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Linköping University

marten.wadenback@liu.se

Abstract

In this paper, we argue that modern pre-integration
methods for inertial measurement units (IMUs) are accu-
rate enough to ignore the drift for short time intervals. This
allows us to consider a simplified camera model, which in
turn admits further intrinsic calibration. We develop the
first-ever solver to jointly solve the relative pose problem
with unknown and equal focal length and radial distor-
tion profile while utilizing the IMU data. Furthermore, we
show significant speed-up compared to state-of-the-art al-
gorithms, with small or negligible loss in accuracy for par-
tially calibrated setups.

The proposed algorithms are tested on both synthetic
and real data, where the latter is focused on naviga-
tion using unmanned aerial vehicles (UAVs). We evalu-
ate the proposed solvers on different commercially avail-
able low-cost UAVs, and demonstrate that the novel as-
sumption on IMU drift is feasible in real-life applications.
The extended intrinsic auto-calibration enables us to use
distorted input images, making tedious calibration pro-
cesses obsolete, compared to current state-of-the-art meth-
ods. Code available at: https://github.com/
marcusvaltonen/DronePoseLib.1

1. Introduction
A popular approach in Simultaneous Localization and

Mapping (SLAM) is to fuse various sensor data to increase
the performance of the system. A common pair of sen-
sors to combine is a camera and an IMU. Systems of this
kind are labeled as visual-inertial odometry, and this spe-
cific sensor combination is often found on consumer de-
vices, such as smartphones and UAVs. As is well-known,

1This work was supported by the Swedish Research Council (grant no.
2015-05639), the strategic research projects ELLIIT and eSSENCE, the
Swedish Foundation for Strategic Research project, Semantic Mapping and
Visual Navigation for Smart Robots (grant no. RIT15-0038), and Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by
Knut and Alice Wallenberg Foundation.

Figure 1. The proposed 4-point solver is able to accurately per-
form radial distortion auto-calibration for focal length and motion
parameters. This is a novel case in the literature and is primar-
ily made feasible by a clever assumption—to use the complete
rotation estimate from pre-integrated IMU data. We perform ex-
periments with two different UAVs in various difficult scenarios,
demonstrating that this assumption comes with a vast array of ben-
efits, e.g. simpler equations, faster solvers, and little to no loss in
accuracy compared to other state-of-the-art methods.

the projective relationship between two cameras manifests
itself in the fundamental matrix, independent of the scene
geometry. When auxiliary data are known (e.g. IMU data)
the number of degrees of freedom decreases and the corre-
sponding fundamental matrix is constrained, which enables
one to compute it with fewer point correspondences. This
potentially reduces the impact of noise; however, such alge-
braic constraints can be highly non-trivial to incorporate in
a solver. Popular methods to handle the resulting polyno-
mial systems of equations use theory from algebraic geom-
etry, e.g. the action matrix method [3], turning the problem
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into a generalized eigenvalue problem (GEP) [19, 21], and
resultant based methods [1]. Regardless of which method
is used, there is still much work in terms of parameteriz-
ing the original problem, as different approaches may yield
completely different results [24]. For the resulting solver to
be of any practical use, it must also be numerically stable,
which adds further considerations to the design.

Since modern image sensors often have square-shaped
pixels and the lens is sufficiently aligned such that the
principal point coincides with the optical center, a fea-
sible assumption is to use partially calibrated cameras,
where the only unknown intrinsic parameter is the focal
length. This specific assumption has proven useful in sev-
eral different real scenarios including relative pose estima-
tion [6,12,14,18,23] and absolute pose estimation [26,42].

Although it often comes at the cost of introducing dis-
tortion, having a wide field of view is desirable in many
applications. When working with visual odometry, it is,
therefore, a standard procedure to correct for these unde-
sirable distortion artifacts, which often requires a specific
calibration setup, typically involving a checkerboard pat-
tern. By incorporating a distortion model, as well as focal
length, together with the motion model, one may omit such
procedures altogether; however, due to the difficulty of the
problem, no fast and robust minimal solver has yet been
proposed. The main contributions of this paper are:

• We take advantage of IMU data to estimate the full 3D
orientation. Under the assumption that the IMU drift is
negligible for short time intervals, the resulting polyno-
mial systems of equations are significantly easier to solve.

