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Abstract

In this paper, we propose an advanced approach in tar-
geting the problem of monocular 3D lane detection by lever-
aging geometry structure underneath the process of 2D to
3D lane reconstruction. Inspired by previous methods, we
first analyze the geometry heuristic between the 3D lane
and its 2D representation on the ground and propose to im-
pose explicit supervision based on the structure prior, which
makes it achievable to build inter-lane and intra-lane rela-
tionships to facilitate the reconstruction of 3D lanes from
local to global. Second, to reduce the structure loss in 2D
lane representation, we directly extract top view lane infor-
mation from front view images, which tremendously eases
the confusion of distant lane features in previous methods.
Furthermore, we propose a novel task-specific data aug-
mentation method by synthesizing new training data for
both segmentation and reconstruction tasks in our pipeline,
to counter the imbalanced data distribution of camera pose
and ground slope to improve generalization on unseen data.
Our work marks the first attempt to employ the geometry
prior information into DNN-based 3D lane detection and
makes it achievable for detecting lanes in an extra-long dis-
tance, doubling the original detection range. The proposed
method can be smoothly adopted by other frameworks with-
out extra costs. Experimental results show that our work
outperforms state-of-the-art approaches by 3.8% F-Score
on Apollo 3D synthetic dataset at real-time speed of 82 FPS
without introducing extra parameters.

1. Introduction

Lane detection is a fundamental and challenging task
for autonomous vehicles. Recently, numerous researches
[4, 5, 15, 26, 33] are conducted in this field for the exten-
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Figure 1. Framework for 3D lane detection. The framework
is composed of a top view segmentation network and an anchor-
based 3D lane regressor. The features extracted from a front view
image are projected onto top view to generate the segmentation
mask directly under top view supervision. The anchor represen-
tation of 3D lanes is then estimated from the top view lane mask.
Moreover, we explicitly utilize the geometry prior from 3D to 2D
projection for 3D lane reconstruction.

sive landing of high-level driving automation. Accurate
lane detection will provide essential signals for the local-
ization & mapping, decision making and path planning in
autonomous driving systems (ADS), while most of the ex-
isting methods are built on the assumption of a flat ground
plane [3, 17], which is not necessarily satisfied in practice.
For instance, to restore the lane information, inverse per-
spective transformation (IPM) is often applied for project-
ing lanes from front view to top view [1, 19, 22, 27]. How-
ever, the homography matrix for IPM is usually calibrated
by point pairs on the flat ground [24]. When encountering
roads with non-zero slope like uphill or downhill situations,
lane detection on 2D planar geometry would not accurately
reflect the actual structure in real world, thus the ADS may
malfunction due to the unexpected coordinate mapping. To
solve this, it is critical to restore the height information by
detecting lanes in 3D space. With accurate 3D lane estima-
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tion, most applications like lane keeping assistant (LKA)
and lane departure warning (LDW) would be more reliable
and robust, especially in non-flat ground scenarios.

In order to bridge the discrepancy between 2D and 3D
lane detection, methods like [2, 6–8, 23, 32] were proposed.
With the rapid development of the Convolutional Neural
Network, deep learning based approaches [10, 12, 13, 18]
have made tremendous progress in resolving this problem.
Although the existing DNN-based methods have achieved
promising results, they attempt to approach 3D lane detec-
tion as a point-wise regression task while the underlying
geometry structure of 3D lanes seems to be ignored, which
may result in unstable prediction with inaccurate structure.

In this paper, we consider 3D lane detection as a recon-
struction problem from the 2D image to the 3D space. We
propose that the geometry prior of 3D lanes should be ex-
plicitly imposed during the training process for fully utiliz-
ing the structural constraints of the inter-lane and intra-lane
relationship, and the height information of 3D lanes can be
extracted from the 2D lane representation. We first analyze
the geometry relationship between 3D lane and its 2D rep-
resentation, and propose an auxiliary loss function based
on the geometry structure prior. We also demonstrate that
the explicit geometry supervision would boost noise elim-
ination, outlier rejection, and structure preservation for 3D
lanes.

