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Abstract

Scene representation in the bird’s-eye-view (BEV) coor-
dinate frame provides a succinct and effective way to un-
derstand surrounding environments for autonomous vehi-
cles and robotics. In this work, we present an end-to-end
architecture to generate the BEV representation from sur-
rounding cameras. To generate the BEV representation, we
propose a transformer-based encoder-decoder structure to
translate the image features from different cameras into the
BEV frame, which takes advantage of the context informa-
tion in the individual image and the relationship between
images in different views. We perform multiple semantic
segmentation tasks using the BEV features. Experimental
results show that our model outperforms the competitive
baseline [20], which demonstrates the effectiveness and ef-
ficiency of our method.

1. Introduction

Scene perception is a fundamental task for autonomous
driving and robotics, which builds an expressive representa-
tion of the surrounding scene that captures the geometry and
layout of the static world and the location and dimension of
the dynamic agents. Most competitive 3D object detectors
rely on LiDAR data as it can provide a distance measure-
ment to the environment. However, the points cloud is low
resolution with little texture information [11, 27], and the
LiDAR devices are expensive. On the contrary, monocular
cameras are cheap and capable of capturing abundant con-
textual information, making them extensively researched
and applied in both academic institutions and companies.
Instead of depicting the 3D environment entirely, a succinc-
t manner represents the surrounding scene in the form of
a birds-eye-view (BEV) map [20, 22], which captures the
spatial layout of the environment adequately and provides
convenience for the downstream motion planning task [32].

To construct BEV maps from multi-view images, a s-

(a) Input images.

(b) Ground truths. (c) Predictions.

Figure 1. (a) Images from surrounding cameras. (b) Ground truth-
s of semantic segmentations in the BEV frame. Left sub-figure:
vehicle segmentation (dark blue or orange), road segmentation
(blue). Right sub-figure: lane boundary (orange), lane divider
(dark red), pedestrian crossing (blue). (c) Predictions of our mod-
el. The green rectangle represents the ego vehicle.

traightforward and practical strategy is performing the per-
ception tasks (such as 3D object detection, road segmenta-
tion, lane detection, depth estimation, etc.) on every single
image individually and transforming the results from im-
ages in different views into a unified BEV frame according
to the camera parameters and geometric constraints. This
multistage processing pipeline takes advantage of the out-
standing works on image-based tasks, in which the 2D de-
tection results are robust against the configuration of the
cameras [20]. However, this result-based transformation
and fusion paradigm is weak in exploring the relationship
between different cameras, which creates confusion during
fusing results from different images.
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Recently, many approaches [7,20] have followed an end-
to-end pipeline, which transforms the image-base features
into the BEV frame and directly performs perception tasks
on the BEV feature maps. Inferring the road elements di-
rectly on the BEV feature map containing the spatial con-
figurations can gain robust results. In these methods, the
critical component is transforming the image features into
the BEV frame and fusing the BEV features from differ-
ent cameras. An intuitive approach for feature transforma-
tion is projecting the image feature in each pixel into the
corresponding location in the BEV frame using the camera
parameters. The independent projection ignores the con-
textual information for locating the image features into the
BEV frame. So, some methods [7, 18] introduce a multi-
layer perceptron (MLP) to use the whole features in an im-
age. However, they miss the contextual information be-
tween neighboring cameras, and the relationship between
the features in the overlap region of nearby cameras is sig-
nificant for feature transformation. On the other hand, the
following addition operation is generally implemented to
integrate projected features from different images into the
same BEV pixel during feature fusion. Despite efficiency,
this simple fusion mode is limited to represent the relation-
ships between different cameras.