• By using this approach, we are able to treat the par-
tially calibrated case with unknown radial distortion pro-
file while incorporating the IMU data, resulting in a fast
and reliable solver. This is the only solver to handle this
case to date.

• Furthermore, we show a considerable speed-up compared
to other state-of-the-art methods, with small or insignifi-
cant loss in accuracy, when exploiting the assumption of
negligible IMU drift. This benefits low-cost and embed-
ded devices, which constitute the majority of consumer
devices where these algorithms are used in practice.

2. Previous Work
2.1. Visual-Inertial Odometry

The calibrated visual-inertial problem of relative pose is
well-studied [9, 28, 33, 38] and efficient solvers exist. If we
assume that the gravity direction is aligned with the y-axis,
the corresponding essential matrix (after alignment) is given
by Ey ∼ [t]×Ry , or explicitly,

Ey =

[
−ty sinφ −tz ty cosφ

tz cosφ+tx sinφ 0 tz sinφ−tx cosφ
−ty cosφ tx −ty sinφ

]
, (1)
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Figure 2. Assume the IMU measurements are accurate, i.e. the
accelerometer and gyroscope data can be used to accurately esti-
mate the relative orientation between two consecutive views. Then
the only unknown extrinsic parameter is the translation vector be-
tween the poses.

where

Ry =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 , (2)

and t = (tx, ty, tz). This makes it possible to use a param-
eterization with six elements,

Ey =

 e1 e2 e3
e4 0 e5
−e3 e6 e1

 . (3)

Since we have four degrees of freedom (three translation
elements and one angle), the elements ei of (3) are not in-
dependent. In fact, one can check that they must obey the
(modified) Demazure equations, also known as the trace
constraint, 2EyE

T
y Ey − tr(EyE

T
y )Ey = 0, or explicitly,

e22 − e24 − e25 + e26 = 0,

e1e2e6 + e1e4e5 + e3e
2
5 − e3e26 = 0,

e1e
2
4 − e1e26 − e2e3e6 + e3e4e5 = 0,

(4)

as well as the rank constraint det(Ey) = 0,

e1e2e4 + e1e5e6 + e2e3e5 − e3e4e6 = 0 . (5)

These constraints were used in [9] to build a minimal solver
for the calibrated case2. We also note an easy decom-
position into rotation and translation components, given

2In [9] they align the z-axis with the gravity instead.
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by e21 + e23 = t2y . In [12] it was shown that the minimal
case can be solved using a single affine correspondence.

The problem becomes more difficult when adding an un-
known focal length. Without any IMU data available, but
still considering the partially calibrated case with only un-
known focal length, the corresponding fundamental matrix
has six degrees of freedom. This problem, therefore, re-
quires a minimal case of six point correspondences, with
the current state-of-the-art solver by Kukelova et al. [23].
Ding et al. [6] proposed a minimal solver for two partially
calibrated cases while incorporating the IMU data. This
was done by explicitly parameterizing the rotation about the
gravity direction, and turning the problem into a generalized
eigenvalue problem (GEP).

When assuming Ry = I , see Fig. 2, the essential matrix
is E = [t]×, which makes the governing equations signif-
icantly easier. The minimal calibrated case requires only
two point correspondences, and the epipolar constraint for
a single pair of point correspondences x↔ x′, is given by

x′TEx = 0⇔ (x× x′)T t = 0 . (6)

In [10] it was also shown that the non-minimal case can be
solved with global optimality guarantees.

2.2. Relative Pose with Unknown Distortion Profile

When constructing minimal solvers, it is often desirable
to use as few parameters as possible. This increases ro-
bustness in RANSAC-like frameworks, as fewer iterations
are needed in order to select a sample free from outliers.
The one-parameter division model [7], has therefore been
frequently used, as it performs well with only a single pa-
rameter for a large variety of different lenses. In this model,
the radially distorted image point x = (x, y, 1) is assumed
to be mapped to its corrected counterpart x̂ through the fol-
lowing parametric relation

x̂ = f(x, λ) =

 x
y

1 + λ(x2 + y2)

 , (7)

where λ controls the level of distortion. It has been used
successfully in a number of applications [22, 23, 26, 34, 35,
40].