Second, in order to reduce the structural information loss
in 2D plane, we redefine the pipeline by conducting lane
segmentation with top view supervision instead of front
view supervision, which addresses the issue of feature con-
fusion due to the perspective distortion [25] on the far side.
Lastly, we propose a novel task-specific data augmentation
method on 3D lanes, which synthesizes new data by ap-
plying pitch, roll and yaw rotation on the original data.
This augmentation could generate new data with various 3D
ground plane steepness and road structure patterns, which
eases the imbalanced distribution of ground plane slope and
camera pose. Figure 1 shows the proposed framework, and
a more detailed pipeline is shown in Figure 2.

In general, our contributions can be summarized as fol-
lows: 1) A novel loss function that enables explicit super-
vision based on the geometry structure prior of lanes in 3D
space for stable reconstruction from local to global. 2) A 2D
lane feature extraction module with direct supervision from
the top view for maximum retention of lane structural infor-
mation especially in the far end. 3) A task-specific data aug-
mentation method for 3D lane detection aiming to counter
the imbalanced data distribution of ground slope and cam-
era pose to improve generalization on rare cases.

2. Related Work
There are several conventional methods [2, 6–8, 23, 32]

that trickle the problem of lane detection in the 3D space.

Dickmanns et al. [8] utilize a multi-sensor approach with
temporal filtering to estimate the vertical curvature of 3D
lane. Xiong et al. [32] adopt a B-spline curve to model lanes
in 3D space, and resolve the depth ambiguity with known
constant lane width prior. Coulombeau et al. [6] model 3D
road with camera pose and road curvature to estimate 3D
lane shape from road points with optimization algorithm.
Nedevschi et al. [23] apply stereo-vision for estimating 3D
road surface iteratively with tracking process. Bai et al. [2]
utilize multi-view sensor approach by combining LiDAR
and camera for detecting lanes in real world. Dementhon et
al. [7] model roads as a Brooks ribbon in space with con-
stant length assumption and iteratively construct the lane
plane with horizontal lane width generator. However, most
of these geometry based methods build up parametric mod-
els for lanes which are not robust enough for complex roads
and would fall short on detection range.

Recently, DNN-based methods [10, 12, 13, 18] have
shown impressive results on monocular 3D lane detection.
Garnett et al. propose 3D-LaneNet [12], an end to end dual-
pathway [14] network bridging IPM features and 3D lane
regression. The image-view pathway extracts and preserves
dense features from images to estimate the camera pose, and
the top-view pathway then predicts the 3D lanes from the
top view features projected from the image-view pathway.
Furthermore, as an analogy to single-shot detection [21,28],
a column-based anchor representation on the ground plane
is proposed to encode each 3D lane instance.

On the top of 3D-LaneNet [12], following recent anchor-
free methods [9,31], Efrat et al. [10] propose a more gener-
alized semi-local tiled anchor representation to replace the
previous column-based anchors, which divides continuous
lane markings into short segments and encapsulates each of
them into a non-overlapping cell. This novel anchor rep-
resentation enables the generalization of complex topology
like split, merge and horizontal lanes.

Gen-LaneNet [13] decouples 3D lane extraction from the
image features by proposing a two-stage pipeline, which al-
lows 3D lane estimation to be only dependent on 2D lane
masks rather than the original images. This pipeline makes
it possible to reduce the demand for expansive 3D lane la-
beling and utilize large 2D lane detection datasets to train a
more robust lane feature extractor. Gen-LaneNet [13] also
set up the anchor under virtual top view projection to refine
the feature misalignment in 3D-LaneNet [12].

Besides, Jin et al. [18] utilize a dual attention module
[11] with the framework of Gen-LaneNet [13] to capture
lane-to-lane and pixel-wise attention. Also, a linear inter-
polation loss is proposed to sample lane points within each
anchor more densely. This method improves the accuracy
yet introduces extra parameters and computational cost.

The up-to-date DNN-based methods are able to show
promising results in monocular 3D lane detection. How-
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Figure 2. Overall pipeline of the proposed method.

ever, most of the existing methods seem to treat this prob-
lem only as a local lane regression task with 2D anchors,
lacking explicit guidance on reconstructing the height of
lanes from the 2D representation. 3D-LaneNet [12] tries
to bridge image feature encoding directly with lane decod-
ing with a heavy VGG [30] encoder, without deeper anal-
ysis of how the 3D lanes are detected from the image en-
coding. Gen-LaneNet [13] points out that the estimation of
3D lane height is equivalent to estimating the vector field
moving nonparallel lane points on the virtual top view to
corresponding 3D positions. This heuristic releases the de-
mand of utilizing a heavy network to encode image features
in previous work. However, no further quantitative analy-
sis or explicit supervision is applied from this perspective.
Similarly, 3D-LaneNet+ [10] proposes a novel semi-local
cell-based anchor, but this only enriches the structure repre-
sentation on 2D space, rather than targeting the recovery of
3D lane information directly.