In this work, we present an end-to-end framework that
extracts the BEV representation of a scene from surround-
ing cameras. A CNN-based image encoder is utilized to
generate features in the image view. To make use of the con-
textual information sufficiently, we introduce a transformer-
based encoder-decoder structure to translate the image fea-
tures from different cameras into the BEV frame. Instead
of using the intrinsics and extrinsics of the cameras, the
transformer-based module fuses and transforms the image
features based on the self-/cross-attention mechanism with
the position encodings. The following BEV encoder is per-
formed on the BEV features to encode the spatial informa-
tion further. To demonstrate the effectiveness of the BEV
representation, we implement different semantic segmenta-
tion tasks using several separate CNN-based task branches.

Our main contributions are summarised as follows:

• We propose an end-to-end structure to generate the
BEV features from multiple images captured by sur-
rounding cameras, which is convenient to perform per-
ception tasks and following planning tasks in a reason-
able end-to-end manner.

• We propose a transformer-based encoder-decoder
framework to transform the image features from dif-
ferent cameras into the BEV features, which can ef-
fectively explore the relationships between the image
features from surrounding cameras and fully take ad-
vantage of the contextual information to generate the
BEV features.

• We perform multiply semantic segmentation tasks and
demonstrate the effectiveness and efficiency of our
model.

2. Related Work
Monocular 3D Object Detection. Monocular 3D objec-
t detectors predict 3-dimensional rotated bounding boxes
from monocular images. This task faces significant chal-
lenges as regressing 3D information from only image ap-
pearances is an ill-posed problem. Recently, many ap-
proaches have been proposed in recent years and achieved
gradually increase both in terms of detection accuracy and
inference speed. Here, we briefly present the monocular 3D
detection approaches. For more details, we recommend that
researchers refer to the survey [15].

Most monocular 3D detectors [14,17,28,29] share a sim-
ilar paradigm with 2D detection models, which first gener-
ate 2D object information (including 2D locations, dimen-
sions, orientations, depths, etc.) and then project the 2D re-
sults into the 3D space. The geometric relationship between
2D image and 3D space is always utilized to assist monoc-
ular 3D detection [1, 10]. M3D-RPN [1] introduces shared
2D and 3D anchors using the information between 2D s-
cale and 3D depth and proposes depth-aware convolutions
to generate location-specific features. Instead of regressing
the 3D bounding boxes directly, RTM3D [10] performs the
key-point detection and recovers the 3D bounding box using
the key-points and geometric constraints. Besides geomet-
ric constraints, shape information is also introduced to alle-
viate the projection ambiguity [4, 9, 12, 16]. Benefited from
the rapid development of 2D object detection algorithms,
these direct monocular 3D detection algorithms have made
remarkable progress.

Recently, a pseudo-LiDAR pipeline [30, 31] was pro-
posed, which performs monocular depth estimation and
LiDAR-based 3D detection separately. These methods
generate the estimated depth map and transform it into a
3D point cloud, named pseudo-LiDAR. Then, the LiDAR-
based detection approaches are employed to extract the 3D
results from the pseudo-LiDAR data. The outstanding per-
formance of these detectors shows the importance of the s-
patial features for 3D object detection and the reasonability
of predicting the results in the 3D coordinate frame.

Another category of monocular 3D detectors [21,23] per-
forms 3D detection on the BEV features generated by pro-
jecting 2D image features into 3D voxel features and col-
lapsing the 3D voxel features along the vertical dimension.
OFTNet [23] generates the 3D feature for each voxel by av-
erage pooling over the area of the 2D image feature cor-
responding to the voxel cube. CaDDN [21] follows the
project mechanism in [20]. These features achieve remark-
able performance by combining the expressive image fea-
tures and the spatial configuration of the scenes.

