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Abstract

Accurate and consistent 3D tracking from multiple cam-

eras is a key component in a vision-based autonomous driv-

ing system. It involves modeling 3D dynamic objects in

complex scenes across multiple cameras. This problem is

inherently challenging due to depth estimation, visual oc-

clusions, appearance ambiguity, etc. Moreover, objects

are not consistently associated across time and cameras.

To address that, we propose an end-to-end MUlti-camera

TRacking framework called MUTR3D. In contrast to prior

works, MUTR3D does not explicitly rely on the spatial and

appearance similarity of objects. Instead, our method in-

troduces 3D track query to model spatial and appearance

coherent track for each object that appears in multiple cam-

eras and multiple frames. We use camera transformations

to link 3D trackers with their observations in 2D images.

Each tracker is further refined according to the features

that are obtained from camera images. MUTR3D uses a

set-to-set loss to measure the difference between the pre-

dicted tracking results and the ground truths. Therefore, it

does not require any post-processing such as non-maximum

suppression and/or bounding box association. MUTR3D

outperforms state-of-the-art methods by 5.3 AMOTA on the

nuScenes dataset. Code will be released.

1. Introduction

3D tracking is crucial in various perception systems,
such as autonomous driving, robotics, and virtual reality.
In its most basic incarnation, 3D tracking involves pre-

dicting per-frame objects and finding the correspondences
between them temporally. Given per-frame object detec-
tion results, this problem boils down to associating objects
across frames in a coherent fashion according to object sim-
ilarity. On the other hand, tracking improves detection
stability and enforces consistency of detection predictions
across frames. However, this induces a complicated itera-
tive optimization problem.

More challenges arise when detailing multi-camera
cases. First, accurate 3D detection is necessary for ac-
curate tracking. However, camera-based 3D object detec-
tion remains an unsolved problem. Second, vision trackers
are fragile regarding occlusion and appearance ambiguity
in complex scenes. For example, a person of interest may
walk behind a car and re-appear after a couple of seconds in
a different pose. Third, trackers often lose objects moving
across camera view boundaries. Therefore, beyond tempo-
ral association, we need to perform cross-camera associa-
tion when objects span or cross different cameras to make
spatially consistent predictions. These challenges hamper
the practical use of 3D vision trackers.

There are only a handful of works on vision-based 3D
object tracking. Classical Kalman filtering-based meth-
ods [38] take detection results from any detectors as input
and further make object state estimation and associations
across time. More recent learning-based methods also fol-
low a detect-to-track paradigm, where they first perform ob-
ject proposals for each frame and then associate them in the
feature space with a deep neural network [8, 11, 40].

In this work, we propose MUTR3D, an online multi-
camera 3D multi-object tracking framework that associate
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Figure 1. We propose an end-to-end Multi-camera 3D tracking framework, named MUTR3D. Our algorithm works with arbrtary camera
rigs with known parameters. It handles multi-camera 3D detection, and cross-camera, cross-frame objects association end-to-end fashion.

objects into 3D tracks using spatial and appearance sim-
ilarities in an end-to-end manner. More concretely, we
introduce 3D track query, which directly models the 3D
states and appearance features of an object track over time
and across cameras. At each frame, a 3D track query
sample features from all visible cameras, and learn to
create/track/end a track. In contrast to previous works,
MUTR3D performs detection and tracking simultaneously
in a unified and end-to-end framework. Objects decoded
from the same queries across frames are inherently associ-
ated.

In summary, our contributions are three-fold:

• To the best of our knowledge, MUTR3D is the first
fully end-to-end multi-camera 3D tracking framework.
Unlike existing detect-to-track methods that use ex-
plicit tracking heuristics, our method implicitly models
the position and appearance variances of object tracks.
Furthermore, we simplify the 3D tracking pipeline
by eliminating commonly used post-processing steps
such as non-maximum suppression, bounding box as-
sociation, and object re-identification (Re-ID).

• We introduce a 3D track query which models the 3D
states of the entire track of an object. 3D track query
samples feature from all visible cameras and update
the track frame-by-frame end-to-end.

• Our end-to-end 3D tracking method achieves state-
of-the-art performance on NuScenes vision-only 3D
tracking dataset with 27.0% AMOTA. More specifi-
cally, MUTR3D performs much better than previous

SOTA methods in the multi-camera setting with 12%
less ID switch.