Monocular 3D lane detection relies on the accurate re-
construction of the 3D lane structure, in which the height
information can be decoded from the 2D features. Previ-
ous DNN-based methods [10, 12, 13, 18] choose to apply
supervision on 2D anchors and a height dimension inde-
pendently, however the underlying geometry structure in-
formation of lanes in the 3D space seems not to be fully
utilized, which makes it challenging to accurately recover
the 3D lanes. We propose that the structure of 3D lanes and
the 2D-3D relationship following geometry prior should be
jointly optimized in the whole process of 3D lane detection.

3. Method
The proposed method takes a single RGB image from

the front-view camera, and outputs a group of lane instances
in the 3D world space. Following the basic assumption in

the previous literature [12,13] and existing dataset [13], we
assume that the camera is installed with zero roll or yaw re-
spect to the world coordinate, and only has pitch variance
due to vehicle fluctuation. We establish the world coordi-
nate as the ego-vehicle coordinate with starting points as
the perpendicular projection of camera center on the road.
Figure 4 shows the world coordinate center at point O, and
camera center at point C, with camera pitch θ.

3.1. Geometry in 3D Lane Detection

In most cases, lanes in 3D space are formed by a group
of smooth parallel curves on the 3D road surface [7]. In-
stead of simply predicting discrete points of lane markings,
an accurate reconstruction of 3D lanes should include the
re-establishment of the reasonable geometry structure in 3D
space. However, most of the existing DNN-based methods
choose to achieve 3D lane detection in a data-driven manner
with only point-wise supervision, which may not result in
robust preservation of 3D lane geometry and would be vul-
nerable to outliers under extreme lane structures because of
the absence of structural guidance. As a result, the geome-
try prior should be utilized to explicitly guide the learning
of 3D lanes. We will first review the view projection sys-
tems proposed in previous literature and then analyze the
structure prior under the existing projection system.

View projection. In 3D-LaneNet [12], a real top view
projection is utilized for creating lane anchors on the flat
ground. Real top view stands for the direct vertical pro-
jection from 3D space to the ground plane g. In this case,
for a point P3D(x3D, y3D, z) in 3D space, the height di-
mension z is simply discarded, and the point is projected
onto the ground plane position of P2DR(x3D, y3D) under
real top view projection with center at vehicle ego coordi-
nate. However, as shown in the top row of Figure 3, such
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Figure 3. Comparison of real and virtual top view. Left: Up-
hill scenario, Right: Downhill scenario. The top row shows the
2D lane representation generated by real top view projection [13],
while 2D lanes on the bottom row are generated by virtual top view
projection [12]. The 2D lane representation generated by virtual
top view projection [13] could reflect the changes of lane height in
3D space.

2D lane representation cannot properly reflect the change of
lane height in 3D space, thus a heavy image feature encoder
in [12] is necessary to estimate lane height from images.

Gen-LaneNet [13] then introduces the virtual top view
projection. As shown in the bottom row of Figure 3, 3D
lanes are projected onto the ground plane via virtual top
view projection, which can be obtained from rays start from
camera center C to the ground g. This is conceptually
equivalent to 1) project the 3D lanes onto the image plane,
and then 2) project image and lanes onto the ground plane
by IPM. In this case, the 2D representation of lanes is no
longer agnostic of height variance. Equation 1 shows the
transformation of lane point coordinates from point P3D in
3D to point P2DV on the ground plane via virtual top view
projection. With the increment of lane height z, the x and y
of lane points on ground plane g would be projected away
from the positions on real top view, causing the lane bound-
aries to be divergent in the uphill scenario.

