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Abstract

Autonomous vehicles utilize urban scene segmentation to
understand the real world like a human and react accord-
ingly. Semantic segmentation of normal scenes has experi-
enced a remarkable rise in accuracy on conventional bench-
marks. However, a significant portion of real-life accidents
features abnormal scenes, such as those with object defor-
mations, overturns, and unexpected traffic behaviors. Since
even small mis-segmentation of driving scenes can lead to
serious threats to human lives, the robustness of such mod-
els in accident scenarios is an extremely important factor in
ensuring safety of intelligent transportation systems.

In this paper, we propose a Multi-source Meta-learning
Unsupervised Domain Adaptation (MMUDA) framework,
to improve the generalization of segmentation transform-
ers to extreme accident scenes. In MMUDA, we make
use of Multi-Domain Mixed Sampling to augment the im-
ages of multiple-source domains (normal scenes) with the
target data appearances (abnormal scenes). To train our
model, we intertwine and study a meta-learning strategy
in the multi-source setting for robustifying the segmenta-
tion results. We further enhance the segmentation back-
bone (SegFormer) with a HybridASPP decoder design, fea-
turing large window attention spatial pyramid pooling and
strip pooling, to efficiently aggregate long-range contex-
tual dependencies. Our approach achieves a mIoU score of
46.97% on the DADA-seg benchmark, surpassing the previ-
ous state-of-the-art model by more than 7.50%.1

1. Introduction
With the rapid development of computer vision algo-

rithms in Intelligent Transportation Systems (ITS), road
safety for Intelligent Vehicles (IV) has gradually become
one of the most concerning issues in this community. The
Advanced Driver Assistance Systems (ADAS) are required

∗The first two authors contribute equally to this work.
†Corresponding author (e-mail: kailun.yang@kit.edu).
1Code will be made publicly available at https://github.com/

xinyu-laura/MMUDA.

(a) Image (b) GT (c) ResNet (d) Ours
Figure 1. Semantic segmentation of accident scenes. Compared
to the source-only model (e.g., a ResNet), our model generalizes
better in the abnormal cases. From top to bottom are dash-crossing
pedestrians, overturned motorcycles, collisions, and motion blur.

to correctly handle both, normal driving scenes, which are
addressed by most of the published datasets, and abnor-
mal situations (i.e., edge cases) that may unexpectedly ap-
pear in real-world scenes. Fueled by rapid improvements in
general semantic segmentation research, great progress has
been made in the field of autonomous driving [32, 36, 38]
in recent years. However, these segmentation models are
mainly designed for normal driving scenes, while real-life
accidents often encounter abnormalities and critical situa-
tions, such as overturned vehicles in front of the ego-vehicle
or distorted shots caused by motion blur. Several examples
of such abnormal cases taken from accident scenes are pre-
sented in Fig. 1. If a standard semantic segmentation model,
which does not see any abnormal samples during training,
is deployed in real world, it can hardly obtain correct results
when encountering an unusual accident- or near-accident
scene, resulting in a failure of driving assistance. The large
domain gap between the normal- and accident scenes nega-
tively impacts segmentation performance [65], greatly lim-
iting applications of autonomous driving in practice.

Despite its high relevance for applications, only a few
works address the task of accident scenes segmentation,
which aims to adapt models trained in normal scenarios
to the abnormal ones. [65, 66] introduced DADA-seg – a
new traffic accidents dataset covering labelled and unla-
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belled images from real-world abnormal driving scenes.
The event-aware ISSAFE architecture [65] was proposed to
fuse RGB images and event data and therefore to capture
the dynamic context. The Trans4Trans model [63] lever-
aged transformer-based encoder and decoder and was sim-
ply transferred, without any adaptation design, from mul-
tiple source datasets, i.e., Cityscapes [8] and ACDC [40].
However, mixing data only in a dataset-wise manner is lim-
ited in terms of balancing the data distribution and further
data diversification remains an important milestone. To
the best of our knowledge, only the single-source Unsuper-
vised Domain Adaptation (UDA) [65] and the multi-source
transfer-learning method [63] from normal- to abnormal do-
main were investigated. Multi-source normal-to-abnormal
UDA, yet, remains unexplored. We believe, that leveraging
multiple data origins has strong potential for robustifying
accident scene segmentation, as such extreme scenarios of-
ten contain diverse abnormal factors and composite scenes,
that could be better addressed by exploiting rich ontologies
covered in diverse sources.

