. The map used for this scenario is shown in Figure 2.

Long highways: An environment with long highways
with many entrances, exits and roundabouts has been as-
sessed in this scenario. The extracted landmarks in this case
have larger shifts due to the high speed of the vehicle and
sometimes move out of the field of view. Other landmarks
may exist at high distances and as a result, their shifts in the
image plane are noisy. Hence, the SoA approaches will be
examined whether they can track the extracted landmarks
and provide robust results. The map used for this scenario
is shown in Figure 2.

3.2. Sensor Setup

CarlaScenes consists of data coming from multiple envi-
ronments with different conditions. In general, the Carla [6]
simulator is initialized with several pre-defined settings. For
instance, the environment of the map or the number of ac-
tors, the weather conditions should be defined before each
simulation. Other options are available for the user as well.
Detail on the parameters used for the dataset generation can
be found in the released repository. The ego vehicle is set
to travel around the city with some basic configuration, and
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Table 2. Generated scenarios for odometry evaluation

Scenario: Case Study for Failures
Roads with positive or negative slope : Algorithms with
planarity assumption may fail to detect the road surface.

Rural environment without many buildings and nar-
row roads: Check if robust features could be extracted,
because rural regions especially in an image are feature-
less and thus there are far fewer feature points.

Sequence with an infinite loop: Check loop closure de-
tection accuracy.

Modify weather and lighting conditions: Check whether
multiple weather conditions in images or scattering in
points clouds affect trajectory. The weather conditions
that can be chosen are ClearNoon, CloudyNoon, WetNoon,
WetCloudyNoon, MidRainyNoon, HardRainNoon, Soft-
RainNoon, ClearSunset, CloudySunset, WetSunset, Wet-
CloudySunset, MidRainSunset, HardRainSunset and Soft-
RainSunset.

Existence of moving objects on the 50%, focus expan-
sion of cameras: The odometry algorithm may fail to rec-
ognize whether the front vehicle is moving or not.

Complex environment in the city: Check trajectory error
in a complex city environment with traffic elements such as
multiple intersections, complex lane roundabouts, or tun-
nels.

Long highways: Check whether the high speed of the
vehicle could affect the estimated odometry. Also, some
3d landmarks at long distances may be detected that have
noisy shifts on the image plane and affect negatively the
accuracy of the algorithm.

data from all sensors are gathered and stored in each fame.
The sensors that their recordings are saved for this dataset
are shown in Table 3. All of them use the Unreal Engine co-
ordinate system (x-forward, y-right, z-up) and return coor-
dinates in local space. Also, intrinsic and extrinsic matrices
are provided as well as timestamp files to allow synchro-
nization of the data.

Alongside the released Dataset, we provide in the source
code XML files that are compatible with Carla Scenari-
oRunner [6]. ScenarioRunner is a module that allows traffic
scenario definition and execution for the CARLA simula-
tor. It gives the capability to run multiple times the same
scenario in a CARLA environment but with different con-

ditions about the weather, the actors (cars, pedestrians), and
change multiple other parameters of the simulation. This is
an important capability because it allows odometry meth-
ods to run multiple times the same path but with different
illuminations or occlusion conditions.

Table 3. Sensors configuration

Type Dimensions Description
RGB camera 1280x960 Get images from the

scene
Semantic
segmentation
camera

1280x960 Every object is clas-
sified in a different
color according to its
tags

Depth camera 1280x960 Get depth values
Lidar Velodyne

16/64
Get the 3d coordi-
nates and intensity
values

Semantic Li-
dar

Velodyne
16/64

Get the index of the
Carla object hit and
its semantic tag

Imu - Provides mea-
surements from
accelerometer, gyro-
scope and compass

Gnss - Provides the current
gnss position

3.2.1 Data Description

Overall we store data with frequencies of 30 fps. The spe-
cific values that are used to parametrize the sensor are pro-
vided in the published repository. Data are saved as raw
files, using the format of .png for images and .ply for Lidar
data, we also provide .bag files with the data. A bag is a
file format in ROS for storing ROS message data. Conse-
quently, they could be easily used for testing techniques that
have been implemented using ROS [26] framework.

3.2.2 Data Annotations

A huge bottleneck in the generation process of a real-world
dataset is the annotation of the captured data. Labeling the
data demand a lot of manpower and even using advanced
annotation tools still lack precision. Consequently, the un-
certainty of the methods trained or tested on the data is not
negligible. The advantage of using a simulator for data gen-
eration is that it can provide data annotation for every object
in the scene. Consequently, landmark tracking and evalua-
tion can be performed with greater accuracy. For instance,
annotation of lane marks which are a significant feature is
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provided both in data from camera and lidar. In detail anno-
tation is provided for lidar data (instance and class id for 23
classes), camera data (23 different class ids), depth annota-
tion for every pixel in image data. Also, GNSS and IMU
measurements noise parameters have been set to zero and
can be used as ground truth..

Figure 2. From left to right: maps generated in long highway and
complex city environment.

4. Experiments

4.1. Monocular visual odometry

In this section, we will present the evaluation of different
methodologies applied in automotive visual odometry and
discuss the influence of various conditions. More specif-
ically we will focus on evaluating monocular DSO [7],
LEGO LOAM [25] and DVSO [33]. In short Direct Sparse
Odometry (DSO) [7] is a visual odometry method based on
sparse and direct structure and motion formulation. DSO
tries to minimize the photometric error. LEGO LOAM [25]
is a lidar odometry and mapping method using raw point
clouds. It applies feature extraction to obtain distinctive
planar and edge features to solve the 6doF transformation
across successive point clouds. The last method that we
included in our evaluation was the methods proposed in the
paper of Yang et al. (DVSO [33]). DVSO incorporates deep
depth predictions into the pipeline of DSO as direct virtual
stereo measurements.

