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Abstract

Autonomous vehicles utilize urban scene segmentation to
understand the real world like a human and react accord-
ingly. Semantic segmentation of normal scenes has experi-
enced a remarkable rise in accuracy on conventional bench-
marks. However, a significant portion of real-life accidents
features abnormal scenes, such as those with object defor-
mations, overturns, and unexpected traffic behaviors. Since
even small mis-segmentation of driving scenes can lead to
serious threats to human lives, the robustness of such mod-
els in accident scenarios is an extremely important factor in
ensuring safety of intelligent transportation systems.

In this paper, we propose a Multi-source Meta-learning
Unsupervised Domain Adaptation (MMUDA) framework,
to improve the generalization of segmentation transform-
ers to extreme accident scenes. In MMUDA, we make
use of Multi-Domain Mixed Sampling to augment the im-
ages of multiple-source domains (normal scenes) with the
target data appearances (abnormal scenes). To train our
model, we intertwine and study a meta-learning strategy
in the multi-source setting for robustifying the segmenta-
tion results. We further enhance the segmentation back-
bone (SegFormer) with a HybridASPP decoder design, fea-
turing large window attention spatial pyramid pooling and
strip pooling, to efficiently aggregate long-range contex-
tual dependencies. Our approach achieves a mIoU score of
46.97% on the DADA-seg benchmark, surpassing the previ-
ous state-of-the-art model by more than 7.50%.1

1. Introduction
With the rapid development of computer vision algo-

rithms in Intelligent Transportation Systems (ITS), road
safety for Intelligent Vehicles (IV) has gradually become
one of the most concerning issues in this community. The
Advanced Driver Assistance Systems (ADAS) are required

∗The first two authors contribute equally to this work.
†Corresponding author (e-mail: kailun.yang@kit.edu).
1Code will be made publicly available at https://github.com/

xinyu-laura/MMUDA.
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Figure 1. Semantic segmentation of accident scenes. Compared
to the source-only model (e.g., a ResNet), our model generalizes
better in the abnormal cases. From top to bottom are dash-crossing
pedestrians, overturned motorcycles, collisions, and motion blur.

to correctly handle both, normal driving scenes, which are
addressed by most of the published datasets, and abnor-
mal situations (i.e., edge cases) that may unexpectedly ap-
pear in real-world scenes. Fueled by rapid improvements in
general semantic segmentation research, great progress has
been made in the field of autonomous driving [32, 36, 38]
in recent years. However, these segmentation models are
mainly designed for normal driving scenes, while real-life
accidents often encounter abnormalities and critical situa-
tions, such as overturned vehicles in front of the ego-vehicle
or distorted shots caused by motion blur. Several examples
of such abnormal cases taken from accident scenes are pre-
sented in Fig. 1. If a standard semantic segmentation model,
which does not see any abnormal samples during training,
is deployed in real world, it can hardly obtain correct results
when encountering an unusual accident- or near-accident
scene, resulting in a failure of driving assistance. The large
domain gap between the normal- and accident scenes nega-
tively impacts segmentation performance [65], greatly lim-
iting applications of autonomous driving in practice.

Despite its high relevance for applications, only a few
works address the task of accident scenes segmentation,
which aims to adapt models trained in normal scenarios
to the abnormal ones. [65, 66] introduced DADA-seg – a
new traffic accidents dataset covering labelled and unla-
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belled images from real-world abnormal driving scenes.
The event-aware ISSAFE architecture [65] was proposed to
fuse RGB images and event data and therefore to capture
the dynamic context. The Trans4Trans model [63] lever-
aged transformer-based encoder and decoder and was sim-
ply transferred, without any adaptation design, from mul-
tiple source datasets, i.e., Cityscapes [8] and ACDC [40].
However, mixing data only in a dataset-wise manner is lim-
ited in terms of balancing the data distribution and further
data diversification remains an important milestone. To
the best of our knowledge, only the single-source Unsuper-
vised Domain Adaptation (UDA) [65] and the multi-source
transfer-learning method [63] from normal- to abnormal do-
main were investigated. Multi-source normal-to-abnormal
UDA, yet, remains unexplored. We believe, that leveraging
multiple data origins has strong potential for robustifying
accident scene segmentation, as such extreme scenarios of-
ten contain diverse abnormal factors and composite scenes,
that could be better addressed by exploiting rich ontologies
covered in diverse sources.

