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Abstract

3D human pose estimation (HPE) in autonomous vehi-
cles (AV) differs from other use cases in many factors, in-
cluding the 3D resolution and range of data, absence of
dense depth maps, failure modes for LiDAR, relative loca-
tion between the camera and LiDAR, and a high bar for es-
timation accuracy. Data collected for other use cases (such
as virtual reality, gaming, and animation) may therefore not
be usable for AV applications. This necessitates the collec-
tion and annotation of a large amount of 3D data for HPE
in AV, which is time-consuming and expensive.

In this paper, we propose one of the first approaches to
alleviate this problem in the AV setting. Specifically, we
propose a multi-modal approach which uses 2D labels on
RGB images as weak supervision to perform 3D HPE. The
proposed multi-modal architecture incorporates LiDAR and
camera inputs with an auxiliary segmentation branch. On
the Waymo Open Dataset [27], our approach achieves a
∼ 22% relative improvement over camera-only 2D HPE
baseline, and ∼ 6% improvement over LiDAR-only model.
Finally, careful ablation studies and parts based analysis
illustrate the advantages of each of our contributions.

1. Introduction
3D Human Pose Estimation (3D HPE) for autonomous

vehicles (AV) has received little attention in the academic
community relative to other applications like animation,
games, virtual reality (VR), or surveillance [43] despite its
central role in AV. Arguably, this could be because 3D HPE
in AV differs greatly from HPE in other scenarios. For
one, AV requires HPE in outdoor environments and in 3D,
which is not the case for animation or games which are not
outdoor [17, 35] or surveillance which is not necessarily in
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Figure 1. Different characteristics of RGB-D and Camera+LiDAR
sensors. Top row examples are from dataset [48]; bottom row ex-
amples are from the Waymo Open Dataset [27].

3D [6]. Secondly, sensor characteristics and placements for
LiDAR follow different logic compared to other depth sen-
sors like in games or VR [34, 40]. Thirdly, requirements
for accuracy, real-time prediction and generalization over
a wide variety of scenarios are also different. Animation,
surveillance, games and VR have relatively lower bars for
accuracy compared to AV where HPE is a critical compo-
nent for the perception module.

Diving deeper into the sensor, LiDAR differs from other
depth sensors in several ways. Figure 1 summarizes these
differences and gives visual illustrations. Firstly, LiDAR
has longer range and larger FOV than RGB-D sensors, and
it is more suitable for outdoor scenes. Point clouds from
LiDAR are sparser and sweep a wider range of the envi-
ronment. Secondly, LiDARs and cameras may not be co-
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located on AV platforms. Accurate registration is needed
for correspondence between point clouds and image tex-
tures. Finally, failure cases for LiDAR caused by reflec-
tive materials, weather conditions, and dust on sensors dif-
fer from other sensor failures due to the difference in the
physics of sensing as well as environmental factors.

Given the aforementioned differences and the evi-
dence of 3D HPE models not generalizing across different
datasets [32, 37, 43, 44] because of dataset bias, we see the
need for developing approaches specific to AV that tackle
the problem of 3D HPE. One straightforward way to tackle
this problem would be to collect 3D human pose annota-
tions for a large and diverse dataset of LiDAR point clouds
in AV scenarios like the Waymo Open Dataset [27]. How-
ever, the ”in-the-wild” setting of 3D HPE for AV presents
serious challenges to annotating training data at this scale,
in terms of time, cost and coverage of long tail scenarios.

In this paper, we propose an approach to use widely
available and easier to get 2D human pose annotations
to drive 3D HPE in a weakly-supervised setting. While
the weakly-supervised setting is not uncommon for 3D
HPE [44], using LiDAR in the AV setting requires sepa-
rate consideration for the reasons mentioned thus far. Fig-
ure 2 shows the idea of the proposed method. While we
use PointNet [22]-inspired architecture as the main point
cloud processing network, we cannot fuse camera and Li-
DAR imagery at the lower levels like in other settings [38]
because of the sparsity of LiDAR. We propose a cascade ar-
chitecture with a CNN-based camera network for 2D pose
estimation. In addition, we add an auxiliary segmentation
branch in the point network to introduce stronger supervi-
sion to each point via multi-task learning. This gives us an
advantage in the ”in-the-wild” settings, as shown by the re-
sults on the Waymo Open Dataset (Table 1 and Table 3). In
the rest of the paper, we show that pose estimation perfor-
mance benefits from all these designs.