P2DV =
−−−→
CP3D ∩Πg =

hcam

hcam − z
·
(
x3D

y3D

)
(1)

Geometry prior. Parallel lane boundaries and constant
lane width are basic assumptions for nearly all lane-based
applications such as lane centering assistant (LCA) and lane
keeping assistant (LKA). Instead of making a strong as-
sumption that multiple lanes in one frame share a global
lane width [17, 25], it is common to assume that a single
lane would keep a relatively fixed width as it extends to in-
finity. For flat ground cases, the 2D lane representation pro-
jected via the virtual top view would be parallel and have
constant lane width. In reality, not-flat ground cases are not
rare, such as twisted lanes on a helicoidal surface. In this
case, parallelism of the projected lane boundaries is not sat-
isfied. Thus, the basic assumption of parallelism and con-

Figure 4. Geometry prior of 3D lanes.

stant width [7] can only be established in 3D space.
Moreover, as shown in Equation 1, under virtual top view

projection, lane boundaries in 3D space would be mapped
onto the flat ground in different scales w.r.t. height infor-
mation. Conceptually, the curvature of mapped lane bound-
aries is positively correlated to the lane slope in 3D space.
That is to say, the width change in 2D projection could re-
flect the variance of lane height in 3D. This provides basic
theoretical intuition of how the height information in 3D
can be reconstructed from a monocular 2D image, and the
geometry structure in the 2D lane mask can be the guidance
for estimating the 3D lanes in the real world.

Geometry prior guided supervision. As illustrated
above, the encoding of geometry structure information
plays a vital role in accurately reconstructing lanes in 3D
space. Specifically, we focus on the intra-lane and inter-
lane properties between 3D lanes and 2D representation un-
der the virtual top view projection. We propose the geome-
try prior loss, an auxiliary loss function to involve explicit
supervision in the local-to-global preservation of 3D lane
structure.

First, we build constraints upon the generalizable geom-
etry prior of lane width in 3D space. The 3D lane width
can be calculated as the 3D Euclidean distance D3D be-
tween the closest point pair P i

l on the left lane bound-

ary and P i∗
r on the right as D3D(P i

l , P
i∗
r ) = |

−−−⇀
P i
l P

i∗
r |,

where i and i∗ denote the corresponding anchor order in
their y-anchor representation. Besides, we apply a greedy
matching algorithm with sliding windows to find the cor-
responding lane width pairs (LWP) of points from the left
lane boundary to the right. Formally: LWP{i, i∗} =
argminj(D3D(P i

l , P
j
r )); j ∈ N : {i− 1, i, i+ 1}

As shown in Figure 4, distance D3D(P i
A, P

i∗
B ) and

D3D(P k
E , P

k∗
F ) should have the same magnitude. For a spe-

cific lane instance, we calculate D3D for all point pairs on
the lane boundaries with visibility v̂l = 1 as in Equation 2.
The visibility flag v̂ indicates whether a 3D lane point is
visible when projected onto the Front view image.

D3D(P i
l , P

i∗
r ) = D3D(P

(i+1)
l , P (i+1)∗

r );

i ∈ N : {0, 1, 2, ...
∑

(1{v̂l = 1})− 1}
(2)
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Second, since projection method makes it achievable to
bridge the 2D representation and 3D lanes in an explicit
manner, we propose to make a joint optimization of off-
sets x, y, and height z by their relationship on the ground
plane. As illustrated in Figure 4, point pairs {P ′

A, P
′
B} and

{P ′
E , P

′
F } on ground plane are from the virtual top view

projection of 3D point pairs {PA, PB} and {PE , PF }. We
define the 2D distance D2D as the 2D Euclidean distance
weighted by camera height hcam and lane height. For the
cases when zil and zi∗r are not the same, we use their mean
value z̃ in approximation of the nonlinear function D2D.

D2D(P i
l , P

i∗
r ) =

√
(xi

l − xi∗
r )2 + (yil − yi∗r )2 · (hcam − z̃);

z̃ ∼ (zil + zi∗r )/2

(3)

If and only if the point pairs {P ′
A, P

′
B} and {P ′

E , P
′
F } share

the same height respectively, we have

D2D(P i
l , P

i∗
r ) = D3D(P i

l , P
i∗
r ) ∗ hcam =

D2D(P
(i+1)
l , P (i+1)∗

r ) = D3D(P
(i+1)
l , P (i+1)∗

r ) ∗ hcam

(4)

in which the 2D distance equals to the product of 3D lane
Euclidean distance and the camera height for i ∈ N :

[0,
∑

(1{v̂l = 1}) − 1] ⇐⇒ (zil = zi∗r ) ∩ (z
(i+1)
l =

z
(i+1)∗
r )

For twisted lanes, we relax the constraint in Equation 4.
Under the heuristic that the curves of lane boundaries in 3D
space have continuous derivatives in most cases, the height
difference ∆(zl − zr) between point pairs is also locally
smooth. As the D2D is respect to the height difference of
lane point pairs, specifically, we have Equation 5 for the
point pair i, i∗ and its neighbor pairs in the y-direction on
the same lane.