• We propose two metrics to evaluate motion models in
the current 3D tracker: Average Tracking Velocity Er-
ror (ATVE) and Tracking Velocity Error (TVE). They
measure the error in the estimated motion of tracked
objects.

2. Related Work

2.1. 3D MOT in Autonomous driving

For autonomous cars, it is critical to track surrounding
objects while estimating their position, orientation, size,
and velocity. Due to recent advances on 3D detection
[14, 28, 41, 43, 49], modern 3D MOT follows tracking-by-
detection paradigm. These methods detect objects in the
current frame and then associate them with previous track-
lets. Weng et al. [38] benchmark a simple yet effective
association methods. They predict the location of previ-
ous tracklets through Kalman filtering, then associate cur-
rent detections using 3D IoU. Beyond IoU, several works
used L2 distance [43] and generalized 3D IoU [21] to as-
sociate 3D box with pure location cues. Many works use
more advanced association by adding learned motion and
appearance features [2,8,9] or using graph neural networks
[5, 39, 45]. Several works study how to improve life cycle
management [3,21] by utilizing cues from detection scores.
QD3DT current SOTA (State-of-The-Art) camera-based
tracking algorithms learn an appearance matching feature
through dense contrastive learning They use an LSTM-
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based motion model to learn motion features and predict
current locations. Finally, it combines visual features, mo-
tion cues, and depth-ordering for the association. Though
with strong RGB appearance cues, performance of camera-
based 3D MOT [2, 8, 11, 27, 32, 47] has been lagged be-
hind compared to LiDAR-based. On the nuScenes 3D MOT
challenge’s public leaderboard, STOA camera-based meth-
ods achieve 21.7% AMOTA while STOA LiDAR-based
methods reach 67.9% AMOTA. The problem of tracking
through multiple distinct viewpoints also draws attention
[30].

2.2. Camera-based 3D Detection

3D object detection have seen great advances in recent
years. A stream of algorithms build upon 2D detection
framework [28, 34, 42, 48]. To resolve the fundamental am-
biguity of instance depth and scales, categorical canonical
shapes [1,19], geometric relation graphs [33] and pretrained
monocular depth [18,22] are used. Another stream of meth-
ods works with representations on 3D space or Birds-Eye-
View. Pseudolidar [35,44] use pre-trained monocular depth
models to lift pixels to 3D point clouds, then perform 3D de-
tection using a LiDAR-based detector. Lift-Splat-Shot [23]
makes the lifting process fully differentiable and joint trains
the lifting modules with downstream tasks. Later CaDDN
[24] and BEVDet [12] used similar represents for 3D detec-
tion. DETR3D [36] adopt an inverse projecting process and
build query-based multi-camera 3D detectors. Compared
to working on perspective image planes directly, one major
advantage of working in 3D space is the ease of adopting
arbitrary camera rigs and fusing multiple sensor features.
Currently, there is no clear advantages on performance [22].
More comparisons are still yet under-explored.

2.3. Query based detection and tracking

A dominant type of modern detection and tracking ap-
proach is to reduce the task of detection to pixel-wise re-
gression and classifications [13,17,25,26,31,48], then per-
form tracking by associating detection boxes. Recently,
DETR [7] successfully used query-based set prediction
to achieve state-of-the-art detection results. Later Track-
Former [20], MOTR and TransTrack [29, 46] extends this
idea to online 2D MOT. Our work builds upon the frame-
work of query-based tracking. We extend the framework to
multi-camera 3D MOT with a motion model.

3. Methods

3.1. Query based Object tracking

We adopt query-based tracking for our algorithms.
Query-based tracking is extended from query-based detec-
tion [7], where detect queries, a fixed-size set of embedding,
are used to represent 2D object candidates. Track query

extends the concept of the detect query to multi-frames,
i.e., representing a whole tracklet across frames [20,37,46].
Specifically, we initialize a set of newborn queries at the
beginning of each frame, then queries update themselves
frame-by-frame in an auto-regressive way. A decoder head
predicts one object candidate from each track query in each
frame, and boxes decoded in different frames from the same
track query are directly associated. With proper query life
cycle management, query-based tracking can perform joint
detection and track in an online fashion.

There are three key ingredients in our query-based multi-
camera 3D tracker. (1) A query-based object tracking loss
assigns different regression targets for two different types
of queries, newborn queries, and old queries. (2) A multi-
camera sparse attention uses 3D reference points to sample
image features for each query. (3) A motion model esti-
mates object dynamics and updates the query’s reference
point across frames. We illustrate the flow of our trackers in
Figure 2.