To improve the robustness of semantic segmentation in
accident scenarios, we propose a novel Multi-source Meta-
learning UDA framework to help the transformer models
in generalization to the unusual target scenes (MMUDA for
short). Our framework learns from the label-rich datasets
of conventional driving scenes (source), and then automat-
ically adapts to the target domain of abnormal accident
scenes with only unlabelled training data (target). To effec-
tively learn from the entire unlabelled target domain dataset,
we put forward a Multi-Domain Mixed Sampling (MDMS)
strategy, which is inspired by the cross-domain mixing ap-
proach in DACS [46] and augments the training samples
of multiple source domains. Two major differences com-
pared to the normal-to-normal DACS are that i) we adapt
the single-source method to a multi-source setup, and ii)
we further investigate the multi-source mixing technique in
our normal-to-abnormal setting. More precisely, in the case
of single-domain mixed sampling, the augmented sample is
formed by mixing the source normal image and the target
abnormal image. In the case of the multi-domain mixing,
some marks from each source domain image are extracted
and then pasted onto the target domain image. The pseudo-
labels for the augmented image are mixed by the source
ground-truth labels and the target pseudo labels.

In the training phase, we use the meta-learning for
domain generalization (MLDG) strategy [24], which was
adapted in [62] to model the domain transfer problem with
an episodic training paradigm, leading to superior per-
formance in image classification. MLDG can be viewed
as a regularization mechanism that prevents the model
from overfitting. Different from the original MLDG, our
MMUDA framework performs meta-learning across multi-
ple source domains and jointly with the target domain, after

which we apply it to the normal-to-abnormal UDA setting.
In addition, we enhance the segmentation backbone (Seg-
Former) with a HybridASPP decoder design, which lever-
ages large window attention spatial pyramid pooling [51]
and strip pooling [18] with a long but narrow kernel. The
HybridASPP decoder replaces the vanilla MLP-based de-
coder of SegFormer, and this helps to efficiently extract
large regions of global context and long-range dependen-
cies. Comprehensive experiments demonstrate the effec-
tiveness of our proposed methods. On the challenging
DADA-seg benchmark [65], our approach achieves a mIoU
score of 46.97%, surpassing the previous state-of-the-art
transformer model [63] by more than +7.50%.

Our contributions are summarized as follows:
• We propose a novel Multi-source Meta-learning UDA

(MMUDA) framework for better adaptation from
multi-source domains of normal driving scenes to the
domain of abnormal accident scenes.

• We develop a Multi-Domain Mixed Sampling (MDMS)
approach to augment the training data from multiple
labelled source domains with data appearances from
the unlabelled target domain data.

• We employ meta-learning and analyze its effects under
different combinations of multiple source datasets.

• We introduce an enhanced HybridASPP to replace
the vanilla MLP-based decoder of SegFormer, which
makes the framework more efficient and effective.