To improve the robustness of semantic segmentation in
accident scenarios, we propose a novel Multi-source Meta-
learning UDA framework to help the transformer models
in generalization to the unusual target scenes (MMUDA for
short). Our framework learns from the label-rich datasets
of conventional driving scenes (source), and then automat-
ically adapts to the target domain of abnormal accident
scenes with only unlabelled training data (target). To effec-
tively learn from the entire unlabelled target domain dataset,
we put forward a Multi-Domain Mixed Sampling (MDMS)
strategy, which is inspired by the cross-domain mixing ap-
proach in DACS [46] and augments the training samples
of multiple source domains. Two major differences com-
pared to the normal-to-normal DACS are that i) we adapt
the single-source method to a multi-source setup, and ii)
we further investigate the multi-source mixing technique in
our normal-to-abnormal setting. More precisely, in the case
of single-domain mixed sampling, the augmented sample is
formed by mixing the source normal image and the target
abnormal image. In the case of the multi-domain mixing,
some marks from each source domain image are extracted
and then pasted onto the target domain image. The pseudo-
labels for the augmented image are mixed by the source
ground-truth labels and the target pseudo labels.

In the training phase, we use the meta-learning for
domain generalization (MLDG) strategy [24], which was
adapted in [62] to model the domain transfer problem with
an episodic training paradigm, leading to superior per-
formance in image classification. MLDG can be viewed
as a regularization mechanism that prevents the model
from overfitting. Different from the original MLDG, our
MMUDA framework performs meta-learning across multi-
ple source domains and jointly with the target domain, after

which we apply it to the normal-to-abnormal UDA setting.
In addition, we enhance the segmentation backbone (Seg-
Former) with a HybridASPP decoder design, which lever-
ages large window attention spatial pyramid pooling [51]
and strip pooling [18] with a long but narrow kernel. The
HybridASPP decoder replaces the vanilla MLP-based de-
coder of SegFormer, and this helps to efficiently extract
large regions of global context and long-range dependen-
cies. Comprehensive experiments demonstrate the effec-
tiveness of our proposed methods. On the challenging
DADA-seg benchmark [65], our approach achieves a mIoU
score of 46.97%, surpassing the previous state-of-the-art
transformer model [63] by more than +7.50%.

Our contributions are summarized as follows:
• We propose a novel Multi-source Meta-learning UDA

(MMUDA) framework for better adaptation from
multi-source domains of normal driving scenes to the
domain of abnormal accident scenes.

• We develop a Multi-Domain Mixed Sampling (MDMS)
approach to augment the training data from multiple
labelled source domains with data appearances from
the unlabelled target domain data.

• We employ meta-learning and analyze its effects under
different combinations of multiple source datasets.

• We introduce an enhanced HybridASPP to replace
the vanilla MLP-based decoder of SegFormer, which
makes the framework more efficient and effective.

2. Related Work
Semantic segmentation. Semantic segmentation has ex-
perienced a great breakthrough since the emergence of
FCN [28] classifying pixels end-to-end. Subsequent net-
works, e.g., [2, 12, 18, 57, 70] improved FCN in different
aspects, significantly pushing segmentation performance,
but also raising computational cost. To alleviate this is-
sue, compact segmentation models [32,38,68] are designed
to hold a better accuracy-efficiency trade-off. Disentan-
gled non-local blocks [53, 54, 73] have also been explored
to efficiently collect omni-range dependencies. Recently,
the semantic segmentation field has been driven by the
newly emerged and highly effective transformer-based ar-
chitectures [6, 43, 49, 51, 71]. Compared to FCN-based ap-
proaches, such models are able to handle long-range de-
pendencies by design and have quickly climbed to the top
of segmentation benchmarks. Furthermore, MLP-like ar-
chitectures [4, 17, 45, 56, 64] alternate token- and channel-
mixing to enhance global reasoning. The recently proposed
SegFormer architecture [50] leverages a hierarchical trans-
former encoder with a lightweight All-MLP decoder, gen-
erating powerful representations without complex and com-
putationally demanding modules. In this work, we build on
SegFormer and introduce multiple building blocks for its
improvement specifically for accident scene segmentation.
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Domain adaptation and generalization. While current se-
mantic segmentation models achieve excellent performance
on standard benchmarks, the performance drops sharply if
the training and test images come from different domains.
To counter this effect, multiple methods based on Domain
Adaptation (DA) [15, 19, 25, 39, 44, 67, 69] were proposed
for automatic adjustment to adverse conditions. In [41],
effective usage of synthetic data was explored to better
handle domain shifts, with results indicating that the fore-
ground objects should rather be addressed in a detection-
based manner. Domain Generalization (DG) is more chal-
lenging than DA since DG methods can only access source
domain data for training. Target images during the train-
ing process cannot be used or observed (while classical DA
allows access to unlabelled target domain data). Currently,
most DG methods focus on image classification, and only
a few [7, 21, 33, 35, 62] are developed to solve semantic
segmentation tasks. Another recent group of approaches
[20, 58] raised the technique of domain randomization to
improve DG. Moreover, open compound domain adapta-
tion approaches [13, 27, 34] have been developed to adapt
to a group of unknown heterogeneous domains like scenes
in adverse environmental conditions. In this work, we also
develop a domain transfer system based on meta-learning
and design a multi-source mixed sampling method for en-
hancing semantic segmentation in accident scenarios.