3.2. End-to-end object tracking loss

We first explain the concept of label assignment in the
context of query-based tracking. Our algorithms maintain a
changing set of track queries across frames. At the current
frame, we decode one object candidate from each query.
Ideally, The decoded object candidates from the same query
should represent the same object across frames, thus form-
ing a whole tracklet. To train the query-based tracker, we
need to assign one target ground truth object for each query
in each frame, and the assigned ground-truth object acts as
the regression target for the query. Specifically, label as-
signment is a mapping function between ground-truth ob-
jects and track queries. We typically pad the set of ground
truth objects with ? (no object) to the number of predicted
object candidates to ensure the mapping is a one-to-one
mapping. Suppose we have N decoded object candidates
{ŷ1, . . . ŷN} in current frame, label assignment can be de-
noted as a mapping ⇡ 2 {1, 2 . . . , N} 7! {1, 2 . . . , N}.
Then the training loss can be expressed as a sum of paired
box loss:

L =

NX

i=1

Lbox(y⇡(i), ŷi), (1)

where y⇡(i) denotes the assigned target ground-truth object,
and Lbox could be any bounding box loss. There are two
types of queries for each frame, and they have different label
assignment strategies. Newborn queries are a set of learned
queries. They are input-agnostic and will be added to the
set of queries at the beginning of each frame. Newborn
quires are responsible for detecting newly appeared objects
in the current frame. So we perform bipartite matching be-
tween object candidates from newborn queries with newly
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Figure 2. Pipeline overview of our online multi-camera tracker. All small colored squares in the black dashed box represent track queries.
Blue boxes represent newborn queries, a fixed-set of learnable queries added to the set of track queries at the beginning of each frame.
Orange boxes denote old queries, which are active queries from previous frames. Track queries attend with multi-camera features to decode
object candidates in the current frame. Then we filter out inactive queries. We also update reference points of active queries to compensate
for object motions and ego-motion. Finally, the updated queries went to the following frames to track the same objects.

appeared ground truth objects as DETR [7]. Old queries

are active queries from previous frames which successfully
detected or tracked objects. Old queries are responsible for
tracking previously appeared objects in the current frame.
The assignment for old queries is fixed after the first time
it successfully detected a ground truth object. It is assigned
to track the same object if they are in the current frame;
otherwise, ? (no object).

The 3D box loss Lbox in equation 1 is defined as:

Lbox(y⇡(i), ŷj) =

(
Lcls(c⇡(i), ĉj) + �Lreg(b⇡(i), b̂j) y⇡(i) 6= ?
Lcls(c⇡(i), ĉj) y⇡(i) = ?

(2)
We use L1 loss for Lreg, and Lcls is the focal loss [17],

and the 3D object y⇡(i) is parameterized using the class la-
bel c⇡(i), and bounding box parameters b⇡(i), details for the
parameterization is in equation 6.

3.3. Multi-camera Track query decoding

Our transformer decoder head takes track queries and at-
tends them with multi-camera image features, and the ex-
tracted query featurees would be used to decode object can-
didates. Our decoder has two types of attention modules:

self-attention between queries and cross attention between
queries and image features. For memory efficiency, we
adopt a reference-point based attention from DETR3D [36]
for cross attentions. For notation in this section, only 3D
coordinates or their 2D projections are in bold, e.g., 3D co-
ordinates of reference points, ci, estimated velocities vi.

Query initialization. We assign a 3D reference point ci
to each query when it is initialized, i.e., when it is intro-
duced as a newborn query at a certain frame. The 3D refer-
ence point is decoded from its learnable embedding using a
shared MLP (multi-layer perceptrons):

ci = �
ref

(qi), (3)

where qi denotes the learnable query embedding, the
3D reference points would be updated auto-regressively
through layers of transformer decoders and across frames.
It aims to approximate the 3D location of an object candi-
date.

Query feature extraction. The cross attention works by
projecting the reference point of each query to all the cam-
eras and sampling point features. Suppose we have syn-
chronized images from M cameras for each frame. We
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extract pyramidal features for each image independently.
We denote the set of pyramidal features as: F1,F2,F3,F4.
Each item Fk = {Fk1, . . . , FkM}, Fki 2 RH⇥W⇥C cor-
responds to a level of features of the M images. We
denote the provided camera projection matrices as T =

{T1, . . . , TM}, Ti 2 R3⇥4. Specifically, the sampled point
feature fci is :

cmi = Tm(ci � 1), wi = MLP(qi),

fci =

4X

k

MX

m

Fkm(cmi) · �(wkmi),
(4)

where cmi denotes the projected 2D coordinates on the im-
age plane of camera m, Fkm(cmi) represents bilinear sam-
pling from image features, and �() denotes sigmoid func-
tion, which is used to normalize the weighting factor.