4512



BEV representation from surrounding cameras. Recent-
ly, a growing number of approaches have been proposed
to represent the surrounding environment from a group of
cameras. A straightforward approach [5] is employing in-
verse perspective mapping (IPM) to map front-view image
or semantic segmentation results onto the ground plane with
a homography. The effectiveness of this approach stands on
the flatness assumption, while the object in the 3D world al-
ways violates this assumption. Other approaches [7, 20, 22]
follow a similar framework that generates image features
in perspective and transforms them into BEV. PON [22]
collapses the vertical dimension of the image feature map
into bottleneck features and applies 1D convolution along
the horizontal axis of the bottleneck features. The result-
ing features are reshaped into a given shape and re-sampled
into the BEV frame using camera parameters. VPN [18]
flattens the image-view feature map and employs multi-
layer perceptron (MLP) to explore the relationship between
any two-pixel positions in flattened image-view feature map
and flattened BEV feature map. In LSS [20], the depth s-
pace is discretized into multiple bins, and the detector es-
timates the probability that the feature pixel locates in the
bins. Then, each feature pixel is scattered into the frus-
tum space in the camera coordinate according to the depth
of each bin and weighted by the corresponding probability
value. The frustum features in the camera coordinate are
transformed into the 3D world coordinate frame to generate
the voxel features. The generated features splat onto the ref-
erence plane to get the BEV features. We employ a similar
pipeline to generate the BEV features by transforming the
image features into the BEV space. Differently, we utilize
a transformer-based encoder-decoder structure to translate
the image features to the BEV features directly, which effec-
tively integrates the contextual and geometric information.

3. The Proposed Method
The overview framework of our model is shown in Fig. 2.

Given a set of images {Ik ∈ R3×H×W |k = 1, . . . , Nc}
from Nc surrounding cameras where H and W represent
the height and width of the images, our model generates a
rasterized representation of the scene in the BEV coordinate
frame. Sequentially, the BEV features are utilized for the
diverse tasks.

3.1. Camera-BEV Transformation (CBTR)

A camera-BEV feature transformation (CBTR) architec-
ture is designed to gain the effective BEV representation of
scenes, which fuses the deep features from each monocular
camera and transforms them into the BEV space. The over-
all architecture follows the general encoder-decoder struc-
ture [3,26]. The encoder component fuses the features from
different cameras and strengthens the expression of image
features, and the decoder component generates the BEV

Figure 3. The pipeline of camera-BEV transformation that trans-
forms the image-view features from different cameras into the
BEV frame. N is the number of the encoder layer, M is the number
of the decoder layer. The image-view features from surrounding
cameras are flattened into the image feature sequence and fed into
the transformer-based encoder. The decoder layer uses the BEV
feature sequence from previous decoder layer and the image-view
feature sequence from the encoder module to generate the final
BEV features. Q, K and V represent the query sequence, key se-
quence, and value sequence for multi-head attention modules as
described in [3].

feature representation based on the image features from the
encoder module. The detailed definition of architecture is
depicted in Fig. 3.

Transformer Encoder. Before being fed to the encoder
module, each input camera feature map is convolved with a
d × 1 × 1 convolution, which changes the channel dimen-
sion of each feature map to d. All the feature maps from Nc

camera images are gathered to form a d × Nc × Hc ×Wc

stacked feature map, where Hc and Wc denote the spatial
dimensions of the image feature maps. As the encoder re-
quires a sequence as input, we flatten the spatial dimensions
of the stacked feature map to obtain a d×sc input sequence,
where sc = NcHcWc represents the length of the input se-
quence.

The encoder contains N cascaded identical layers [26],
where each layer consists of a multi-head self-attention
module and a feed-forward network sequentially. After ev-
ery sub-layer, a residual connection is applied, followed by
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Figure 2. The overview of our model. A set of images from surrounding cameras are fed into the image-view encoder with a shared
CNN structure to generate image-view features. Then, the camera-bev transformation (CBTR) module is utilized to fuse the image-view
features from different cameras and transform them into the BEV frame. An CNN-based BEV encoder is introduced to strengthen the BEV
features. Finally, the BEV features are employed for different road elements detection tasks.

a layer normalization. Since spatial clues are essential for
camera-BEV feature transformation, we generate positional
encodings for the image feature maps and add them to the
input image features in each encoder layer.
Transformer Decoder. The decoder module consists of M
identical layers, where each layer is divided into three part-
s: self-attention module, cross-attention module, and feed-
forward network, as shown in Fig. 3. Each encoder layer
receives the BEV feature sequence from the previous layer,
the BEV feature positional encodings, the output image fea-
tures from the encoder, the camera feature positional encod-
ings, and products the improved BEV features through the
cascaded multi-head self-attention layer, multi-head cross-
attention layer, and feed-forward layer.