Meta learning. Meta-learning aims at figuring out how
to learn and has been effectively applied in different
fields, with Model-Agnostic Meta-Learning (MAML) [11]
and HyperNetworks [14] being popular approches for im-
age classification. MAML simulates the domain gap be-
tween train and test domains by synthesizing virtual test-
ing domains within each mini-batch during training. As
of late, meta-learning has likewise been effectively ap-
plied to domain adaptation and domain generalization.
Meta-online [23] introduces a strategy to improve the re-
sults by learning the underlying circumstances (e.g., model
boundary) of the existing domain adaptation strategies.
MLDG [24] follows the MAML [11] system and has been
effectively used in the DG task. Similar to MAML, the
DG task expects that the learned models in seen domains
are able to generalize well to novel unseen domains. As a
consequence, meta learning has been recently explored for
domain adaptation and generalization [1, 5, 10, 13, 62]. In
this work, we leverage meta learning to better make use of
multi-source data in order to boost generalization of seman-
tic segmentation models in extreme accident scenes.

Mixing. Mixing is a kind of augmentation technique and
has successfully been used for both classification and se-
mantic segmentation as suggested in [60]. Mixing has been
further developed in the class mixing algorithm [31], where
the masks used for mixing are dynamically created based on
the predictions of the network. In DACS [46], the concept

of self-training is extended and combined with ClassMix.
Their proposed method fine-tunes models with mixed labels
by combining ground-truth annotations from the source do-
main and pseudo-labels from the target domain. Further,
context-aware mixing [72] and bi-mix [52] methods are de-
veloped to better guide the domain mixup and bridge the
distribution gap. In this work, we assemble a multi-source
mixed sampling method within our system for robust se-
mantic understanding of accident scenes.

3. Methodology

In this Section, we describe our Multi-source Meta-
learning UDA (MMUDA) framework in detail. First, we ex-
plain the proposed Multi-Domain Mixed Sampling (MDMS)
in Sec. 3.1. Then, the meta-learning strategy for multi-
source UDA in Sec. 3.2 is explained in detail. Finally,
Sec. 3.3 provides an overview of the proposed architectural
changes and the enhanced HybridASPP decoder design.

3.1. MDMS: Multi-Domain Mixed Sampling

Our proposed method builds upon the idea of domain
adaptation via cross-domain mixed sampling (DACS) [46].
Unlike DACS, which has only one source domain, our aug-
mented samples are created by mixing pixels from the target
domain image with pixels from each source domain image.
Before being mixed, the unlabelled target domain images
first need to be run through the model to generate pseudo-
labels for them. Then, half of the classes in the image from
source domain are randomly selected, and the pixels of the
corresponding classes are cut from the source domain im-
age and pasted onto the target domain image. For labels, the
pseudo-labels of unlabelled target image are mixed with the
corresponding ground-truth labels of the source domain im-
age in the same way as the mixed images. The above mix-
ing approach is applied to each source domain. For brevity,
the mixed sampling process will be described with only one
source domain below.