The main contributions of this paper are as follows:

• We propose a multi-modal framework which fuses
RGB camera images and LiDAR point clouds to ex-
ploit the texture information and geometry information
for 3D pose estimation in challenging AV scenarios.

• We train 3D pose estimation models by weak super-
vision from pure 2D labels, which makes the labeling
stage much less expensive.

• We introduce an auxiliary segmentation branch into
the point network to improve 3D pose estimation per-
formance via multi-task learning.

We review related work in Section 2, and follow it up
with details about our approach in Section 3. Section 4
discusses detailed experiments with results on two large
datasets, followed by ablation studies and performance

analysis (refer to supplementary for additional results). Fi-
nally, we conclude in Section 5 with a discussion of avenues
for improvement and future directions.

2. Related Work
In recent years, many methods have been introduced for

3D HPE [43], although hardly any work has addressed the
AV scenario. Most take RGB or RGB-D images as inputs,
and operate in monocular, multiview or video settings.

Monocular 3D HPE approaches like Tome et al. [30]
take the simplest of inputs (monocular RGB images) and
predict 3D keypoints using a multi-stage method. This clas-
sical approach of “lifting” 3D keypoints from 2D images
has been recently done using deep learning [18], and in the
past using a database of 3D skeletons [1,24,33]. Recent crit-
icisms of this approach have focused on over-reliance on the
underlying 2D estimator, and of generalization problems
[2, 43]. Extending this approach temporally [2, 5, 44, 45]
also has been attempted, but still underperforms approaches
which use depth information (see [42], [43] table 11).

Depth based approaches also come in different flavors.
Some, like Zimmermann et al., [48] use a VoxelNet based
method on RGB-D images with 3D labels. Others might
only use point clouds [29], add temporal consistency for-
mulations [12], use a split and recombine approach [39],
or generate large amounts of synthetic data followed by
supervised learning strategy [15]. Semi-supervised ap-
proaches [19, 20, 25, 26] have also been recently attempted
to deal with the long tail and ”in-the-wild” scenarios.

Weakly-supervised 3D Human Pose Estimation: Be-
sides the above fully- and semi-supervised methods which
rely on at least a certain amount of 3D annotations, there
are also weakly-supervised methods that use pure 2D an-
notations. Tripathi et al. [31] introduced a self-supervised
method with teacher-student strategy on RGB sequences.
Chen et al. [4] introduced a weakly-supervised method with
cycle GAN [47]-like structure on pure 2D labels. Other
weakly-supervised methods include [3, 14]. All the above
methods are RGB-based, and do not involve the use of point
clouds, while our method utilizes point clouds to help to im-
prove the prediction accuracy.

Fürst et al. [8] proposed an end-to-end system for 3D
detection and HPE for RGB and LiDAR in AV with pure 2D
keypoint annotations. However, their work only includes
evaluations for 2D HPE and projected 3D HPE, while our
approach is evaluated with real 3D annotations.

Point Cloud-Based Approaches: Point cloud-based ap-
proaches differ from HPE on traditional depth sensors in
their ability to handle sparse 3D data [11]. PointNet [22] is
a popular network for point cloud-based classification and
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Figure 2. Model overview: the model is a cascade of camera network and point network. The camera network takes the 2D camera image
as input and predicts the 2D keypoint heatmap. This 2D heatmap is augmented with the point cloud using modality fusion (Figure 3)
and is fed into the point network. The regression branch of the point network predicts 3D keypoint coordinates as output. The auxiliary
segmentation branch generates pointwise predictions which are only used for training. The model is trained on pseudo 3D labels and
pointwise labels generated from 2D keypoint labels (Figure 4).

segmentation, improved with hierarchical structures in [23]
and utilized for 3D object detection on RGB-D [21], and
hand pose estimation [9, 10]. Finally, Zhang et al. [41]
proposed a weakly supervised point cloud-based method
for 3D human pose estimation. However, their method re-
quires 3D annotations and is only evaluated in indoor RGB-
D datasets, while our method works on uncontrolled AV
scenarios with pure 2D annotations.