The self-attention layer accepts the input BEV feature
sequence and corresponding positional encodings, where
the BEV feature sequence is treated as the values, and the
addition of the BEV feature sequence and corresponding
positional encodings is regarded as keys and queries as de-
scribed in [3]. The initial BEV feature map is construct-
ed according to the range and resolution of BEV space,
which is of Hbev × Wbev spatial shape and d-dimension
channel. Then, it is flatten into a d × sbev sequence, where
sbev = HbevWbev denotes the sequence length.

The cross-attention layer transforms the camera features
into the BEV frame. It receives the encoded camera fea-
tures as values, the addition of encoded camera features
and corresponding camera feature positional encodings as
keys, and the addition of the processed BEV features and
the BEV positional encodings as queries. The queries are
processed in parallel. The output of the cross-attention lay-
er is fed to a fully connected feed-forward network. Finally,
the improved BEV features from the last encoder layer are
reshaped to the pre-designed spatial shape for the following
networks.

A simple and efficient way to initialize the BEV feature
map is setting all the values to zero. In this case, the self-

attention layer can be omitted in the first decoder layer. A
more effective method to initialize the BEV feature map is
transforming the camera features according to the intrinsic
and extrinsic matrices of the cameras and the BEV spatial
setting as LS [20]. However, it significantly reduces the
computation speed.
Positional Encodings. There are two kinds of positional
encodings: camera feature positional encodings and BEV
feature positional encodings, among which camera feature
positional encodings are utilized at attention layers in both
the encoder and decoder layers, as shown in Fig. 3. To en-
code positional information of multiple image features, we
generalize the positional encodings in the 2D case [19] to
the 3D case. Specifically, we use sine and cosine functions
of different frequencies independently for spatial and index
coordinates of the stacked camera feature map. Then, the
positional encodings in different coordinates are concate-
nated to form the final positional encodings.

The fixed positional encodings in the 3D case described
above is a simple implementation for multiple camera fea-
ture maps. It is a suboptimal method for representing posi-
tional information of camera features, as it cannot express
the positional relations between covered regions of nearby
cameras. However, it works well on Nuscenes [2] dataset.
An important reason is that the monocular images from
neighboring cameras in the Nuscenes dataset contain few
overlapping areas.
Computation complexity and Storage consumption. We
discuss the computation complexity and storage consump-
tion in self- and cross- attention mechanisms here to guide
the selection of the hyper-parameters.

During encoding, the computational complexity of the
multi-head self-attention (MSA) module based on the s-
tacked camera feature map with spatial dimensions Nc ×
Hc ×Wc is:

Ω(MSA) = 4(NcHcWc) · d2 + 2(NcHcWc)
2 · d. (1)

The former term is quadratic to the feature dimension, and
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the latter is quadratic to the length of the input feature se-
quence. What’s worse, the intermediate product of query
and key matrices (QKT in [26]) consumesO((NcHcWc)

2)
memories for each head. It becomes a thorny issue for train-
ing when the length of the flattened camera feature map is
too large.

The self-attention module in the decoder layer faces
a similar dilemma as in encoder layers when the length
of the flattened BEV features Hbev × Wbev is too large.
Meanwhile, the computational complexity of the multi-
head cross-attention (MCA) module in the model is:

Ω(MCA) =2(NcHcWc) · d2 + 2(HbevWbev) · d2

+ 2(NcHcWcHbevWbev) · d. (2)

The intermediate product of query and key matrices con-
sumes O(NcHcWcHbevWbev) memories for each head.
Obviously, the resolution of the BEV feature map is a criti-
cal factor for computation speed and memory cost.