A source domain is defined by a set of image and la-
bel pairs {(Xi

S , Y
i
S)}NS∈DS , where Xi

S∈RH×W×3 is the
image, Y i

S∈RH×W×C is the C-class label, and NS is the
number of samples in the source domain DS . From the
target domain DT with a number of NT=NL+NU sam-
ples, the NU unlabelled image and pseudo label pairs
{(Xi

T , Ŷ
i
T )}NU∈DT are selected for the mixing approach,

where ŶT is generated by the segmentation transformer
fseg in Fig. 2. The labelled NL images in the target do-
main are only used in the testing stage. In the augmented
set DM with the same NU samples, an augmented im-
age XM is generated by mixing a source image XS and
a target image XT , and the pseudo label ŶM by combin-
ing the corresponding ground-truth label YS and the pseudo
label ŶT . However, in our case, there is not one but K

4431



Unlabelled Target

Mixing

Update

Source Domain
Meta-Train

Meta-Test
Augmented Set

Predict

Training Stage Testing Stage
Target Domain

Colorized Predictiion

Backward Path

Forward Path

SegFormer with
HybridASPP

MDMS

Figure 2. Overview of the proposed Multi-source Meta-learning UDA (MMUDA) framework. It includes Multi-domain Mixed Sam-
pling (MDMS) and meta-learning with segmentation transformers. Given multiple source (normal) domains, the model fine-tuned by
meta-training and meta-testing across various source domains with rich ontologies, can generalize well in the target (abnormal) domain.

source domains, thus the augmented set is finally created
as {(Xi

Mk
, Ŷ i

Mk
)}NU∈DM .

These new samples are then used to train the segmen-
tation transformer model f

′

seg . The process of MDMS is
presented as gray arrows in Fig. 2, where an example of
mixing image-label pairs from source- and target domain is
shown. Pixels cut from the source are marked in yellow dot-
ted boxes. In this way, we obtain a set of augmented sam-
ples from multiple source domains, which are then passed to
the subsequent meta-learning-based network together with
the original source domain images.

3.2. Meta-Learning in UDA

During the training phase, we adapt MLDG [24] (i.e.,
meta-learning for domain generalization) to train our
model. Different from MLDG, we perform meta-learning
across multiple source domains and together with the tar-
get domain, intertwined via mixing sampling to obtain aug-
mented images which instills the knowledge from the target
scenes. Besides, instead of addressing image classification,
we apply it to the normal-to-abnormal UDA setting for ro-
bustifying dense accident scene segmentation.

As shown in the training stage of our framework in
Fig. 2, we use the images from sources for meta-training
while the augmented images produced via MDMS are used
for meta-testing. The cross-entropy is selected as the loss
function L for our semantic segmentation task. First,
the domain-specific loss Lds is computed from the meta-
training data though the network fseg . The gradient ∇Lds

is then used to update a new network f
′

seg , i.e., the green
block in Fig. 2, which has the same backbone as the blue
one. As we want the model to adapt well in the unseen tar-
get domain, the domain adaptation loss Lda is calculated

from f
′

seg with the updated parameters using the meta-test
data. Finally, we employ the total loss Ltotal=Lda+αLds

to update the original fseg , so that the network is optimized
to perform well in the source and target domains. During
the update for f

′

seg , we use the inner learning rate η, while
updating the original network fseg after a meta-train and
subsequent meta-test process, the outer learning rate γ is
used. The parameters can then be updated with SGD (i.e.,
Stochastic Gradient Descent).

In our segmentation task, the statistics in the source do-
main (i.e., the normal driving scenes) are different from the
target domain of traffic accident scenes. Therefore, normal-
izing the test data with the accumulated mean and variance
during the training phase can be problematic. Considering
this fact, we adopt target-specific normalization introduced
by [62] to normalize features directly using statistics from
the target domain in the testing stage. In the experiments,
we further investigate different combinations of datasets for
meta-learning, aiming for an optimal path to follow towards
robust accident scene understanding.

3.3. HybridASPP

Next, we propose multiple improvements to the original
SegFormer architecture in order to efficiently extract large
regions of the global context and long-range dependencies.
To this intent, our enhanced HybridASPP decoder replaces
the vanilla MLP-based decoder of SegFormer. As shown
in Fig. 3, in the first yellow branch, HybridASPP inherits
the large window attention blocks of Large Window At-
tention Spatial Pyramid Pooling (LawinASPP) [51] to ex-
ploit global context information. By adjusting the ratio of
the context regions to the query regions with {2, 4, 8} as
illustrated in Fig. 3, large-window attention is able to cap-
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Figure 3. The structure of HybirdASPP consists of large window attention and strip pooling to capture long-range context.

ture contextual information at multiple scales. The offered
receptive fields are of sizes {16, 32, 64}, when setting the
patch size of the local window to 8. Further, the study
in [18] found that the standard spatial pooling operation
with a shape of H×W makes the long-range context likely
to contain many unrelated regions. In the bottom branch, we
intertwine strip pooling modules, which encode long-range
context along the horizontal and vertical spatial dimension
based on long, narrow kernels (1×W and H×1).