4.2. Evaluation Metrics

The absolute pose error (APE), also called absolute tra-
jectory error (ATE), is a metric for analyzing the global con-
sistency of SLAM systems. The APE metric calculates the
difference between the ground truth poses and the estimated
poses. This can be expressed as:

E = Pest,i ⊖ Pref,i = P−1
ref,iP

−1
est,i ∈ SE(3) (1)

where ⊖ is the inverse compositional operator, which takes
two poses and gives the relative pose [19]. Pref,i and Pest,i

is ground truth and estimated 6-DoF Pose respectively. Dif-
ferent pose relations can be used to calculate the APE. The
RMSE value was used of the full relative pose of Ei and
APEi is calculated form ||Ei − I3×3)||, which is unitless.
RMSE is calculated from:

RMSE =

√√√√ 1

N

N∑
i=1

APE2
i (2)

The visualization tool that was used is the open source li-
brary EVO [12].

4.3. Results

DSO and LEGO when tested on normal conditions on
the Carla simulator perform with relatively small deviations
from the ground truth trajectory. Nevertheless, when tested
on the published dataset the resulting RMSE errors were
high and prohibitive for automotive applications. For a tra-
jectory with uneven ground, LEGO and DSO had 15.13 and
35.24 RMSE values. The trajectories are shown in Figure
5. Most of the SLAM methods use the assumption that the
ground is flat, so abrupt elevations in the road result in a
decreased accuracy of the methods.

Additionally, tests on multi-weather scenarios showed
that DSO could not provide correct outputs and the initial-
ization of the method was failing. DSO relay of the pho-
tometric consistency assumption which is breached when
abrupt weather changes occur. On the other hand, LEGO
LOAM operates solely with raw point clouds which are not
affected to the same extent by weather conditions as image-
based methods. Consequently, as it is shown in Figure 3 we
can see the output of the LEGO LOAM in the multi-weather
scenario which is quite well.

Both LEGO and DSO fail in the scenarios with scenes
from the highway and rural conditions where the feature-
less environment makes it difficult to calculate the correct
trajectory. More specifically both of the methods as a first
processing step find features on the image or the point cloud
respectively. These features will be then used for calcu-
lating the displacement of the camera/ lidar by matching
them between consecutive frames. When the geometry of
the scene is simple and most of the reading of the sensors
are areas with identical texture (e.g long roads in highways,
rural environments ) or shape finding unique and distinctive
features to perform matching is rather difficult. For an ac-
curate localization, estimated features should be uniformly
distributed in the processed frames.

Following the same pipeline, in order not to introduce
the uncertainty of a deep learning module, the ground truth
depth image from the dataset was used to see the upper lim-
iting of the accuracy of the proposed method in CarlaSense.

In the experiment with DVSO, we concluded that the
DVSO was more robust in losing the scaling when com-
pared with DSO. DSO failed in most of the scenarios to
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Figure 3. Error mapped onto trajectory. The tested method is
LEGO LOAM and the trajectory is from a multi-weather scenario.

Figure 4. Error mapped onto trajectory. The tested method is
DVSO and the trajectory is from a scenario captured within a com-
plex city environment.

Figure 5. Error mapped onto trajectory. The tested methods are
LEGO and DSO from left to right respectively and the trajectory
is from a scenario captured within an environment with uneven
ground.

compute the trajectory with a correct scale and when abrupt
changes were happening due to the weather of moving ob-
jects it failed to initialize. DVSO was more robust though
the drift was still high for automotive applications. Some

indicative results are shown in Figure 4 and the APE error
for DVSO was 8.26 while for DSO was 94.66.

4.4. Discussion

First, an important factor for a reliable odometry sys-
tem is its generalization ability in unseen situations. The
uncertainty of the deep learning-based methods can be de-
creased by training and validating in a multi-scene environ-
ment consequently the amounts of available datasets should
be adequate. The generalization ability of a model is of
crucial importance so that the behavior of the perception
engine in an autonomous vehicle remains unaffected by the
dynamic environment.

Second geometry based methods are, in contrast to deep
learning which are used as a black box, straightforward
and well understood. Though geometric methods usually
fail to initialize and lose track since they are not robust to
abrupt changes and dynamic scenes. So testing them in
dynamic environments to adjust their performance and test
their accuracy is mandatory. Consequently, the existence
of datasets that violate classic assumptions, such that the
photoconsistency of the scene or planarity of the ground, is
important.

Third, a bottleneck for the development of deep learn-
ing slam methodologies is the lack of annotated data. A
challenging part of releasing a real-world dataset is to find
a way to get accurate annotations, which undoubtedly is
a resource-demanding task. Though understanding the se-
mantic information of a scene is the most meaningful step
to obtaining a high level of perception. Employing semantic
information and object detection as constraints to localiza-
tion tasks could improve the accuracy and robustness and al-
low the AV to infer the surrounding environment. Adding to
that landmarks used for visual odometry are something that
can not be annotated manually. They can only be defined
theoretically and during the execution of the odometry algo-
rithm. Landmarks can not be annotated manually. So pro-
viding annotation for every pixel, or lidar point would help
the investigation of the properties of selected landmarks if
the class they belong to is known.

5. Conclusions
In this paper, we present a simulated dataset oriented to

odometry tasks for automotive applications. By giving ac-
cess to specific challenging scenarios for odometry we aim
to enhance the effort of researchers in the field and help
to handle open issues such as drift, overfitting to datasets,
poor generalization in multiple conditions. As future work,
we plan to integrate the whole dataset in XML files that op-
erates with Carla scenario runner. So by running the Carla
simulator data of predefined trajectories will be produced
locally without the need for a dataset that requires huge stor-
age resources.
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