3. Method

3.1. Problem Formulation

The 3D pose estimation problem can be described as
follows. For each human subject in consideration, there
are two modalities of data available: the point cloud and
a camera image of the person. The point cloud P =[
p1, · · · ,pi, · · · ,pN

]
∈ RN×d, consists of N LiDAR

points from a single scan with d-dimensional features. In
this work, d = 3. The camera image is an H ×W × 3 RGB
image. Assuming we have the extrinsics and intrinsics of
the LiDAR and camera, for each point pi, its 3D world co-
ordinates x(3)

i in the point cloud coordinate system and 2D
coordinates x(2)

i in the image coordinate system are known.
Given these inputs, the goal is to predict 3D coordinates of
K pose keypoints {y(3)

k }Kk=1 ∈ RK×3 of the corresponding
person. Note that LiDAR point clouds are usually sparse
and lie on the surface of the object, while ground truth key-
points are defined inside the human body. Therefore, we
cannot choose a subset of P as the 3D pose of the person
and approach 3D HPE in AV as a classification problem.

An overview of the proposed approach is shown in Fig-
ure 2. Our model is a cascade of a camera network and

a point network. The camera network takes a 2D image
as input and predicts a 2D keypoints heatmap [36]. This
heatmap is used to augment the point cloud using modality
fusion and fed into the point network. Finally, the regres-
sion branch of the point network predicts the 3D coordinates
of K keypoints. An auxiliary segmentation branch gener-
ates pointwise predictions which are only used for training.
The model is trained on pseudo 3D labels and pointwise la-
bels generated from 2D labels.

3.2. Modality Fusion of LiDAR and Camera

We introduce a 2D camera network with modality fusion
to transfer texture information from RGB images to point
clouds. Our camera network follows the architecture pro-
posed in [36] which consists of a downscale module and
an upscale module. The downscale module is a ResNet-50
network and the upscale module consists of three decon-
volutional layers. A 1 × 1 convolutional layer with sig-
moid activation follows the upscale module and produces
the output heatmap. The network takes an RGB image with
size H ×W × 3 as input and generates a keypoint heatmap
H = {hm,n}H

′,W ′

m=1,n=1 with size H ′ × W ′ × K, where K
is the number of keypoints. Each pixel hm,n in the heatmap
is a K dimensional vector, indicating the likelihood of the
corresponding image pixel belonging to each of the K key-
points.

The heatmap H is consequently sampled at points cor-
responding to the 2D projections on the camera image of
3D LiDAR points, to generate camera features pcam

i as
shown in Figure 3. The camera feature for point i is com-
puted as pcam

i = hm(i),n(i), which is a slice of H at lo-
cation (m(i), n(i)). Here m(i) = round(W

′

W x1i) and
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Figure 3. Modality fusion: the 2D heatmap from the camera
network is first smoothed by Gaussian kernel, then sampled by
2D point cloud projections on the camera image. The sampled
heatmap slices are considered as camera features and are concate-
nated with point coordinates of the point cloud as augmented input
to the point network. See Sec 3.2 for details.

n(i) = round(H
′

H x2i), where x
(2)
i = (x1i, x2i) are the 2D

image coordinates of point i. In practice, we observe that
heatmaps from the camera network are usually very peaky,
which contains little information at locations not close to
any keypoints. Hence, we apply Gaussian smoothing to en-
large the receptive field at these locations [7], so the cor-
responding point can utilize the information from a larger
neighborhood on the image.

Finally, camera features pcam
i are concatenated with the

original point feature pi to generate the augmented point
cloud Paug ∈ RN×(d+K), which serves as the input of the
following point network. This augmentation directly in-
corporates texture information from RGB images into the
point cloud, which helps the LiDAR based point network
with information useful for more accurate keypoint predic-
tions. Similar concatenation can be found in [48], where
voxel representations are concatenated with heatmaps be-
fore feeding into a VoxelNet [46].