As shown in Fig. 3, we concatenate an aggregated feature
from the last three stages of the encoder, the large window
attended features, the strip pooling augmented feature, after
which a learned linear transformation performs dimension-
ality reduction for producing the final segmentation map.
The output of HybridASPP feature is upsampled to the size
of a quarter of input image, then it is fused with the low-
level feature coming from the first stage of the segmentation
transformer (i.e., SegFormer) via a linear layer. Last, dense
semantic predictions, i.e., the segmentation logits, are ob-
tained from the final representation.

4. Experiments
4.1. Datasets

The statistics of the five source datasets (normal scenes)
and the target dataset (abnormal accident scenes) that are
used in our experiments are listed in Table 1.
Source datasets. For training, we leverage five semantic
segmentation datasets as our multi-origin source domains:
WildDash2 (W) [59], ACDC (A) [40], BDD10K (B) [55],
IDD (I) [47], and Cityscapes (C) [8]. The datasets A and
B and C are annotated with the same label set of 19 cate-
gories. Compared to these datasets, W has 5 five additional

Datasets WildDash2 ACDC BDD IDD Cityscapes DADA-seg

#training 2,979 1,600 7,000 6,993 2,975 12,207
#evaluation 1,277 406 1,000 981 500 313

Table 1. Statistics of datasets for experiments.

classes, including van, pickup, street light, billboard, and
ego-vehicle. Following the setting of [62], we merge the
additional categories of W by mapping the added new Ids
to the original Ids of A, B, and C. Although I also contains
more classes, we use the provided public code2 to directly
generate the masks with the same label Ids as C.

W has a large collection of road scenes from differ-
ent countries, weather and lighting conditions, includ-
ing 2, 979 training- and 1, 277 validation images of size
1, 920×1, 080. A includes four common adverse condi-
tions, i.e., fog, nighttime, rain, and snow. Each of these
conditions has 1, 000 images: 400 for training, 100 for val-
idation and 500 for testing (resolution 1, 920×1, 080). B
has geographic, environmental, and weather diversity and
provides 7, 000 training images and 1, 000 validation im-
ages, with a resolution of 1, 280×720. I features a higher
diversity of within-class appearance compared to C. A to-
tal of 10, 004 images with 6, 993 training- and 981 valida-
tion examples are captured from Indian roads with a reso-
lution of 1, 280×964. The C dataset contains street scenes
of 50 different cities and 19 categories with high resolution
of 2, 048×1, 080. The 5, 000 images are divided into 2, 975
training-, 500 validation-, and 1, 525 test samples.
Target dataset. We utilize DADA-seg (D) [65] as our tar-
get dataset used for testing our approach, which covers 313
evaluation images. Following [65, 66], 12, 207 unlabelled
images are used for unsupervised adaptation. All images

2https://github.com/AutoNUE/public-code
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MobileNetV2 [42] 16.05 31.87 8.50 26.55 3.60 5.38 13.96 19.51 10.87 44.99 11.09 67.05 8.11 5.23 28.58 11.77 2.17 - 1.90 3.86
PSPNet [70] 17.07 31.62 11.42 32.48 4.16 8.52 12.38 17.93 13.39 50.82 13.85 67.19 9.86 3.13 31.54 6.97 3.15 - 2.97 2.89
ResNet50 [16] 18.96 34.19 8.24 31.05 4.56 7.39 19.04 27.05 15.35 33.30 12.40 61.52 10.04 3.95 42.59 14.15 27.02 - 3.72 4.72
SemFPN [22] 19.59 37.90 10.12 23.80 3.74 9.64 22.06 28.64 15.55 40.95 12.13 51.93 9.24 5.93 52.08 13.89 26.54 - 3.66 4.36
DNLNet [54] 19.72 41.68 13.26 30.45 6.17 11.04 21.91 28.03 17.99 40.05 14.13 56.06 10.75 5.41 34.78 8.01 28.01 - 3.55 3.39
ResNeSt [61] 19.99 39.63 11.38 33.68 2.81 9.73 22.76 27.35 18.09 45.24 14.22 71.23 13.34 5.03 36.45 6.91 13.08 - 3.94 4.87
DANet [12] 22.24 46.49 10.17 42.20 3.81 10.65 13.46 18.69 22.59 55.76 22.22 83.84 6.68 11.75 39.59 7.96 12.64 - 7.98 6.12
ResNet101 [16] 23.60 57.96 11.16 39.94 6.43 9.46 23.67 27.37 17.32 45.65 16.47 69.21 13.19 4.51 47.29 13.75 30.44 - 6.64 8.01
OCRNet [57] 24.85 42.13 11.54 34.49 6.63 12.70 22.76 29.03 22.28 42.41 15.15 85.43 14.31 6.65 53.94 20.65 34.86 - 9.30 7.87
FastSCNN [37] 26.32 69.91 16.30 52.53 6.09 9.63 19.98 19.30 22.58 57.04 22.95 90.81 11.19 13.95 46.16 22.65 9.74 - 4.49 4.75