To alleviate these issues, we appropriately reduce the s-
patial resolution of the feature maps and the number of the
encoder and decoder layers. During encoding, we reduce
the spatial resolution of the image feature map by shrink-
ing the original input images. Meanwhile, considering the
CNN-based image-view encoder can generate expressive
features, we employ a few encoder layer in our model and
measure the effect of the encoder number in Tab. 1. During
decoding, considering the important and unique role of the
decoder modules for transforming the image-view features,
we reserve relatively sufficient encoder layers but reduce the
spatial size of the BEV feature map.

3.2. Other Network Structures

In this section, we introduce the details of other network
structures in our propose model including the image-view
encoder, the BEV encoder and the segmentation heads.

3.2.1 Image-view Encoder

The image-view encoder encodes each image to feature
maps individually. We adopt a similar pipeline with the one
described in [20]. In particular, an EfficientNet-B0 [25]
pre-trained on ImageNet is used to extract image features
in different scales. The final output image feature maps
are 1/16× input resolution. To combine multi-resolution
features, the features with 1/32× input resolution are up-
sampled to 1/16× input resolution by linear interpolation
and fused with the features with 1/16× input resolution by
several convolution layers.

3.2.2 BEV Encoder

The BEV encoder encodes the transformed BEV features
from the CBTR module. Since the feature map from the

CBTR module is of 1/4× final BEV resolution, a crucial
function of the BEV encoder is up-scaling the BEV fea-
ture maps for the BEV prediction. Here, we adopt two
modes: the light BEV encoder and the heavy BEV encoder.
The light BEV encoder simply up-samples the transformed
BEV features by linear interpolation. Generally, it needs
a followed complicated task head to get good predictions.
Differently, the heavy BEV encoder has a similar structure
with the image-view encoder, which utilizes ResNet [6]-like
module to construct and fuse the features. In this case, the
task modules always share the BEV features with simple
structures to gain the final results.

3.2.3 Segmentation Heads

Three separate neural network branches for semantic seg-
mentation tasks are constructed upon the BEV feature map:
vehicle segmentation, road segmentation, and lines segmen-
tation. Each branch has an identical structure but differen-
t output channels in the last layer. The task-specific head
utilizes ResNet-like blocks to extract features in differen-
t scales and combines these feature maps by up-sampling.
Finally, the BEV feature map with the given BEV output
spatial size is convolved with different numbers of convo-
lution kernels to generate the output results. Specifically,
the output channel for the three semantic segmentation is 1
for vehicle segmentation, 1 for road segmentation, and 3 for
lines segmentation, respectively.

A light head with only final convolution with a shared
heavy BEV encoder can gain more inference speed for the
detector. However, we experimentally find that the separate
heavy heads gain better performance. We argue that these
three kinds of tasks focus on different kinds of features.

3.3. Training

We train the whole model with three segmentation tasks
in the end-to-end manner. Each segmentation task is trained
with binary cross-entropy with a positive weight (2.13 in
our experments). The final loss used for training the model
is:

L = wr · Lv + wr · Lr + wl · Ll, (3)

where Lv , Lr, Ll represents the loss of vehicle segmenta-
tion, road segmentation, and lines segmentations, respec-
tively. In following experiments, we empirically set the
weights wv = 3, wr = 1 and wl = 3

4. Experiments
4.1. Experiments Settings

Dataset. We evaluate our approach on the large-scale and
popular dataset, nuScenes [2]. It consists of 1000 scenes
captured from four locations in Boston and Singapore, each
of 20 seconds in length, covering different conditions. All
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Methods Dec.-SA nHeads Enc. Dec. Vehicles Road Divider Ped Crossing Boundary Runtime(ms)