Then we use the extracted feature to update the query
and its reference point

qi  qi +MLP(fci + PE(qi)),

ci  ci +MLP(fci),
(5)

where PE is learnable positional encoding, it is initialized
with each query. After layers of transformer decoder, we
use the final query feature to decode object candidate in the
current frame.

3D Object Parametrization. We use two small FFNs to
decode 3D box parameters and categorical labels. We pa-
rameterize the 3D box by additional ten dimensional param-
eters: coordinates of the box center in ego frame, xi 2 R3,
size of the 3D box si = (wi, li, hi) 2 R3, 2D veloc-
ity in ego frame vi = (vx

i
, vy

i
) 2 R2 and orientation

(sin ✓i, cos ✓i), where ✓i is the yaw-angle in ego frame. The
coordinates of the box center is predicted by adding a resid-
ual to the reference point:

xi = ci +MLP(qi). (6)

3.4. Query Life Management

To deal with disappearing objects in an online fashion,
we need to remove inactive queries after each frame. We
define the confidence score of each query as the classifi-
cation score of their predicted box. We use two threshold
parameters ⌧new and ⌧old for box scores and a time length,
T to control the life management.

During inference, for newborn queries in each frame, if
the score is lower than ⌧new, we remove it. For old queries,
if their scores have been lower than ⌧old for successive T
frames, we remove it. We select ⌧new = 0.4, and ⌧old =

0.35 and T = 5 for nuScenes dataset after several trails.
During training, we view queries matched to ? as in-

active. For newborn queries in the current frame, if it is

matched to ?, we remove it. For old queries, we remove
it if it has been matched to ? for successive T times. Note
that old queries that have been matched to ? but have not
been removed continue to update themselves through the
transformer decoder.

3.5. Query Update and Motion model

After filtering out outdated (dead) queries, we update
track queries, both their features and 3D reference points.
The purpose of updating the 3D reference point is to model
object dynamics and compensate for ego-motion. There are
two commonly used motion models in 3D tracking, Kalman
Filter, e.g., [21, 38], which uses observed position across
frames to estimate unknown velocity, and predicted velocity
from detectors, e.g., CenterTrack [43, 47]. We use velocity
predicted from queries, which updates through frames and
can aggregate multi-frame features. We use a small FFN
to predict ego frame velocity. The predicted velocity is su-
pervised with ground truth. Denote the ego pose of current
frame and next frame as Rt, Rt+1 2 R3⇥3, Tt, Tt+1 2 R3.
Denote the time gap between these two frames as �t. We
update the reference point ci of the i-th query using the pre-
dicted box velocity vi = (vx

i
, vy

i
, 0) 2 R3 :

ci  R�1
t+1(Rt(ci + vi ⇥�t) + Tt � Tt+1). (7)

To implicitly model multi-frame appearance variations,
we update the track query using features from previous
frames. Following MOTR [46], we maintain a fixed-size
first-in-first-out queue for each of the active queries, named
memory bank. After each frame, we apply an attention mod-
ule for each query and its memory bank. The track query
acts as the query for the attention module, and the corre-
sponding memory bank act as a set of keys and values.

4. Experiments

4.1. Datasets

We use nuScenes [6] dataset for all of our experiments.
It consists of 1000 real-world sequences, 700 sequences for
training, 150 for validation, and 150 for the test. Each se-
quence has roughly 40 annotated keyframes. Keyframes are
synchronized frames for each sensor with a sampling rate of
2 FPS. Each frame includes images from six cameras with
a full 360-degree field of view. It provides 3D tracking an-
notations for 7 Object categories.