D2D(P
(i−1)
l , P (i−1)∗

r ) ≤ D2D(P i
l , P

i∗
r ) ≤

D2D(P
(i+1)
l , P (i+1)∗

r ); i ∈ N : [0, N − 1] ⇒ ∃∂D2D

∂y
(5)

Finally, we impose the dynamic constraint to the point
pairs of each predicted lane with supervision from their
neighboring pairs, as shown in Equation 6. For d ∈
{2D, 3D}, such supervision is applied on the predicted lane
with probability p and visibility v equal to 1 in the corre-
sponding ground truth (GT).

Lgeo =
∑
d

N−1∑
i=1

p · (||vi · ((Di−1
d +Di+1

d )− 2 ∗Di
d)||1)

(6)

Figure 5. Comparison between front view supervision with
mask projection [13] and our top view supervision with fea-
ture projection.

The definition of Lgeo provides auxiliary supervision incor-
porating geometry prior into the training pipeline, which
also leaves a margin for natural noises and gradual changes
in lane width by weakening the geometry assumption of
fixed lane width to adapt to both synthetic and real cases.
The optimization of Lgeo guides the model to maintain the
lane structure from local to global.

3.2. Supervision from the Top View

As illustrated in section 3.1, the structure of 3D can be
discerned from the geometry structure underlying the 2D
lane mask. However, structure information like lane width
variance is very subtle thus requiring accurate extraction of
2D lanes feature from the front view image.

In Gen-LaneNet [13], front view GT masks are used as
supervision for the segmentation network. In the regression
network, the mask is first projected onto the ground plane
via planar IPM, and then fed into a lane regression network
for estimating the 3D lanes. However, as shown in the top
row of Figure 5, when the mask is projected onto the ground
plane, the features on the far side are blurry, and different
lane features are mixed together, which prevent the subse-
quent network from accurately decoding the structure in-
formation contained in the feature maps. We argue that the
distant lane feature confusion is due to the misleading mask
supervision conducted in the front view for the following
reasons.

First, the IPM warps the front view features onto the
ground plane via a non-linear transformation. And it is hard
for the front view segmentation network to distinguish far
lane instances in pixel level since the lanes are converging
to the vanishing point and overlapped with each other. As
shown on the top right of Figure 5, few far pixels on the
front view will be mapped into a huge range on the top view,
so the projected segmentation mask will be stretched dras-
tically in the far end, resulting in feature confusion. Sec-
ond, positive lane boundary pixels in the ground truth masks
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Figure 6. Pitch, Roll and Yaw rotation augmentation on 3D
lanes.

of Gen-LaneNet [13] are generated on the front view with
equal line thickness. However, due to the perspective ef-
fect, lane markings are always thicker in the close end and
thinner in the far end. As a result, this kind of ground truth
mask would not align properly with the shape of lane mark-
ings, which will lead to a fluctuation in extracting 2D lane
structure and decoding 3D geometry information.

To address these issues, we propose a refined pipeline in
which the ground truth mask is generated and used as su-
pervision on the top view, as shown in the bottom row of
Figure 5. We first project lane points from the front view
to the virtual top view via the homography matrix H , then
generate the GT mask of lane boundaries with equal thick-
ness. A projective transformation network [12, 16] is used
to project the output features of image encoder to the top
view, and conduct segmentation supervision directly on the
top view mask from decoder by optimizing the standard
cross-entropy loss Lseg . Besides, we can also jointly es-
timate camera pitch θ and height hcam from the front view
images with Lcam = ||θ − θ̂||1 + |hcam − ĥcam||1. Such
direct mask supervision in the top view will tremendously
resolve the problem of feature confusion and preserve the
global lane geometry structure information in the top view
2D mask.