2. Related Work
Semantic segmentation. Semantic segmentation has ex-
perienced a great breakthrough since the emergence of
FCN [28] classifying pixels end-to-end. Subsequent net-
works, e.g., [2, 12, 18, 57, 70] improved FCN in different
aspects, significantly pushing segmentation performance,
but also raising computational cost. To alleviate this is-
sue, compact segmentation models [32,38,68] are designed
to hold a better accuracy-efficiency trade-off. Disentan-
gled non-local blocks [53, 54, 73] have also been explored
to efficiently collect omni-range dependencies. Recently,
the semantic segmentation field has been driven by the
newly emerged and highly effective transformer-based ar-
chitectures [6, 43, 49, 51, 71]. Compared to FCN-based ap-
proaches, such models are able to handle long-range de-
pendencies by design and have quickly climbed to the top
of segmentation benchmarks. Furthermore, MLP-like ar-
chitectures [4, 17, 45, 56, 64] alternate token- and channel-
mixing to enhance global reasoning. The recently proposed
SegFormer architecture [50] leverages a hierarchical trans-
former encoder with a lightweight All-MLP decoder, gen-
erating powerful representations without complex and com-
putationally demanding modules. In this work, we build on
SegFormer and introduce multiple building blocks for its
improvement specifically for accident scene segmentation.
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MobileNetV2 [42] 16.05 31.87 8.50 26.55 3.60 5.38 13.96 19.51 10.87 44.99 11.09 67.05 8.11 5.23 28.58 11.77 2.17 - 1.90 3.86
PSPNet [70] 17.07 31.62 11.42 32.48 4.16 8.52 12.38 17.93 13.39 50.82 13.85 67.19 9.86 3.13 31.54 6.97 3.15 - 2.97 2.89
ResNet50 [16] 18.96 34.19 8.24 31.05 4.56 7.39 19.04 27.05 15.35 33.30 12.40 61.52 10.04 3.95 42.59 14.15 27.02 - 3.72 4.72
SemFPN [22] 19.59 37.90 10.12 23.80 3.74 9.64 22.06 28.64 15.55 40.95 12.13 51.93 9.24 5.93 52.08 13.89 26.54 - 3.66 4.36
DNLNet [54] 19.72 41.68 13.26 30.45 6.17 11.04 21.91 28.03 17.99 40.05 14.13 56.06 10.75 5.41 34.78 8.01 28.01 - 3.55 3.39
ResNeSt [61] 19.99 39.63 11.38 33.68 2.81 9.73 22.76 27.35 18.09 45.24 14.22 71.23 13.34 5.03 36.45 6.91 13.08 - 3.94 4.87
DANet [12] 22.24 46.49 10.17 42.20 3.81 10.65 13.46 18.69 22.59 55.76 22.22 83.84 6.68 11.75 39.59 7.96 12.64 - 7.98 6.12
ResNet101 [16] 23.60 57.96 11.16 39.94 6.43 9.46 23.67 27.37 17.32 45.65 16.47 69.21 13.19 4.51 47.29 13.75 30.44 - 6.64 8.01
OCRNet [57] 24.85 42.13 11.54 34.49 6.63 12.70 22.76 29.03 22.28 42.41 15.15 85.43 14.31 6.65 53.94 20.65 34.86 - 9.30 7.87
FastSCNN [37] 26.32 69.91 16.30 52.53 6.09 9.63 19.98 19.30 22.58 57.04 22.95 90.81 11.19 13.95 46.16 22.65 9.74 - 4.49 4.75
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CLAN [30] 28.76 79.80 18.61 51.56 8.32 13.60 15.51 17.15 21.51 63.20 21.99 80.53 8.37 6.32 63.47 33.43 33.12 - 3.69 6.21
BDL [26] 29.66 81.44 19.18 57.18 8.61 16.26 14.65 8.78 16.77 66.60 26.83 85.87 10.51 7.16 65.45 35.18 34.78 - 2.71 5.57
ISSAFE [65] 29.97 80.23 19.51 52.02 6.43 14.68 16.19 17.03 19.50 65.39 21.69 79.84 9.95 8.82 65.60 39.51 39.73 - 6.09 7.03
EDCNet [66] 32.04 73.03 19.47 57.31 11.60 14.30 20.70 12.27 27.22 70.54 18.98 88.64 10.69 8.70 68.14 49.80 50.86 - 9.02 4.12
Trans4Trans-M [63] 39.20 71.10 15.57 70.39 10.34 16.53 31.63 37.16 37.38 71.88 19.61 93.04 21.27 14.97 64.04 53.76 81.53 - 24.63 10.07
Our Baseline 40.73 84.93 23.66 68.34 16.27 20.58 25.96 31.25 28.20 71.89 22.39 93.16 17.92 26.84 73.89 55.09 69.26 - 34.77 9.49