The case of relative pose with unknown focal length and
unknown distortion parameter is known to be hard. The
two-sided problem, i.e. equal and unknown focal length and
radial distortion parameter, was first studied in [14]; how-
ever, by today’s standards, one cannot say that the proposed
solver has much practical use: the elimination template size
is very large, 886 × 1011, with 68 putative solutions, and
a reported runtime of 400 ms. In [24] the elimination tem-
plate size was reduced to 581 × 862 using their proposed
reduction step; however, no analysis of the numerical sta-
bility was performed. Regardless, it remains impractical for

real-life applications, as the size is still exceedingly large.
There has been some theoretical work on the problem, and
more generally on distortion varieties [16]; however, no vi-
able real-time solver for the case exists.

The one-sided case, i.e. with one calibrated camera and
one camera with unknown focal length and radial distortion
parameter, has been studied further. The first solver was
introduced in [18], but was not numerically stable and the
elimination template size was quite large, 200× 231. It has
later been improved in [23], and is now both numerically
stable and fast, with an elimination template size of 51 ×
70. The one-sided case, however, is mostly artificial, as it
assumes one of the cameras to be calibrated, which limits
the applicability of the method severely.

To the best of our knowledge, the relative pose problem
with unknown and equal focal length and radial distortion
parameter incorporating IMU data has not been solved. We
will solve this case and show that the resulting solver is ex-
tremely fast compared to the methods discussed in this sec-
tion, with an elimination template size of merely 10 × 21.
This is done using a special assumption, which we shall dis-
cuss next.

3. Why Ignore the IMU Drift?
When measurements from the accelerometer and gyro-

scope are combined in an orientation filter [17,29,36,36,39]
the gravity direction is preserved; however, the yaw angle
begins to drift. Because of this, most visual-inertial mod-
els try to incorporate an unknown angle about the gravity
direction [4–6, 9, 12, 28, 33, 38, 41]. Already in the cali-
brated case the governing equations (4)–(5) are non-trivial
and quadratic or cubic in nature. Parameterizing the rotation
matrix will also result in at least second order equations.

Instead of filtering, another approach is to simply in-
tegrate the gyroscopic data to obtain the relative orienta-
tion [8]. This eliminates error sources that potentially are
introduced while fusing the gyroscopic data with the ac-
celerometer data, e.g. Coriolis forces—when the IMU is
not in the center of rotation—or acceleration due to mo-
tion. Both corrupt the measurement of the gravity direc-
tion. Over time integration errors, sensor bias and sensor
noise will lead to drift in all axes; however, for short time
intervals, this drift is very small. Additionally, if the IMU
sensor has been stationary at some point in time—which is
a reasonable assumption for UAVs that start from a ground
position—the gyroscopic bias can be observed. The bias
changes very slowly, even in low-cost consumer-available
IMUs, and the observed bias can therefore be used to com-
pensate for it in the remaining part of the sequence. In sum-
mary, we obtain very accurate relative rotations by simply
integrating the gyroscopic data between camera pairs.

Valtonen Örnhag et al. [40] proposed using orientation
filters to estimate the camera rotation and thereby bene-
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Figure 3. Error histogram for 10,000 randomly generated problem instances. The proposed 4-point method and the 7-point method [14]
also solve for an unknown radial distortion parameter. The fundamental matrix error is defined as eF := ‖F − Fest‖F /‖F ‖F .

fit from a relaxed problem. They showed that this al-
lowed them to perform radial distortion correction, while
still maintaining speed and accuracy. The method, however,
relied on a homography-based approach, requiring planar
objects in the scene geometry, thus limiting the applicabil-
ity of the method.

Temporarily losing the gravity direction is not a major
concern for the relative pose problem. In a complete SLAM
framework, one would typically perform a visual-inertial
initialization step [2, 15, 30, 32] which recovers the gravity
direction as well as metric scale and bias. By trusting the
IMU data we note the following:

(i) we remove one degree of freedom from the camera pa-
rameterization,

(ii) the relative pose problem becomes linear in the un-
known translation, according to (6),

(iii) we open up the possibility for further intrinsic calibra-
tion and still perform fast and accurate in real-time ap-
plications.