3.3. Lane Augmentation in 3D Space

In both synthetic dataset and real world, the vast major-
ity of ground planes are flat with almost zero slope, which
severely dominates the distribution of training data. Ac-
cording to our statistics, in the Apollo synthetic dataset [13],
67.8% of lanes in training data have lane height within the
range of [-0.1,0.1]m, while 44.4% of lanes fall into the
range of [-0.01,0.01]m. Even though such a biased distri-
bution is a close reflection of reality, it would dominate the
direction of gradient optimization away from the long tail
data, such as uphill and downhill cases.

Conventional augmentation methods, such as translation
or center rotation, would violate the geometry prior that 3D
lanes start from the center of ground plane. Thus, we pro-
pose a novel 3D lane rotation augmentation method to deal
with the long tail distribution. Figure 6 shows the process
of generating augmentation data by applying pitch, yaw and
roll rotation on the 3D lanes. An example of applying pitch
augmentation on 3D point P to get the target point P ′ under

homogeneous transformation is shown in Equation 7. The
rotated 3D points are projected onto front view to generate
augmented input signals, which is equivalent to applying a
perspective augmentation on the image and would be ben-
eficial to the jointly understanding of semantic mask and
camera pose.

P ′ = RxP ;Rx =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 (7)

By applying pitch rotation, the ground plane would have
greater fluctuation of slope while preserving the inner struc-
ture of lanes. By applying yaw rotation, the lane patterns
are enriched without affecting the lane height. Lastly, by
applying roll rotation, twisted 3D lanes are generated. Ex-
perimental results in Table 3 show the effectiveness of 3D
lane augmentation over hard samples, while the results in
section 4.3 shows its superiority on extra-long range data.
Our proposed method can also be applied in both stages
of mask prediction and anchor-based regression to improve
robustness by building feature consistency under different
perspective transformation [34, 35].

3.4. Training

Given an RGB image and the corresponding 3D lanes,
a detailed pipeline for the framework is shown in Figure 2.
For the segmentation head in feature extraction network, we
optimize the cross-entropy loss Lseg . And for the optional
camera pose regression head connected to the front-view
image encoder, we apply the L1-loss for supervision as in
Lcam. The input of lane reconstruction network is the log-
its from the feature extraction network. Following the lane
anchor settings in 3D-LaneNet [12] and Gen-LaneNet [13],
lanes in 3D space are first projected onto the flat ground
with virtual top view projection, then associated with clos-
est anchor at Yref . For a predicted anchor Xi

A with proba-
bility p and the ground truth anchor X̂i

A = {(x̂i, ẑi, v̂i, p̂)},
each anchor point at a pre-defined y position yi predicts the
x offset xi, the lane height zi and the visibility vi which
means whether the 3D points are visible when projected
onto front view. Both x-offset and y-position are defined
on flat ground plane. We have the anchor loss written as

Lanchor = −
N∑
i=1

(p̂i log pi + (1− p̂i)(log (1− pi))

+

N∑
i=1

p̂i · (||v̂i · (xi − x̂i)||1 + ||v̂i · (zi − ẑi)||1)

+

N∑
i=1

p̂i · ||vi − v̂i||1

(8)
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Table 1. Comprehensive evaluation on Apollo 3D synthetic dataset [13]. Parameters: Estimated network parameters to the best of our
knowledge. GT mask: Use GT masks as the input of lane regression network to test the theoretical upper bound of corresponding method.
The extra-long range refers to the data split of range 0-200m as described in section 4.3, while other splits refer to the default evaluation
range of 0-100m.

balanced scenes rarely observed visual variations extra-long range
Method parameters F-Score AP F-Score AP F-Score AP F-Score AP
3D-LaneNet [12] 23.7M 86.4 89.3 72.0 74.6 72.5 74.9 60.1 63.2
Gen-LaneNet [13] 2.8M 88.1 90.1 78.0 79.0 85.3 87.2 68.5 69.2
Ours 2.8M 91.9 93.8 83.7 85.2 89.9 92.1 83.6 85.3
Gen-LaneNet (GT mask) [13] - 91.8 93.8 84.7 86.6 90.2 92.3 80.7 82.5
Ours (GT mask) - 92.8 94.7 87.8 89.5 91.3 93.2 87.2 89.1

Table 2. Results on offset metric and ablation study on balanced scenes in Apollo 3D synthetic dataset [13]. GS: Geometry supervision.
TVS: Top view supervision. Aug: 3D lane data augmentation. GT mask: Use ground truth mask of 2D lanes instead of predicted mask for
3D lane regression. Joint: Evaluate on the intersection of matched samples across all methods in the table.