C
ro

ss
-s
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e

CLAN [30] 28.76 79.80 18.61 51.56 8.32 13.60 15.51 17.15 21.51 63.20 21.99 80.53 8.37 6.32 63.47 33.43 33.12 - 3.69 6.21
BDL [26] 29.66 81.44 19.18 57.18 8.61 16.26 14.65 8.78 16.77 66.60 26.83 85.87 10.51 7.16 65.45 35.18 34.78 - 2.71 5.57
ISSAFE [65] 29.97 80.23 19.51 52.02 6.43 14.68 16.19 17.03 19.50 65.39 21.69 79.84 9.95 8.82 65.60 39.51 39.73 - 6.09 7.03
EDCNet [66] 32.04 73.03 19.47 57.31 11.60 14.30 20.70 12.27 27.22 70.54 18.98 88.64 10.69 8.70 68.14 49.80 50.86 - 9.02 4.12
Trans4Trans-M [63] 39.20 71.10 15.57 70.39 10.34 16.53 31.63 37.16 37.38 71.88 19.61 93.04 21.27 14.97 64.04 53.76 81.53 - 24.63 10.07
Our Baseline 40.73 84.93 23.66 68.34 16.27 20.58 25.96 31.25 28.20 71.89 22.39 93.16 17.92 26.84 73.89 55.09 69.26 - 34.77 9.49

+Meta 45.03 86.20 25.44 70.63 14.21 19.75 26.56 28.01 29.23 74.45 25.29 93.18 20.40 31.53 75.02 64.73 76.84 - 38.05 10.95
+Meta+MDMS 46.11 87.10 27.71 71.11 22.94 20.64 32.25 29.49 34.34 75.48 24.02 92.18 20.65 33.33 74.64 63.35 71.14 - 39.08 12.04

Our MMUDA 46.97 87.51 27.97 74.76 16.16 21.93 29.94 29.43 31.62 75.67 26.69 93.57 24.40 29.57 77.35 68.24 84.02 - 36.96 10.44

Table 2. Comparison of state-of-art methods. The source-only models are trained on the Cityscapes dataset, while the other models are
domain-transferred using a single source [26, 30], multiple sources [63, 66] or a different modality [65]. While our baseline model has no
mixed sampling and performs normal supervised learning based on ResNet101 only using the source domain, our MMUDA framework
based on the SegFormer backbone uses MDMS and meta-learning (Meta for short) across the source and target domain.

are captured in abnormal driving scenes, i.e., traffic accident
scenes. The images of D are labelled with 19 classes, which
are consistent with the classes of the C dataset (Cityscapes).
The resolution of the images is 1, 584×660.

4.2. Implementation Details

Our approach leverages the ImageNet1K-pretrained
MiT-B2 SegFormer [50] as the encoder backbone, and the
public mmsegmentation framework implementation3. The
meta-learning inner and outer learning rates (i.e. η and γ)
are set to 1e−3 and 5e−3, respectively, with Polynomial
learning rate decay with the power 0.9. The network is
trained for 120 epochs, unless otherwise specified. The
weight α of the Lds loss is set to 1. We train the model
with a mini-batch size of 1 using stochastic gradient descent
(SGD), momentum of 0.9 and weight decay of 5e−4. For
training data augmentation, we use random resizing with ra-
tio 0.5 to 2.0, random flipping, random Gaussian blur, and
random cropping with a size of 600×600. Mean Intersec-
tion over Union (mIoU) is our main evaluation metric.