4.2. Evaluation Metrics

Average multi-object tracking accuracy (AMOTA) and
average multi-object tracking precision (AMOTP) are
the major metrics for nuScenes 3D tracking bench-
mark. AMOTA and AMOTP are computed by integrating
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MOTA(multi-object tracking accuracy) and MOTP(multi-
object tracking precision) values over all recalls:

AMOTA =
1

L

X

r2{ 1
L ,

2
L ,...,1}

MOTAr, (8)

MOTAr = max (0, 1� FPr + FNr + IDSr � (1� r)GT

rGT
),

(9)
where FPr, FNr and IDSr represents the number of false
positives, false negatives, and identity switches computed
at the corresponding recall r. GT is the number of ground
truth bounding boxes. AMOTA can be formulated as:

AMOTP =
1

L

X

r2{ 1
L ,

2
L ,...,1}

P
i,t

di,t

TPr

, (10)

where di,t denotes the 2D birds-eye-view position error of
matched track i at time t, and TPr indicates the number of
matches computed at the corresponding recall r.

We also report tracking metrics from CLEAR [4] and
Li et al. [15] such as MOTA, MOTP, IDS. The confidence
threshold for these metrics is selected by independently
picking the threshold with the highest MOTA for each cate-
gory.

4.3. Implementation Details

Feature extractor Following prior works [34] [36]
ResNet-101 with deformable convolutions [10] and FPN
[16] are used for image feature extractors. For ablation
study, we replace the ResNet-101 with ResNet-50 for mem-
ory efficiency.

Training details We use 3D detection pre-trained models
from DETR3D [36]. Then we replace the head and train our
tracker with three frames video clips for 72 epochs.

Kalman filter baselines Kalman filter-based methods
have been state-of-the-art trackers on LiDAR-based 3D
tracking across datsets [21]. However, camera-based SOTA
methods typically use learned appearance and motion fea-
tures for matching. To further understand the field of
camera-based 3D MOT, we provide two Kalman filter base-
lines with DETR3D [36] detector. (1) A basic version with
no advanced design. The basic version improves over the
public implementation of AB3DMOT [38]. To handle the
failure of IoU(Intersection over Union) during association
with low frame rate data, we enlarge the prediction boxes by
20% when computing 3D IoU. (2) We also provide an ad-
vanced version of Kalman filter baselines from SimpleTrack
[21], which used 3D generalized IoU and two-stage associa-
tions. SimpleTrack obtained SOTA result on LiDAR-based
MOT.

4.4. Compare with State-of-the-art

We compare our method with SOTA methods in Table 1.
We outperform current SOTA methods for the camera-
based tracker by a large margin. The gain in AMOTA from
the current SOTA method QD3DT [11] is over 5.2 points on
the validation set and 5.3 points on the test set. Our tracker
operates in an end-to-end fashion, with no NMS and no as-
sociation stages as in QD3DT [11].

We put the comparisons of two of our Kalman filter base-
lines in Table 2. We outperform the basic version of the
Kalman filter. However, when compared with more tailored
baselines from SimpleTrack [21], we only have slight gains
on metrics like AMOTA, MOTA, MOTP.

4.5. Evaluating Motion Models

The motion model provides one of the primary cues
for 3D Multi-object Tracking. The motion model aims
to describe the moving patterns of tracklets. To evalu-
ate the motion models of different tracking algorithms,
we develop two metrics, Average Tracking Velocity Error
(ATVE) and Tracking Velocity Error (TVE), following the
idea of AMOTP and MOTP. ATVE can be computed as:

ATVE =
1

L

X

r2{ 1
L ,

2
L ,...,1}

P
i,t

||vi � vt||2
TPr

, (11)

where we traverse over all pairs of matched tracking predic-
tions and ground truth and compute the L2 error between
the predicted velocity vi and the ground-truth velocity vt.
Average Tracking Velocity Error is computed by averag-
ing over all recalls r, and TPr represents the number of
matches in corresponding recall r. Like MOTP, Tracking
Velocity Error is the average velocity error computed at the
recall with the highest MOTA. We evaluate the evaluation
of motion models in Table 3. Compared to the previous
state-of-the-art camera tracker QD3DT [11], our velocity is
more accurate. Compared to Kalman filtering-based motion
models, our algorithm achieves better Tracking velocity Er-
ror.

4.6. Ablation study

We study two factors in the ablation study. First, we
study the effect of dropping our motion model, i.e., do not
update the 3D reference points at the end of each frame. We
show the ablation results in Table 4. Removing our motion
model degrades the performance in all metrics.

Second, we study the effect of the number of training
frames. Our methods track objects in an auto-regressive
way, and no teacher-forcing is applied. During training, gra-
dients computed in latter frames will still propagate to com-
pute graphs in previous frames. In the ablation study, we
perform all the experiments using ResNet-50 backbones.
We report the performance of training with 3,4,5 frames in
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Table 1. Comparison with state-of-the-art methods on nuScenes dataset. For public camera-based 3D tracking, our algorithm achieves
state-of-the-art results, outperforming QD3DT [11] by 0.052 in AMOTA on validation set and 0.053 on test split.