Method F-Score AP x error near (m) x error far (m) joint x error far (m) z error near (m) z error far (m) joint z error far (m)
3D-LaneNet [12] 86.4 89.3 0.068 0.477 0.448 0.015 0.202 0.183
Gen-LaneNet [13](baseline) 88.1 90.1 0.061 0.496 0.470 0.012 0.214 0.192
Ours w/ GS 89.1 91.2 0.050 0.455 0.406 0.009 0.226 0.183
Ours w/ TVS 90.2 92.4 0.060 0.446 0.383 0.013 0.241 0.189
Ours w/ GS + TVS 91.2 93.2 0.065 0.415 0.365 0.009 0.220 0.179
Ours w/ GS + TVS + Aug 91.9 93.8 0.049 0.387 0.332 0.008 0.213 0.171
Gen-LaneNet (GT mask) [13] 91.8 93.8 0.054 0.412 0.353 0.011 0.226 0.177
Ours (GT mask) 92.8 94.7 0.044 0.360 0.299 0.007 0.219 0.170

Table 3. Comparison of augmentation on easy and hard samples

all easy hard
Method F-Score AP F-Score AP F-Score AP
Ours w/ GS 89.1 91.2 93.2 92.7 69.3 77.7
Ours w/ TVS 90.2 92.4 93.4 94.2 70.5 78.7
Ours (GS+TVS w/o Aug) 91.2 93.2 94.2 95.0 71.9 79.1
Ours (GS+TVS w/ Aug) 91.9 (+0.7) 93.8 (+0.6) 94.6 (+0.4) 95.2 (+0.2) 75.4 (+3.5) 83.7 (+4.6)

To sum up, the loss functions are composed of the loss
of top view feature extraction network Lfea and the loss of
3D lane reconstruction network Lrec.

Lfea = Lseg + λcamLcam

Lrec = Lanchor + λgeoLgeo

(9)

where the λcam and λgeo are introduced to balance the rel-
ative importance between different loss items.

4. Experiment
4.1. Datasets and Implementation Details

To validate the performance of our proposed framework,
we adopt the Apollo 3D synthetic dataset [13] for com-
parative experiments since other 3D lane datasets are not
publicly available. This dataset contains 10500 discrete
frames of monocular RGB images and the corresponding
lane keypoint labels in 3D world coordinate. Follow the
same setting in previous literature [13], the data is split into
balanced, rarely observed and visual variation scenes. For
evaluation metric, we adopt the minimum-cost flow algo-
rithm [13] for matching between GT and predicted lanes,
and report Average Precision (AP) and F-score for com-
prehensive evaluations. Besides, we also report horizon-

tal offset on flat ground and the height distance in meters
between matched pairs of GT and prediction lane on near
(0-40m) and far (40-100m) range. We have λcam=1e2 and
λgeo=1e−2 respectively.

For anchor representation, we adopt y-reference points
in {5, 10, 15, 20, 30, 40, 50, 60, 80, 100}m, and set up Yref

= 5 to associate each lane label with the closest anchor. For
model training, we adopt the Adam [20] optimizer with ini-
tial learning rate of 5e−4, and no scheduler or weight de-
cay is applied throughout the training. Our network can be
trained in an end-to-end or two-stage way. We use batch
size of 8 and train the entire network for 50 epochs on one
GeForce GTX 1080Ti GPU. We adopt the same network
architecture as ERFNet [29] and GeoNet in [13]. For lane
augmentation, we randomly generate new lane data apply-
ing rotation for pitch within [-0.1,0.3] for ppitch = 0.1, roll
within [-3,3] for proll = 0.05, and yaw within [-3,3] for pyaw
= 0.2. We assume known camera pose in the training for
fair comparison with previous work, even though the pose
information can be obtained by network prediction as well.