+Meta 45.03 86.20 25.44 70.63 14.21 19.75 26.56 28.01 29.23 74.45 25.29 93.18 20.40 31.53 75.02 64.73 76.84 - 38.05 10.95
+Meta+MDMS 46.11 87.10 27.71 71.11 22.94 20.64 32.25 29.49 34.34 75.48 24.02 92.18 20.65 33.33 74.64 63.35 71.14 - 39.08 12.04

Our MMUDA 46.97 87.51 27.97 74.76 16.16 21.93 29.94 29.43 31.62 75.67 26.69 93.57 24.40 29.57 77.35 68.24 84.02 - 36.96 10.44

Table 2. Comparison of state-of-art methods. The source-only models are trained on the Cityscapes dataset, while the other models are
domain-transferred using a single source [26, 30], multiple sources [63, 66] or a different modality [65]. While our baseline model has no
mixed sampling and performs normal supervised learning based on ResNet101 only using the source domain, our MMUDA framework
based on the SegFormer backbone uses MDMS and meta-learning (Meta for short) across the source and target domain.

are captured in abnormal driving scenes, i.e., traffic accident
scenes. The images of D are labelled with 19 classes, which
are consistent with the classes of the C dataset (Cityscapes).
The resolution of the images is 1, 584×660.

4.2. Implementation Details

Our approach leverages the ImageNet1K-pretrained
MiT-B2 SegFormer [50] as the encoder backbone, and the
public mmsegmentation framework implementation3. The
meta-learning inner and outer learning rates (i.e. η and γ)
are set to 1e−3 and 5e−3, respectively, with Polynomial
learning rate decay with the power 0.9. The network is
trained for 120 epochs, unless otherwise specified. The
weight α of the Lds loss is set to 1. We train the model
with a mini-batch size of 1 using stochastic gradient descent
(SGD), momentum of 0.9 and weight decay of 5e−4. For
training data augmentation, we use random resizing with ra-
tio 0.5 to 2.0, random flipping, random Gaussian blur, and
random cropping with a size of 600×600. Mean Intersec-
tion over Union (mIoU) is our main evaluation metric.

4.3. Results of Accident Scenes Segmentation

Table 2 compares the mean IoU and the per-class IoU
scores achieved by our proposed approach to the state-
of-the-art methods on DADA-seg. The source-only mod-
els trained on Cityscapes experience a considerable per-
formance degradation and achieve a rather low accuracy
when deployed in abnormal accident scenes. For exam-
ple, ResNet50 and ResNet101 [16] based on FCN [29]
only reach 18.96% and 23.60% in mIoU. The results of
ResNet101 are illustrated in Fig. 1. The previous state-

3https://github.com/open-mmlab/mmsegmentation

of-the-art Trans4Trans model [63] attains 39.20% in mIoU
with a vision transformer and multi-source training. Our
proposed MMUDA model surpasses all previous results,
yielding a significantly higher recognition rate of 46.97%
in mIoU, which is >7.50% higher than the past state-of-
the-art. For per-class IoU, our approach achieves the best
scores in 16 out of all 19 categories. The improvements
over Trans4Trans are compelling (>10.00% performance
gain) on categories which are safety-critical for accidental
scene understanding, in particular, for road, sidewalk, rider,
car, truck, and motorcycle.

The ablation results of our proposed modules are also
depicted in Table 2, where all experiments are based on
all five multi-origin source datasets described in Sec. 4.1.
Our baseline model with ResNet101 uses only the normal
source-supervised learning by aggregating multiple source
domains and obtains a mIoU of 40.76%, whereas the model
with meta-learning (+Meta) leads to a further 4.26% im-
provement. In addition, our proposed MDMS and trans-
former model with HyrbidASPP further elevate mIoU to
46.11% and 46.97%, respectively. Overall, these results
demonstrate the effectiveness of the proposed framework
and clear benefits of the MDMS module and the transformer
model with HybridASPP, as well as the importance of our
multi-source meta-learning training strategy.