A × 2 0 3 52.63 90.78 45.13 29.28 43.88 34.64
B × 2 0 6 53.15 90.99 44.89 29.39 43.73 36.98
C × 2 1 3 53.07 91.44 44.95 30.03 44.22 35.66
D × 4 1 3 53.18 90.64 45.94 29.65 44.17 39.17
E × 2 3 3 53.11 91.01 44.70 29.53 44.26 39.56
F X 2 1 3 53.85 91.18 45.90 29.92 44.93 35.21

Table 1. Ablation study of CBTR. We evaluate different configurations on the nuScenes val subset with the IoU scores (%). Dec.-SA
denotes the self-attention module in the decoder layers. nHeads represents the number of the heads in the multi-head attention module.

Cam. PE BEV PE Vehicles Road Divider Ped Crossing Boundary Runtime(ms)

sine learned 53.85 91.18 45.90 29.92 44.93 35.21
sine sine 54.01 91.34 46.65 31.47 46.03 34.76

learned learned 53.95 90.73 46.42 31.14 44.77 35.40
learned sine 53.31 90.86 45.80 29.86 45.02 35.17

Table 2. IoU scores (%) for different positional encodings modes. The evaluation is implemented on the nuScenes val subset.

the scenes are officially split into 700/150/150 scenes for
training/validation/testing. Our experiments use the train-
ing and validation subset for training and testing. The im-
ages are captured from 6 surround-view cameras, which are
well-calibrated and synchronized. The camera group pro-
vides a 360-degree view with a slight overlap between the
neighboring cameras.

The nuScenes dataset provides annotated 3D objects and
highly accurate human-annotated semantic maps of the rel-
evant areas. For each scene, it first samples key-frames at
2HZ and annotates the object with a category, attributes,
and a 3D bounding box. It also provides vectorized maps of
different semantic classes and the pose of ego-vehicle.
Data Processing & Evaluation Metrics. The original in-
put images in nuScenes with 1600×900 resolution are pro-
cessed by random scaling and random rotating, and finally
cropping to 640×320 resolution. We set the BEV region in
x from −30 meters to 30 meters and in y from −15 meters
to 15 meters, where the x axis denotes the forward direc-
tion and the y axis represents the left direction. The BEV
region is rasterized into a grid map with 240 × 120 resolu-
tion, where each cell is of size 0.25 meters × 0.25 meters.

For vehicle segmentation, we obtain the ground truth-
s by projecting annotated vehicle 3D bounding boxes into
the BEV plane as [20], where the vehicle target denotes
the meta-category vehicle in nuScenes including car, bus,
trailer, motorcycle, etc. For road segmentation, we generate
road ground truth BEV map by transforming the combina-
tion of the nuScenes map layer road segment and lane
into the ego frame. For lines segmentation, we follow the
setting in [11] and extract three kinds of lines: lane bound-
ary, lane divider, and pedestrian crossing. The width of each

line is set to 2. The ground truths are illustrated in Fig. 1b.
During the evaluation, we employ intersection-over-

union (IoU) as the evaluation metric for all segmentation
tasks.
Training Details. The model is trained with AdamW [13]
optimizer with one-cycle learning rate policy [24]. The max
learning rate is 1e− 3, and the weight decay is 1e− 6. We
train our model on A100 GPUs for 40 epochs.

4.2. Ablations

In the ablation analysis, we delve into how the compo-
nents in CBTR and other modules in our model influent the
final performance. The output BEV feature from CBTR is
of 1/4× dimension against the final BEV predictions.

4.2.1 CBTR

We evaluate the importance of the attention mechanism by
changing the number of components in the CBTR. The re-
sults are shown in Tab. 1.