The proposed cascade modality fusion architecture
achieves improvements because heatmap predictions from
the camera network carry complementary texture related se-
mantic cues that are not present in LiDAR point features.
Therefore, augmenting lower-level LiDAR point features
with higher-level camera features provides the point net-
work both low- and high- level point cloud information. By
introducing modality fusion, we achieve ∼ 6% relative im-
provement on the Waymo Open Dataset compared to the
LiDAR-only baseline (Table 3 in Section 4).

3.3. Auxiliary Pointwise Segmentation Branch

Our point network is the primary component of the
proposed method, which directly generates 3D keypoint
prediction from augmented point clouds. The regression
branch predicts a 3K-dimensional output vector corre-
sponding to the 3D coordinates of K keypoints.

Even though rich camera information from the camera
network is provided to the point network by modality fu-
sion, the model’s designated output is still a fixed set of
keypoints. It is difficult for a global regression loss to guide
the point network to effectively utilize the camera infor-
mation for each point. Therefore, to provide more direct
supervision to every individual point, we propose an aux-
iliary segmentation branch after the feature encoder in the
point network, inspired by the architecture of a segmenta-
tion PointNet [22]. For each LiDAR point, the segmentation
branch predicts the pose keypoint it is closest to. In other
words, the segmentation branch generates N × K confi-
dence scores for assigning N LiDAR points to K pose key-
points (a point with high score means that it is close to the
corresponding keypoint). Here, the keypoint type for each
point corresponds to the type of its nearest keypoint.

This additional point-wise loss helps the point network
to digest more information from the camera network. By
adding the auxiliary segmentation branch and loss, we
achieve ∼ 1.8% relative improvement on the Waymo Open
Dataset compared to the modality-fusion architecture with-
out the segmentation branch (Table 3 in Section 4).

3.4. Weakly-Supervised Model Training

Training the proposed point network with two branches
needs two sets of labels: For the main regression branch,
ground truth 3D keypoint coordinates are required; for the
segmentation branch, pointwise keypoint type labels are
needed. In the proposed method, we introduce a label gen-
eration method to enable model training on pure 2D labels
for both tasks.

3.4.1 Label Generation

As stated in Section 3.1, we know the 3D coordinates of in-
put points {x(3)

i }Ni=1, their corresponding 2D image coordi-
nates {x(2)

i }Ni=1, and 2D ground truth keypoints {y(2)
k }Kk=1.

The correspondence is pre-computed by projecting 3D
points onto the camera image coordinates according to the
camera model. Since the projection is not a one-to-one
mapping, directly back-projecting 2D labels to 3D space is
impossible.

To generate 3D keypoint labels from the 2D labels and
the point cloud, we make the following assumptions:

1. the point cloud is dense enough so that there is at least
one point in the neighborhood of each keypoint in 2D
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Figure 4. Pseudo label generation: a pseudo 3D keypoint label (red
triangle) is computed as the weighed average of 3D coordinates
of neighboring points (blue triangles and dots) to the keypoint la-
bel in 2D space (red dot). Similarly, to generate pointwise labels,
positive labels are assigned to neighboring points (blue dots) of a
ground truth keypoint (red dot) in 2D space (best viewed in color).
See Sec 3.4.1 for details.

space;

2. the human surface is smooth enough so that the depth
does not rapidly change in the neighborhood of a key-
point;

3. point cloud to camera registration is reliable.