In the next section, we will show how this is done in prac-
tice.

4. Consequences of Ignoring the IMU Drift
We construct two solvers based on our simplifying as-

sumption. Note that the derivations are quite short, which
is mainly due to the linear dependence on the translation
vector.

4.1. Unknown and Equal Focal Length (3-point)

For the case of unknown and equal focal length, the fun-
damental matrix is given by F = K−1[t]×RK−1, where
R = R

(2)
imuR

(1)T
imu is the relative orientation. By parameter-

izing K−1 = diag(1, 1, w), we have four unknowns—the
translation t and w. The epipolar constraints x

′T
i Fxi = 0,

for i = 1, 2, 3, yield three equations, which are linear in t.
Therefore, the resulting system can be written as

M(w)t = 0, (8)

where M(w) depends only on w. Even with non-
degenerate configurations, the matrix M ∈ R3×3 cannot
have full rank, hence det(M) = 0. This yields a single
quartic equation in the unknown w, which can be solved
efficiently using the quartic root finding formula. Conse-
quently, we have four putative solutions, from which the
translation t can be retrieved by finding the null space of
the 3 × 3 matrix M(w∗), where w∗ is a putative solution.
For the 3×3 case one can do this without resulting to costly
SVD computations [11, 31].

4.2. Unknown and Equal Focal Length and Radial
Distortion Parameter (4-point)

Assuming the one-dimensional division model (7), the
(modified) epipolar constraint is given by

f(x′i, λ)
TK−1[t]×RK−1f(xi, λ) = 0, (9)

for a pair of corresponding points xi ↔ x′i, where K−1 =
diag(1, 1, w), with w 6= 0, and λ is the unknown distortion
parameter. As in the previous case, we may utilize the fact
that (9) is linear in t, hence

M(w, λ)t = 0, (10)

where M ∈ R4×3. This can be viewed as seeking the
non-trivial nullspace of M , which, in turn, implies that all
3 × 3 subdeterminants of M must vanish. Since there are
four such subdeterminants, we can reduce the problem to
four polynomial equations in two unknowns, w and λ. Fur-
thermore, we need to exclude non-physical solutions corre-
sponding to w = 0, as it turns out that there are infinitely
many solutions if we allow these. This can be accomplished
by saturating the corresponding ideal and can be done using
the automatic Gröbner basis generator proposed in [25]. It
turns out that the remaining system has eleven solutions in
general; however, in practice, the most common case is that
4–6 solutions are real-valued. By using the action matrix
method [3], we are able to construct an elimination tem-
plate of size 10× 21, by using the basis heuristic proposed
in [27].
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Figure 4. Error for various IMU noise levels. A total of 1,000 randomly generated problem instances are used per noise level.

5. Time Complexity
To compare timings in a fair and accurate way all solvers

are implemented in C++ using the Eigen [13] library, with
the same compilation flags and setup. The only excep-
tion is that the original solver by Jiang et al. [14] is in na-
tive MATLAB, hence significantly slower. To make a fair
comparison we use the slightly faster (but numerically un-
stable) solver proposed in [24] which is available in C++.
Note, therefore, that the real execution time for the origi-
nal method would be even larger than reported. The faster
solver is only used for timing, and the original solver is used
for all other experiments.

To simulate a realistic environment we use a Raspberry
Pi 4 to measure the execution time, as it is a fair approxi-
mation of hardware you can expect on an embedded device
running these algorithms. The results are shown in Tab. 1.

Table 1. Mean execution time on a Raspberry Pi 4 for 10,000
randomly generated problem instances in C++. We also show the
number of solutions for each problem. These will have to be eval-
uated (or at least a subset) in a RANSAC-like system, hence affect
the total execution time.

Author Time (µs) No. Solutions
Our (3-point) 6 4
Ding et al. [6] 4815† 20
Kukelova et al. [23] 363 15
Our (4-point) 1290 11
Jiang et al. [14] 1, 260, 700‡ 68

†: C++ implementation received from the authors of [6].
‡: Based on the smaller template reported in [24] which is numerically
unstable. The original solver would be even slower.