4.3. Results of Accident Scenes Segmentation

Table 2 compares the mean IoU and the per-class IoU
scores achieved by our proposed approach to the state-
of-the-art methods on DADA-seg. The source-only mod-
els trained on Cityscapes experience a considerable per-
formance degradation and achieve a rather low accuracy
when deployed in abnormal accident scenes. For exam-
ple, ResNet50 and ResNet101 [16] based on FCN [29]
only reach 18.96% and 23.60% in mIoU. The results of
ResNet101 are illustrated in Fig. 1. The previous state-

3https://github.com/open-mmlab/mmsegmentation

of-the-art Trans4Trans model [63] attains 39.20% in mIoU
with a vision transformer and multi-source training. Our
proposed MMUDA model surpasses all previous results,
yielding a significantly higher recognition rate of 46.97%
in mIoU, which is >7.50% higher than the past state-of-
the-art. For per-class IoU, our approach achieves the best
scores in 16 out of all 19 categories. The improvements
over Trans4Trans are compelling (>10.00% performance
gain) on categories which are safety-critical for accidental
scene understanding, in particular, for road, sidewalk, rider,
car, truck, and motorcycle.

The ablation results of our proposed modules are also
depicted in Table 2, where all experiments are based on
all five multi-origin source datasets described in Sec. 4.1.
Our baseline model with ResNet101 uses only the normal
source-supervised learning by aggregating multiple source
domains and obtains a mIoU of 40.76%, whereas the model
with meta-learning (+Meta) leads to a further 4.26% im-
provement. In addition, our proposed MDMS and trans-
former model with HyrbidASPP further elevate mIoU to
46.11% and 46.97%, respectively. Overall, these results
demonstrate the effectiveness of the proposed framework
and clear benefits of the MDMS module and the transformer
model with HybridASPP, as well as the importance of our
multi-source meta-learning training strategy.

4.4. Ablation Study of Meta-learning

Effect of meta-learning. The previously described Ta-
ble 2 indicates clear advantages of meta-learning over the
baseline. Next, we study the impact of our meta-learning
strategy in more detail though an ablation study featur-
ing a variety of source datasets (Table 3). All of these
experiments employ the target-specific normalization and
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Figure 4. Qualitative ablation study of different modules used in our framework.

Source domain mIoU(%)
Meta without Meta

WildDash2 [59] - 35.35
ACDC [40] - 23.56
BDD [55] - 31.18
IDD [47] - 28.15

Cityscapes [8] - 25.48
W + I + C 43.74 40.01
W + A + B 42.70 38.75
W + A + I 43.36 39.98
W + B + I 43.90 40.20
B + I + C 41.03 39.03

W + B + I + C 44.67 40.71
W + A + B + I + C 45.03 40.73

Table 3. Ablation of meta-learning with different source domains
and their combinations.

ResNet101 pretained on ImageNet1K [9] as the backbone.
The baseline models are trained with traditional learning on
different single sources, respectively. When using multi-
ple sources, meta-learning-based approaches (e.g., 43.74%
with W+I+C) are evidently more effective than the com-
mon aggregated-source-supervised learning (e.g., 40.01%).
Influence of multi-source combination. In Table 3, we in-
vestigate the impact of combining different datasets on the
segmentation performance. In single-source studies, train-
ing with WildDash2, BDD, and IDD, respectively, yields
the top three mIoU scores thanks to their especially diverse
examples. For example, WildDash2 leads to a decent per-
formance, as it offers many composite scenes and various
visual hazards. As a result, when these three sources are
used together, the combination of W+B+I yields the highest
accuracy. In general, leaning with more sources improves
the performance for accident scene segmentation, and our
five-source meta-learning model attains 45.03% in mIoU,
clearly standing out in front of all other models.

Method GFLOPs↓ mIoU(%)↑
Cityscapes DADA-seg

SegFormer + Vanilla MLP [50] 717.1 74.00 18.50
SegFormer + LawinASPP [51] 569.6 75.86 25.16
SegFormer + HybridASPP (Ours) 553.8 76.41 25.21

Table 4. Ablation of decoders. GFLOPs are calculated with a size
of 2, 048×1, 024. We train all models on C on a single GPU with
a batch size of 1 for 80k iterations and an input size of 768×768.

4.5. Ablation Study on HybridASPP

To analyze the efficiency and effectiveness of our Hy-
bridASPP module, we replace the decoder of SegFormer-
B2 [50], and compare it to LawinASPP [51] and the pro-
posed decoder in Table 4. In terms of computation costs,
HybridASPP reduces the GFLOPs of LawinASPP by 15.8
after introducing strip pooling to capture long-range context
instead of using traditional image pooling. Looking at the
performance, our decoder on D is evidently more reliable
than Vanilla MLP. Meanwhile, our HybridASPP achieves
higher mIoU scores than LawinASPP with less GFLOPs.