Though point clouds will be downsampled to a fixed size
before being fed into the point network, pseudo 3D labels
are generated based on the point cloud before downsam-
pling. Therefore, the above assumptions hold in most cases.
Also, since LiDAR and camera are usually attached to the
same rigid object (the vehicle) and are frequently calibrated,
it is reasonable to assume that the registration is reliable.
3D Keypoint Coordinates Label Generation: Based on
our assumption, for each point in the point cloud, its accu-
rate 2D projection on the camera image is known. There-
fore, for a ground truth keypoint in 2D coordinates, we can
first find its neighboring points in 2D space. Then, based
on our assumptions, the depths of these points will be close
enough to the true depth of the keypoint. As Figure 4, we
use the average 3D coordinates of these neighboring points
to approximate the coordinates of the keypoint,

ỹ
(3)
k =

N∑
i=1

αikx
(3)
i , αik =

exp
(
−T∥x(2)

i − y
(2)
k ∥22

)
∑N

j=1 exp
(
−T∥x(2)

j − y
(2)
k ∥22

)
(1)

Here αik weights the contribution of point i to the pseudo
keypoint ŷ(3)

k based on their distances to the ground truth
keypoint y(2)

k in 2D space, T is the temperature that controls
the softmax operation.

In case the pseudo 3D labels are not accurate, we also
compute the reliability of the 3D approximation for each
keypoint as rk = exp

(
−Tr mini ∥x(2)

i − y
(2)
k ∥22

)
, where

Tr is the temperature factor, to weight the losses on different
keypoints during training.
Pointwise Keypoint Type Label Generation: To generate
pointwise type labels for the segmentation task, we simply
assign all neighboring points of a keypoint in 2D space to
the corresponding keypoint type, shown in Figure 4. The
type label lik for point i with respect to keypoint k is gener-
ated by

lik =

{
1 if ∥x(2)

i − y
(2)
k ∥2 ≤ r,

0 otherwise
(2)

where r is the neighboring radius for positive samples.
With the generated pseudo 3D labels to train the 3D key-

point model, we achieve ∼ 22% relative improvement on
the Waymo Open Dataset compared to the baseline of pre-
dicting 2D keypoints with 2D labels and lifting to 3D (Ta-
ble 3 in Section 4).

3.5. Training Losses

Point Network: The training loss for the regression
branch is a Huber loss Lreg on the generated pseudo 3D la-
bels, weighted by the reliability rk. The loss for the seg-
mentation branch is a cross-entropy loss Lseg on the pseudo
pointwise labels weighted by different positive/negative
sample weights. The overall loss for the point network is

L = Lreg + λLseg (3)

where λ is used to weight the auxiliary segmentation loss.
Camera Network: Similar to [36], the camera network is
trained on a mean-squared-error loss with ground truth 2D
heatmap. We train the camera network independently, then
freeze it during point network training.

Note that we only train and evaluate on visible keypoints.
During training, keypoint losses are only applied on visible
keypoints, which means we will not generate pseudo labels
for occluded keypoints. In Section 4, we show that even
trained on visible keypoints only, the model is able to pre-
dict reasonable keypoints for occluded body parts. For more
details of training losses, please refer to the supplementary
material.

4. Experiments
4.1. Data and Evaluation Metrics

Training Data: We collect an internal dataset with RGB
images and LiDAR point clouds similar to the Waymo Open
Dataset [27]. It consists of a total number of 197,381
pedestrians. These pedestrians are labeled with 2D key-
point labels of 13 keypoint types (nose, left/right shoulders,
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Methods Waymo Open Dataset Internal Dataset
OKS@3D↑ MPJPE↓ OKS@2D↑

camera-only [36] 51.74% 13.90cm 78.19%
LiDAR-only 59.58% 10.80cm 77.53%
multi-modal 63.14% 10.32cm 82.94%

Table 1. Comparison of camera-only, LiDAR-only, and multi-
modal models. As described in Section 4.1, OKS@3D stands
for OKS/ACC in 3D evaluation, OKS@2D stands for OKS/ACC
in 2D evaluation, and MPJPE is another evaluation metric in 3D.
These metrics are used throughout the experiments. The proposed
multi-modal model achieves the best results on both datasets.

left/right elbows, left/right wrists, left/right hips, left/right
knees and left/right ankles) in the camera image. These
samples are split into a training set with 155,182 pedestri-
ans and a test set with 42,199 pedestrians. The training set
with pure 2D labels is used to train the proposed model.