4.4. Ablation Study of Meta-learning

Effect of meta-learning. The previously described Ta-
ble 2 indicates clear advantages of meta-learning over the
baseline. Next, we study the impact of our meta-learning
strategy in more detail though an ablation study featur-
ing a variety of source datasets (Table 3). All of these
experiments employ the target-specific normalization and
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+Meta +MDMSImages + Meta MMUDA Ground-truthBaseline

Figure 4. Qualitative ablation study of different modules used in our framework.

Source domain mIoU(%)
Meta without Meta

WildDash2 [59] - 35.35
ACDC [40] - 23.56
BDD [55] - 31.18
IDD [47] - 28.15

Cityscapes [8] - 25.48
W + I + C 43.74 40.01
W + A + B 42.70 38.75
W + A + I 43.36 39.98
W + B + I 43.90 40.20
B + I + C 41.03 39.03

W + B + I + C 44.67 40.71
W + A + B + I + C 45.03 40.73

Table 3. Ablation of meta-learning with different source domains
and their combinations.

ResNet101 pretained on ImageNet1K [9] as the backbone.
The baseline models are trained with traditional learning on
different single sources, respectively. When using multi-
ple sources, meta-learning-based approaches (e.g., 43.74%
with W+I+C) are evidently more effective than the com-
mon aggregated-source-supervised learning (e.g., 40.01%).
Influence of multi-source combination. In Table 3, we in-
vestigate the impact of combining different datasets on the
segmentation performance. In single-source studies, train-
ing with WildDash2, BDD, and IDD, respectively, yields
the top three mIoU scores thanks to their especially diverse
examples. For example, WildDash2 leads to a decent per-
formance, as it offers many composite scenes and various
visual hazards. As a result, when these three sources are
used together, the combination of W+B+I yields the highest
accuracy. In general, leaning with more sources improves
the performance for accident scene segmentation, and our
five-source meta-learning model attains 45.03% in mIoU,
clearly standing out in front of all other models.

Method GFLOPs↓ mIoU(%)↑
Cityscapes DADA-seg

SegFormer + Vanilla MLP [50] 717.1 74.00 18.50
SegFormer + LawinASPP [51] 569.6 75.86 25.16
SegFormer + HybridASPP (Ours) 553.8 76.41 25.21

Table 4. Ablation of decoders. GFLOPs are calculated with a size
of 2, 048×1, 024. We train all models on C on a single GPU with
a batch size of 1 for 80k iterations and an input size of 768×768.

4.5. Ablation Study on HybridASPP

To analyze the efficiency and effectiveness of our Hy-
bridASPP module, we replace the decoder of SegFormer-
B2 [50], and compare it to LawinASPP [51] and the pro-
posed decoder in Table 4. In terms of computation costs,
HybridASPP reduces the GFLOPs of LawinASPP by 15.8
after introducing strip pooling to capture long-range context
instead of using traditional image pooling. Looking at the
performance, our decoder on D is evidently more reliable
than Vanilla MLP. Meanwhile, our HybridASPP achieves
higher mIoU scores than LawinASPP with less GFLOPs.

4.6. Model Efficiency Analysis

To investigate the efficiency of MMUDA, we compare
it with state-of-the-art approaches evaluated on DADA-seg
following [63]. Our model employs MiT-B2 [50] as the en-
coder and the proposed HybridASPP as the decoder. The
comparison of mIoU, GFLOPs, and #Params is shown in
Table 5. Compared to DeepLabV3+ [3] and HRNet [48],
our model largely improves the performance, while saving
a great amount of computation demands. In comparison
with the previous state-of-the-art Trans4Trans-M, we obtain
a significant gain of 7.8% in mIoU with 19.1M less param-
eters and an increase in GFLOPs. Capturing rich contextual
cues requires more computation but also ensures the robust-
ness of the model. While our model achieves high efficiency
in general, in future work, we will consider a more light-
weight encoder to further reduce the computational cost.
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