Comparing the proposed 3-point solver to the state-of-
the-art solver by Ding et al. [6]—essentially solving the
same problem, with the exception that we ignore the po-

tential IMU drift—our solver is more than 800× faster. In
addition, the proposed 4-point solver including focal length
and radial distortion correction is a factor 3.7× faster than
the solver by Ding et al. [6], and significantly faster than the
solver by [14]; in fact, it is roughly 1000× faster, bridging
the gap from what was considered a theoretically interesting
case to something that can be applied in practice.

Let us emphasize the practical implications of simultane-
ously estimating the distortion parameter: the added intrin-
sic calibration liberates the user from time-consuming cali-
bration procedures. This allows UAV operators (and those
of other visual-inertial systems) to change optics out in the
field, with no intermediate setup procedures or specific re-
quirements needed.

6. Synthetic Experiments
In this section, we test the numerical stability and

noise sensitivity of our proposed methods compared to
the current state-of-the-art. The competing methods
are the 4-point solver by Ding et al. [6], the 6-point
solver by Kukelova et al. [23] and the 7-point solver by
Jiang et al. [14]. We found that the solver proposed in [24],
which was reported to have a smaller template size, was
numerically unstable; hence we use the original method in-
stead.

In order to get a realistic setup, random synthetic scene
points with a positive depth in front of the cameras were
generated. Specifically, the scene points (X, Y, Z) were
uniformly distributed with X,Z ∈ [−3, 3], the depth Y ∈
[3, 8], and focal length f ∈ [300, 3000]. This mimics the
setup used in [6]. Furthermore, the orientations are ran-
dom and facing the scene. The image points are then ob-
tained by projecting the scene points through the cameras,
and the orientations of the cameras are used as input to
the visual-inertial solvers. To increase numerical stability,
the image point correspondences were normalized; this was
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Figure 5. (Top row): Example images from the dataset [41]. (Bottom row): Images from the new dataset using the Crazyflie 2.0. Note that
all images suffer from radial distortion to some extent.

done in the same way for all solvers. The error distribu-
tion for noise-free data is shown in Fig. 3. Here, all meth-
ods perform well, with a slight advantage for our 3-point
method. Note that we include radial distortion for the pro-
posed 4-point solver and the 7-point solver in this case as
well; however, the error histograms are similar and there-
fore omitted.

We proceed by analyzing noise sensitivity in various sit-
uations. We test all methods on synthetic data without ra-
dial distortion (including the 4-point and 7-point solvers),
and add a pixel noise relative to focal length (Gaussian
noise with zero mean and standard deviation 1080/f pix-
els, where f is the ground truth focal length). Furthermore,
we add noise to the IMU measurements—here we add noise
on all angles, including the yaw angle. The noise interval is
meant to cover the precision of a low-cost IMU, with a max-
imal error of approximately 0.5◦, as reported in [20]. The
results are presented in Fig. 4. Note that both our meth-
ods perform better than the competing methods in terms of
fundamental matrix recovery for smaller noise levels, and
the state-of-the-art method [6] only performs slightly better
for larger noise levels. This is primarily since it is capable
of correcting for the error about the gravity direction. We
have, however, found empirically on real-data that the lower
noise levels are dominating the input data under certain con-
ditions. This holds true even for low-cost devices, hence do
not pose a practical issue.

7. Real Data

To demonstrate the applicability of our assumption, and
the solvers based on it, we have used the challenging
dataset [41] consisting of various indoor and outdoor scenes
with predominantly planar surfaces. The scenes were cap-

tured using a mid-sized UAV (500 g, 170 × 240 × 40
mm) equipped with a monochrome global shutter camera
(OV9281) recorded with resolution 640 × 400, equipped
with an onboard IMU of model MPU-9250.

In addition, we have recorded a new dataset with a dif-
ferent UAV. The scenes are typically demanding, e.g. an
indoor sequence containing forward motion in a corridor,
which is known to be hard. We show example images from
the scenes in Fig. 5. This dataset uses a lightweight (27 g,
92× 92× 29 mm) and low-cost nano quadcopter available
under the name Crazyflie 2.0, captured in 640 × 480 reso-
lution with an RGB camera (RunCam Nano). The ground
truth was obtained using a complete SLAM system, where
the reprojection error and IMU error were jointly minimized
over both camera parameters and scene points, to create a
globally consistent solution in metric scale. In Fig. 1 we
show an image of the Crazyflie 2.0, as well as the output
from the proposed 4-point algorithm.