Modality AMOTA " AMOTP # RECALL " MOTA " IDS # #params

Validation Split

CenterPoint [43] LiDAR 0.665 0.567 69.9% 0.562 562 9M
SimpleTrack [21] LiDAR 0.687 0.573 72.5% 0.592 519 9M
DEFT [8] Camera 0.201 N/A N/A 0.171 N/A 22M
QD3DT [11] Camera 0.242 1.518 39.9% 0.218 5646 91M
Ours Camera 0.294 1.498 42.7% 0.267 3822 56M

Test Split

CenterTrack [47] Camera 0.046 1.543 23.3% 0.043 3807 20M
DEFT [8] Camera 0.177 1.564 33.8% 0.156 6901 22M
QD3DT [11] Camera 0.217 1.550 37.5% 0.198 6856 91M
Ours Camera 0.270 1.494 41.1% 0.245 6018 56M

Table 2. Comparison with Kalman Filter based methods on nuScenes validation split. We construct two kalman filter baselines using
our pretrained detector DETR3D [36]. We compare them with out tracker.

AMOTA " AMOTP # RECALL " MOTA " MOTP # IDS #
DETR3D [36] + KF 0.263 1.569 39.7% 0.260 0.952 4698
DETR3D + SimpleTrack [21] 0.293 1.307 41.8% 0.263 0.84 1695

Ours 0.294 1.498 42.7% 0.267 0.799 3822

Table 3. Evaluate velocity estimation. We report ATVE (Aver-
age Tracking Velocity error) and TVE(Tracking Velocity error) for
on nuScenes validation split. Compared with kalman filter based
motion models, our methods obtain better TVE.

Modality ATVE # TVE #
CenterPoint [43] LiDAR 0.572 0.298
QD3DT [11] Camera 1.876 1.373
DETR3D + SimpleTrack Camera 1.344 0.836
Ours Camera 1.548 0.768

Table 4. Ablation on motion models. When removing motion
models, the performance of our algorithm drops in all metrics.

AMOTA AMOTP RECALL MOTA IDS
w/o Motion 0.215 1.598 35.8% 0.198 4100
w/ Motion 0.234 1.585 38.7% 0.22 3775

Table 5. Results showed increasing the number of training
frames gradually improves the performance.

Table 5. Ablation on the number of training frames. Training
our models with longer video clips is beneficial.

#frames AMOTA AMOTP RECALL IDS ATVE
3 0.234 1.585 38.7% 3775 1.606
4 0.242 1.580 39.7% 4623 1.545
5 0.251 1.573 39.9% 3873 1.565

4.7. Qualitative results

We provide visualizations of our tracking algorithms in
both BEV and camera views for an 8 seconds clip in Fig-
ure 3. Near-filed objects on the left/right side of the car are
usually truncated by several cameras, which is a substantial
challenge for multi-camera 3D tracking. See, the gray and
black cars are truncated in the Front-Left camera and Back-
Left camera(3-rd/7-th and 4-th/8-th row), and our algorithm
handles them correctly.

5. Conclusion

We design an end-to-end multi-camera 3D MOT frame-
work. Our framework can perform 3D detection, compen-
sate for ego-motion and object motions, and perform cross-
camera and cross-frame object association end-to-end. In
the nuScenes test dataset, our tracker outperforms the cur-
rent state-of-the-art camera-based 3D tracker QD3DT [11]
by 5.3 AMOTA and 4.7 MOTA. We also study the qual-
ity of the motion models in current 3D trackers by eval-
uating two new metrics: Average Tracking Velocity Error
(ATVE) and Tracking Velocity Error (TVE). Compared to
hand-designed associating methods, we believe our end-to-
end learnable tracker can enjoy the abundant amount of data
in autonomous driving fields in the future.
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Figure 3. Visualization on 8 consecutive frames with FPS as 1. We plot the results for 4 views, from top to bottom: Birds-Eye-View, Front
camera, Front-left camera, and Back-left camera. Objects with the same identity are painted with the same color. We plot the estimated
velocity using arrows, and longer arrows represent larger velocity. The example we showed contains multiple frames with truncated objects
across cameras. Our algorithm are designed to fuse multi-camera features automatically, and handle the truncation correctly.
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