4.2. Evaluation Result

The comprehensive experiment results are shown in Ta-
ble 1, and the qualitative comparison is shown in Figure 7.
Compared with the previous state-of-the-art works, we in-
crease the F-score for more than 3.8% on all data splits
without introducing extra network parameters, and our pre-
diction results can closely achieve the theoretical results of
Gen-LaneNet [13] with GT mask for the segmentation net-
work. We also testify our methods on regression network
with GT masks as input, and show that our framework can
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Figure 7. Qualitative comparison results of proposed method. First row: 3D-LaneNet [12]; Second row: Gen-LaneNet [13]; Third
row: Our proposed method;different GTs are generated from different view projection; Column A & B: Results on default range (0-100m);
Column C & D: Results on extra-long range (0-200m). GT and predicted lane boundaries are marked in blue and red respectively. Our
proposed method could tremendously facilitate the reconstruction of 3D lanes, especially on the far side.

tremendously reduce the discrepancy between results un-
der predicted 2D lane masks and GT masks with the same
model architecture as [13], which proves the promising ef-
fect of our method in refining the top view features and pre-
serving 3D lane structure.

4.3. Extra-long Range Comparison

The ability of detecting lanes at long distance is criti-
cal especially in the high speed scenario, thus we design an
“extra-long range” data split to evaluate the ability of detect-
ing 3D lanes within the range 0-200m, doubling the original
evaluation range. We create this split by filtering lane data
from the balanced scenes in [13] with y-position greater
than 195m, and equally sample y-reference points from
range [5, 200]m with a 5-meter interval. Experiment results
are shown in Table 1. With the refinement of far-side fea-
tures and the explicit geometry supervision, our proposed
methods can increase both AP and F-score for roughly 15%
over [13] and 25% over [12]. Specifically, our augmenta-
tion method makes an improvement on F-score from 79.7%
to 83.6% and AP from 81.2% to 85.3%, which proves the
superiority for generalizing into long-range detection.

4.4. Ablation Study

We conduct ablation study for evaluating the impact of
each major part of our proposed method: Geometry super-
vision (GS), top view supervision (TVS) and 3D lane aug-
mentation (Aug). We notice that in the evaluation of the off-
set metrics, the number of samples (i.e., positive matched
lanes) evaluated in each method is not exactly the same,
thus fairness cannot be assured since methods with higher
F-score will consider more matched pairs of lanes which are
often hard samples. To ensure fair comparison, we design
a “joint” offset metric in which the offset errors are evalu-
ated with the intersection of matched data samples from all
methods in the table. As shown in Table 2, we use Gen-
LaneNet [13] as the baseline. The GS and TVS can in-

crease the performance of the baseline respectively. Com-
pared with only applying GS on the baseline, the joint offset
errors in the row 3-6 show that applying GS on the refined
features with TVS can result in a much greater improve-
ment in refining both “x error far” and “z error far”, which
reflects the joint benefit of GS and TVS on the preservation
of geometry information in reconstructing lanes from 2D
to 3D. Besides, to testify the ability to generalize on rare
cases for our lane augmentation method, we split the bal-
anced scenes of [13] into easy and hard cases. An image
is labeled as hard case if the lane height of any lane within
the image is greater than 1.78m, which is the value of the
shared camera height in the dataset [13]. In general, 184 out
of 1496 images are labeled as hard cases and the other 1312
images are labeled as easy. As shown in Table 3, the pro-
posed augmentation method could tremendously improve
the model performance on hard cases with 4.6% increment
on AP and 3.5% on F-score, which proves the effectiveness
on countering imbalanced data distribution.

5. Conclusion

In this paper1, we propose a framework for monocu-
lar 3D lane detection with explicit geometry supervision,
which outperforms previous methods without introducing
extra parameters. We consider the task as a 2D to 3D lane
reconstruction problem and prove that the structure prior
could tremendously facilitate the reconstruction of 3D lanes
by offering explicit guidance for lane geometry and refined
lane features. On the Apollo 3D synthetic dataset, our pro-
posed method can improve the performance of state-of-the-
art methods by a large margin. Besides, our proposed ap-
proaches show the potential for extra-long distance 3D lane
detection and achieve roughly 15% improvement in F-Score
and AP over existing methods on the long-range data split.

1For the discussion of limitations and future work, please refer to the
supplementary material.
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