The main reason to use different UAVs with different
components is to show the versatility and robustness of the
proposed solvers, as different setups might perform differ-
ently depending on which IMU filtering technique or pre-
integration method is used. Furthermore, there are cases
when the distortion profile of the camera optics may not
be accurately approximated by the one-parameter division
model.

In the experiments we use a simple pre-integration tech-
nique [8] to obtain the estimated relative rotation. As dis-
cussed in Sec. 3, the direction of the gravity may drift, hence
the 4-point methods by Ding et al. [6] will not perform opti-
mally, as one would have to select a filtering technique that
preserves the gravity direction. To remedy this situation,
we use the ground truth poses to align the direction for this
method every frame, and apply the estimated relative ori-
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Figure 6. (Left:) The mid-sized UAV used in the dataset [41] and one of the input images from the Indoor sequence. (Right:) The output of
the proposed 4-point algorithm, where the distortion parameter was estimated using histogram voting. Note that the checkerboard pattern
on the floor is a quadrilateral box in real-life; however, it is significantly distorted (red) in the input image. The rectified image, on the other
hand, displays a quadrilateral box (green). This indicates that lines are mapped to lines and that the pinhole camera model is applicable.
This is strong evidence that the distortion profile has been accurately estimated, and that the one-parameter division model (7) is sufficient
for the optics used on the UAV.

entation. Note that this gives the exact same relative error
per input and frame as for the other solvers, but guarantees
that the input to the competing 4-point solver is aligned with
the gravity direction. Although these circumstances are not
plausible in real-life using pre-integration, this assures that
the result is not skewed by the choice of IMU filtering tech-
nique. The reported statistics for the 4-point method [6],
however, are optimistic, as as the first input orientation is
perfectly aligned in the experiments. In real-life situations
they might perform worse.

Another important aspect to note is that we use con-
secutive frames, as we want to minimize potential drift.
This means that the translation between frames might not
be very long—typically not more than 30 cm, causing the
baseline to be short. In [6] the authors only used frames
{{1, 11}, {2, 12}, . . .} to avoid this situation; however, we
want to utilize this data, as it is important for real-life appli-
cations concerning UAV positioning, e.g. moving obstacle
avoidance.

We use the following error metrics to measure the quality
of the pose reconstruction

eR = arccos

(
tr(RGTR

T
est)− 1

2

)
, (11)

et = arccos

(
tTGTtest

‖tGT‖‖test‖

)
, (12)

ef =
|fGT − fest|

fGT
, (13)

which have been used in a number of works [5,6,37,40,41].
The distortion profile is not as simple to measure, and we
will discuss this in Sec. 7.2.

7.1. Pose Estimation with Rectified Images

In this section, we use the rectified images for the meth-
ods that do not compensate for radial distortion (the pro-
posed 3-point solver, the 4-point solver [6] and the 6-point
solver [23]), while the proposed 4-point solver is given
the distorted images as input. We do not use the 7-point
solver [14] in this comparison, since it is not a feasible
competitor in real situations due to its computational com-
plexity. Each method is given 1,000 RANSAC iterations
with the same reprojection threshold, and no extra local op-
timization techniques are applied. The results are shown
in Tab. 2.

From the result, we note that there is a slight advantage
in terms of accuracy in favor of the method by Ding et al. [6]
compared to the proposed 3-point solver for the dataset
from [41] generated with the mid-sized UAV; however, the
roles are reversed when looking at the new dataset with the
Crazyflie 2.0 UAV. Note that the rotation error for the pro-
posed 3-point (and 4-point, since they are identical) are gen-
erally larger for the mid-sized UAV (in the range 0.4–0.6 de-
grees) whereas the error input to the Crazyflie 2.0 is slightly
smaller (roughly 0.2 degrees on average). This could
be explained by the internal calibration between the IMU
and the camera being more accurate on the Crazyflie 2.0.
Furthermore, we would like to emphasize that the differ-
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Table 2. Pose estimation error for the two datasets with rectified input images to all but the proposed 4-point method. Note that the method
by [6] is given the first ground truth rotation matrix as input to ensure the assumed alignment with the y-axis. Therefore, it is likely to
perform worse in real-life.