3D Evaluation Data and Metrics: The Waymo Open
Dataset serves as our 3D evaluation set. It is composed
of sensor data collected by Waymo cars under a variety of
conditions. It contains 1,950 segments of 20s each, with
sensor data including point clouds from LiDAR and RGB
images captured by cameras. For 3D evaluation, we labeled
986 pedestrians with 3D keypoint coordinates of 13 key-
point types (same as our internal dataset) on LiDAR point
clouds. We are looking to release these labels for evaluation
once obtained related approvals.

Evaluation results are reported in the OKS (Object Key-
point Similarity) accuracy (OKS/ACC) metric, which is
similar to the OKS/AP metric introduced in COCO key-
point challenge [16] (please refer to the supplementary ma-
terial for more details), and MPJPE (Mean Per Joint Posi-
tion Error) [13] in 3D coordinates.

2D Evaluation Data and Metrics: The test set of our in-
ternal dataset serves as the 2D evaluation set. Evaluation
results are reported in the OKS/ACC metric in 2D coordi-
nates, after the 3D predictions are projected to 2D space by
the corresponding lidar to camera projections.

Labeling: For 2D/3D keypoint labeling on the Waymo
Open Dataset and the Internal Dataset, we adopt a defini-
tion of keypoints similar to the COCO Challenge. Each
keypoint is labeled by multiple annotators, whose results
are aggregated to determine the final label. For 2D labeling,
we only label 2D coordinates of keypoints that are visible in
the camera image. For occluded keypoints, we label them
as invisible. 3D labeling is similar, where we only label
keypoints that are visible from the point clouds. Since we
pair each LiDAR with its closest camera in location, the oc-
clusion status of keypoints is mostly consistent between 2D
and 3D.

(a) No Camera (LiDAR-Only) (b) Inception 48x48

(c) Inception 64x64 (d) ResNet50 256x256

Figure 5. 3D predictions with different camera image sizes and
camera network backbones from the Waymo Open Dataset (best
viewed in color). ResNet50 with 256x256 image size predicts the
most accurate keypoints.

Implementation Details: For the Waymo Open Dataset
and the Internal Dataset, we resize all camera images to
256× 256, and randomly sub-sample the input point cloud
to a fixed size of 256 points (we did not observe obvious
performance gain for larger number of points). Please refer
to the supplementary material for more training details.

4.2. Performance Analysis

To show the effectiveness of the proposed method, we
compare with the following models.

Camera-only model: we use the same camera network
[36] as the proposed method to predict 2D keypoints. Then
2D-to-3D keypoint lifting is implemented by the 2D-to-3D
pseudo label generation method introduced in Section 3.4.1,
the same way as we generate training labels.

LiDAR-only model: we use the proposed point network
to predict 3D keypoints without the modality fusion, i.e.
only use 3D coordinates of the point clouds as features.

Experimental results on two datasets are shown in Ta-
ble 1. Table 2 further shows per-keypoint results. These
results show that our method outperforms all baselines in
the corresponding datasets. We also have the following ob-
servations.

Training on pseudo labels is effective. LiDAR-only
baseline and the proposed method both outperform camera-
only baseline on 3D metrics on the Waymo Open Dataset.
Since the camera-only baseline is also trained on 2D labels
and utilizes point clouds to lift the predictions to 3D space,
the results indicate that it is more effective to directly train a
3D human pose model on pseudo labels generated from 2D
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parts camera-only LiDAR-only multi-modal
OKS@3D OKS@2D OKS@3D OKS@2D OKS@3D OKS@2D

nose 24.50% 75.10% 23.83% 56.27% 29.74% 72.17%
shoulder 65.41% 83.38% 77.04% 85.68% 76.93% 87.89%

elbow 65.61% 82.63% 66.61% 78.72% 72.49% 84.82%
wrist 45.99% 79.03% 30.37% 64.10% 46.97% 79.17%
hip 57.69% 87.97% 79.42% 90.33% 74.76% 92.37%

knee 65.40% 85.91% 77.48% 86.82% 78.04% 90.05%
ankle 62.68% 84.17% 69.06% 85.63% 72.30% 88.72%

overall 51.74% 78.19% 59.58% 77.53% 63.14% 82.94%

Table 2. Per-keypoint comparison of camera-only, LiDAR-only, and multi-modal models. OKS@3D is on the Waymo Open Dataset
and OKS@2D is on the Internal Dataset. Note that the per-keypoint OKS is computed on each keypoint separately (please refer to
supplementary for details). The proposed multi-modal model achieves the best results on most of the keypoint types.