4.6. Model Efficiency Analysis

To investigate the efficiency of MMUDA, we compare
it with state-of-the-art approaches evaluated on DADA-seg
following [63]. Our model employs MiT-B2 [50] as the en-
coder and the proposed HybridASPP as the decoder. The
comparison of mIoU, GFLOPs, and #Params is shown in
Table 5. Compared to DeepLabV3+ [3] and HRNet [48],
our model largely improves the performance, while saving
a great amount of computation demands. In comparison
with the previous state-of-the-art Trans4Trans-M, we obtain
a significant gain of 7.8% in mIoU with 19.1M less param-
eters and an increase in GFLOPs. Capturing rich contextual
cues requires more computation but also ensures the robust-
ness of the model. While our model achieves high efficiency
in general, in future work, we will consider a more light-
weight encoder to further reduce the computational cost.
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Figure 5. Qualitative analysis of the effect of using different numbers of source domains in our multi-source meta-learning framework.

Method mIoU (%) ↑ GFLOPs ↓ #Params (M) ↓
DeepLabV3+ [3] 26.8 178.1 18.70
HRNet [48] 27.5 210.5 65.86
Trans4Trans-M [63] 39.2 41.9 49.55
Ours 47.0 105.5 30.49

Table 5. Model efficiency analysis. GFLOPs are calculated with
the input size of 768×768.

4.7. Qualitative Analysis

Effect of MMUDA. In our final study, we showcase multi-
ple examples of representative qualitative results in Fig. 4,
which corresponds to the numerical results in Table 2. Our
baseline model produces relatively noisy segmentation re-
sults, such that the rushing person in the third row can not
be completely segmented, whereas the model using meta-
learning method makes more accurate predictions in this
regard. When a collision happens, the model with the ad-
ditive MDMS module is better at distinguishing between
the motorcyclist and the motorcycle. Furthermore, the seg-
mentation of sidewalk is also improved. In comparison, the
noise of the predictions made by our MMUDA model with
HyridASPP is much lower and the model segments the side-
walks well even under low light and with occlusion. Over-
all, our model adapts well to the accident scenario and is ca-
pable of providing robustness-improved semantic segmen-
tation for the safety of autonomous driving.
Effect of source data. Fig. 5 visualizes the performance of
our model when using different numbers of source domains.
The images contain distortion and blur of foreground ob-
jects. It can be seen that the Cityscapes-trained model yields
fragmented segmentation that disqualifies its application in
self-driving scenarios, as it poses great threats in potential
accident scenes. Comparing the predictions in the dashed
box, our MMUDA provides more robust segmentation re-
sults when intertwining more sources. Since DADA-seg
is a complex driving scenario, the model will be more ef-

fective when the sources provide more diverse information.
The five-source meta-learned model clearly robustifies and
improves semantic segmentation of accident scenes, and we
believe that the high-quality predictions can be propagated
to the upper-level driving applications.

5. Conclusion
Semantic segmentation of road scenes is a key ingredi-

ent for safe autonomous driving, but requires models that
reliably operate under unusual circumstances. In this work,
we specifically focus on segmentation of abnormal acci-
dent scenes since unexpected objects or traffic scenarios
forms one of the common cause of dangerous situations. To
tackle this challenge, we introduce a new framework which
transfers knowledge from the well-studied domain of stan-
dard image segmentation to our target domain of abnormal
scenes. Our Multi-source Meta-learning UDA (MMUDA)
framework leverages multi-domain mixed sampling target-
ing at a better adaptation to the unknown accident scenes
and is optimized using meta-learning. We further introduce
a HybridASPP decoder design to improve the SegFormer
segmentation backbone, which proved to be effective for
our task. We verify the robustness of our model through ex-
tensive quantitative and qualitative experiments on the pub-
lic DADA-seg benchmark, demonstrating superior general-
ization ability to abnormal accident scenes and surpassing
previous state-of-the-art by a large margin.
Limitation and broader impact. The model training is
limited by not using the augmented set as the meta-train set.
To address this issue, a potential approach is to combine
multiple source domains and target domain into a fusion
set, and then to conduct a cross-combination meta-learning
process. We leave it to our further research. Besides, the
current experiments are conducted based on the referred
datasets, thus there are still data biases when the model is
applied in real-world test fields.
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