Basement Carpet Indoor Outdoor
Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt)

Mean 0.435 0.277 1.336 0.435 0.628 0.455 5.315 0.628 0.607 0.329 5.582 0.607 0.423 0.325 4.391 0.423Rot. Error (deg.) Median 0.378 0.233 0.765 0.378 0.566 0.345 2.197 0.566 0.496 0.308 2.169 0.496 0.345 0.284 1.090 0.345
Mean 5.236 4.525 11.649 6.127 3.296 3.129 11.450 4.871 4.889 4.179 20.648 6.093 5.345 7.138 25.872 6.446Trans. Error (deg.) Median 3.755 2.741 7.457 4.458 2.243 1.732 8.414 2.929 2.689 2.286 14.811 2.722 3.576 4.002 17.090 4.499
Mean 24.804 20.977 72.814 27.315 6.921 6.462 63.394 46.546 7.595 9.011 69.189 16.190 12.914 27.351 88.031 39.547Focal. Error (perc.) Median 6.336 4.887 18.681 12.293 3.597 2.526 23.606 7.761 4.582 3.322 39.160 7.546 7.223 8.923 39.310 9.584

Bicycle lane Building Corridor Office
Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt)

Mean 0.247 1.872 3.888 0.247 0.223 0.861 2.016 0.223 0.181 0.696 1.644 0.181 0.201 0.871 2.935 0.201Rot. Error (deg.) Median 0.197 0.684 1.658 0.197 0.197 0.413 0.902 0.197 0.143 0.312 0.866 0.143 0.167 0.576 1.398 0.167
Mean 13.863 23.916 27.650 19.128 9.534 15.077 24.944 15.181 5.403 10.116 17.330 7.638 6.250 10.091 20.422 15.616Trans. Error (deg.) Median 8.159 13.020 21.000 10.932 7.020 9.296 16.750 9.526 3.493 5.499 11.027 4.000 3.535 6.465 13.490 8.326
Mean 32.138 324.201 54.166 29.940 14.759 27.875 54.659 68.120 34.890 43.671 64.270 28.590 14.140 19.288 43.134 58.680Focal. Error (perc.) Median 6.104 10.567 22.768 10.679 7.979 10.456 21.067 13.702 8.382 10.960 27.977 11.068 5.935 6.024 15.369 17.952

Table 3. Pose estimation error with unrectified input images to all methods. The proposed 4-point method is the only method capable of
correcting for radial distortion artifacts.

Basement Carpet Indoor Outdoor
Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt)

Mean 0.435 1.117 3.750 0.435 0.628 0.989 5.445 0.628 0.607 0.798 6.555 0.607 0.423 1.042 3.546 0.423Rot. Error (deg.) Median 0.378 0.669 2.782 0.378 0.566 0.729 2.828 0.566 0.496 0.542 5.428 0.496 0.345 0.635 2.507 0.345
Mean 25.336 29.364 20.061 6.127 9.248 9.437 17.567 4.871 18.714 20.331 24.143 6.093 26.498 28.659 28.739 6.446Trans. Error (deg.) Median 16.546 22.420 14.148 4.458 5.443 5.049 13.328 2.929 9.104 11.134 18.962 2.722 14.735 21.101 22.681 4.499
Mean 2670.475 735.586 120.351 27.315 65.415 67.152 101.243 46.546 409.987 231.913 70.609 16.190 2659.021 718.710 123.999 39.547Focal. Error (perc.) Median 48.684 94.448 43.793 12.293 62.921 56.633 50.641 7.761 37.991 62.136 43.290 7.546 60.240 129.404 48.381 9.584

Bicycle lane Building Corridor Office
Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt) Our (3 pt) Ding Kukelova Our (4 pt)