Interestingly, our model still gains good performance
even without the encoder module. It indicates that the ex-
tracted image-based features are powerful enough to cap-
ture the appearance and spatial information. Comparing
configuration A with C,E, increasing the number of encoder
layer can improve the segmentation performance. However,
too many encoder layers may decrease the performance, and
more layers significantly increase the inference time and the
memory cost.

The decoder module plays a crucial role in transforming
the camera features. Nevertheless, comparing configuration
B to A, too many decoder layers bring slight improvements
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Module BEV-Enc. Task-Heads Vehicles Road Divider Ped Crossing Boundary Runtime(ms)

A light light 53.59 90.76 43.36 29.20 44.39 28.74
B light heavy 54.01 91.34 46.65 31.47 46.03 34.76
C heavy light 52.49 90.44 45.26 29.84 44.15 33.26
D heavy heavy 53.47 91.09 46.19 31.80 44.81 39.97

Table 3. IoU scores (%) of different combination modes for the BEV encoder and the task heads.

for segmentation. Taking a deeper insight into the decoder,
we evaluate the importance of the self-attention mechanis-
m in the encoder module. Comparing configuration F with
C, we find the introduction of the self-attention mechanism
in the encoder module can improve the segmentation per-
formance, especially for vehicle segmentation. Meanwhile,
the results in configuration C and D show that more heads
in the attention mechanism bring minor improvements for
accuracy but a considerable increase in inference time.
Effectiveness of positional encodings. Two kinds of posi-
tional encoding modes (fixed encoding and learned encod-
ing) are utilized to generate image positional encodings and
BEV positional encodings. The results are shown in Tab. 2.
These two versions of the positional encoding method gain
similar results, and the fixed sine positional encoding mod-
e for both camera and BEV feature gain the best perfor-
mance. We chose the fixed positional encoding method for
our model’s camera and BEV features.

4.2.2 BEV Encoder & Task Heads.

To study the impact of the network complexity for the BEV
encoder and task head, we use two kinds of networks to im-
plement the BEV encoder and task head, respectively. The
light BEV-encoder refers to a simple up-sample operation,
and the light task head denotes a two-layer CNNs module.
The results are shown in Tab. 3.

As shown in configuration A, even with a light BEV en-
coder and a light task head, the model can achieve com-
petitive results. This demonstrates that the BEV feature
map from the CBTR module is an expressive representation
for BEV perception tasks. Compared with the heavy BEV
encoder, the heavy task head gains more improvements in
segmentation performance, which shows that different seg-
mentation tasks focus on different kinds of features. Heavy
network for both BEV encoder and task head (D) achieves
suboptimal results. The possible reason is that the learning
in the BEV space falls into overfitting [8].

4.3. Comparison to other method

We compared our model with the state-of-the-art method
LS [20]. We train the LS model under identical settings
using the publicly available code. The comparison results
are shown in Tab. 4. Our model gains better performance

in segmentation accuracy and computation efficiency. It
demonstrates that the transformer-based camera-BEV trans-
formation can generate more expressive represents for scene
understanding.

We show some instance results in Fig. 4. Our model
gains more precise vehicle segmentation results than LS, e-
specially for the vehicle that appeared in nearby cameras.
Moreover, our models results are smooth because the con-
struction of BEV features uses adequate contextual infor-
mation.

5. Conclusions

In this paper, we present an end-to-end architecture to
extract the BEV representations from surrounding cameras.
We propose a transformer-based encoder-decoder structure
to transform the image features into the BEV frame with
the camera-based and BEV-based position encodings. This
structure has capable of exploring the context information
in each image and the relationship between different cam-
eras. We perform multiple semantic segmentation tasks
on the BEV features and gain excellent performance both
on detection accuracy and computation speed that demon-
strates the effectiveness of our model. In the future, we
will optimize this transformer-based model in the design
and computation factors (such as designing better position
encodings manner, addressing the vast memory cost of the
self-/cross-attention module, etc.) and introduce the tempo-
ral information to improve the performance in the current
frame.
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