Mean 0.247 4.175 6.883 0.247 0.223 4.263 3.852 0.223 0.181 1.674 3.221 0.181 0.201 2.377 6.975 0.201Rot. Error (deg.) Median 0.197 2.205 4.280 0.197 0.197 2.137 2.738 0.197 0.143 0.795 1.809 0.143 0.167 1.065 6.048 0.167
Mean 45.992 42.220 38.641 19.128 37.619 38.630 36.473 15.181 17.766 23.799 24.081 7.638 32.616 33.743 27.831 15.616Trans. Error (deg.) Median 47.896 37.698 32.783 10.932 28.936 38.025 30.757 9.526 10.920 15.564 17.215 4.000 22.109 23.946 23.512 8.326
Mean 1810.425 620.434 117.463 29.940 7189.648 455.162 80.915 68.120 480.445 185.039 130.248 28.590 4293.272 1071.105 99.617 58.680Focal. Error (perc.) Median 250.336 204.291 44.099 10.679 44.812 94.533 43.344 13.702 39.880 58.036 51.505 11.068 333.428 366.350 54.794 17.952

ence between the proposed 3-point and competing 4-point
method [6] is not very large even for the mid-sized UAV
and that in a real scenario one might want to choose the
proposed method, as it is 800× faster. Another interesting
aspect is that the visual-only method by [23] is performing
significantly worse than the competing methods, which was
also noted in [6].

7.2. Pose Estimation with Raw Images

We now turn our attention to using distorted input im-
ages. This scenario is interesting for UAV operators who
wish to change optics out in the field without intermedi-
ate calibration procedures. The same input sequences as
in Sec. 7.1 are used; however, they are not rectified prior
to estimating the image point correspondences. The results
are shown in Tab. 3. Unsurprisingly, our 4-point method
outperforms the other methods that cannot correct for dis-
tortion artifacts. What is perhaps more interesting is that
the performance, in general, is better than the visual-only
6-point method [23] on rectified data. These observations
suggest that the radial distortion auto-calibration approach
is practically feasible using the proposed solver.

As optics, in general, are not perfectly approximated by
the one-parameter division model, it is non-trivial to express
the performance of the radial distortion correction. Instead,
we rely on an ocular inspection of the estimated radial dis-
tortion parameter for two sequences. In Fig. 1 and Fig. 6 we

show the rectifications, using the estimated radial distortion
parameter obtained from histogram voting of the respective
sequence. In the latter case, we get a clear visual confir-
mation of the successful estimation of the radial distortion
parameter, in the form of a quadrilateral checkerboard pat-
tern visible on the floor.

8. Conclusions

In this paper, we have investigated an assumption of ig-
noring the IMU drift for short time intervals. We showed
that modern pre-integration methods perform well and that
the relative pose problem can be solved accurately and satis-
factorily using this assumption. What is most important, is
that the resulting equations are significantly easier to solve,
opening up the possibility to tackle problems that were
previously considered extremely hard and not suitable for
real-time applications. We proposed the first-ever minimal
solver for simultaneously estimating the focal length, dis-
tortion profile, and motion parameters while incorporating
the IMU data. Furthermore, we showed a speed-up of 800×
compared to the current state-of-the-art for the partially cal-
ibrated case with unknown and equal focal length, with little
to no loss in accuracy. The methods have been thoroughly
tested on different UAVs with different components, in sev-
eral challenging indoor and outdoor environments, demon-
strating excellent performance.
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Chum. Rectification from radially-distorted scales. In Asian
Conference of Computer Vision (ACCV), pages 36–52, 2018.
3

[36] A. M. Sabatini. Quaternion-based extended kalman filter
for determining orientation by inertial and magnetic sensing.

IEEE Transactions on Biomedical Engineering, 53(7):1346–
1356, 2006. 3

[37] O. Saurer, P. Vasseur, R. Boutteau, C. Demonceaux, M.
Pollefeys, and F. Fraundorfer. Homography based egomotion
estimation with a common direction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(2):327–341,
Feb 2017. 7

[38] C. Sweeney, J. Flynn, and M. Turk. Solving for relative
pose with a partially known rotation is a quadratic eigenvalue
problem. In International Conference on 3D Vision (3DV),
volume 1, pages 483–490, 2014. 2, 3

[39] Roberto Valenti, Ivan Dryanovski, and Jizhong Xiao. Keep-
ing a good attitude: A quaternion-based orientation filter for
imus and margs. Sensors, 15:19302–19330, 08 2015. 3
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[41] Marcus Valtonen Örnhag, Patrik Persson, Mårten
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