Configurations Waymo Open Dataset Internal Dataset
Reg. Loss Seg. Loss Camera OKS@3D↑ MPJPE↓ OKS@2D↑

✓ 59.10% 10.93cm 77.52%
✓ ✓ 59.58% 10.80cm 77.53%
✓ ✓ 62.03% 10.53cm 82.51%
✓ ✓ ✓ 63.14% 10.32cm 82.94%

Table 3. Ablation studies on different model architectures. The
best performance is achieved by using multi-modal architecture
with auxiliary segmentation loss.

ground truth.
Camera image improves 3D prediction. The proposed

method performs better than LiDAR-only baseline on 3D
metrics, which demonstrates that the information from 2D
camera images helps 3D pose estimation. Table 2 shows
that the proposed method outperforms baselines on almost
all body parts. Compared to the LiDAR-only baseline, the
margins are larger for difficult body parts like elbows or
wrists, which shows that texture information from camera
images is especially helpful for keypoints that are hard to
localize.

Point cloud improves 2D prediction. LiDAR-only
baseline has comparable performance with the camera-only
baseline for 2D pose estimation on 2D metrics on the In-
ternal Dataset. The proposed method surpasses the camera-
only baseline, even if the models are not directly trained
for 2D pose estimation. It shows that the depth informa-
tion from 3D LiDAR point clouds also improves 2D pose
estimation performance.

Modality fusion benefits from both modalities. The
proposed method achieves the best performance on all met-
rics for both datasets. It proves that camera images and Li-
DAR point clouds provide complementary information, and
modality fusion combines these sources of information to
improve the overall performance.

Figure 6 shows some qualitative results of the proposed
method on the Waymo Open Dataset. In these examples,
pedestrians are either occluded (6a), in an irregular pose
(6c, 6i), or carrying a large object (6g, 6e). The proposed
method accurately predicts the visible human keypoints and
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Camera Network
No camera Inception 48x48 Inception 64x64 ResNet50 256x256

all 0.1080 0.1026 0.1028 0.1032
elbow 0.1006 0.0940 0.0931 0.0891
wrist 0.1652 0.1501 0.1473 0.1320
hip 0.1081 0.1113 0.1113 0.1205

knee 0.0944 0.0896 0.0910 0.0925
ankle 0.1163 0.1100 0.1102 0.1107
nose 0.0814 0.0762 0.0760 0.0837

shoulder 0.0850 0.0814 0.0830 0.0872

Table 4. Per-keypoint performance with different camera networks
and image sizes on the Waymo Open Dataset. ResNet50 with
256x256 image size performs the best on challenging keypoints
like elbow and wrist with large margins, but slightly worse than
smaller image sizes on other keypoint types.

provides reasonable guesses for the occluded keypoints.
Figure 6k is a failure case where the camera image is blurred
because of the sensor motion. It causes an inaccurate pre-
diction of the left wrist. More qualitative results can be
found in the supplementary.

4.3. Ablation Studies

4.3.1 Ablation Study on Model Architecture

We conduct ablation studies to further demonstrate the ef-
fectiveness of our key designs: the auxiliary segmentation
branch and the modality fusion with camera network. The
results are shown in Table 3, where Reg. Loss means using
regression loss (the primary loss) to train the point network,
Seg. Loss means auxiliary segmentation branch being added
(see Section 3.5), and Camera means using modality fu-
sion with camera features. The results show that, by adding
key features to the model, the performance improves con-
sistently on all datasets. We also observe that the segmen-
tation branch and modality fusion provide complementary
improvements.

4.3.2 Ablation Study on Camera Image Size and Cam-
era Network Backbone

To study the effectiveness of modality fusion, experiments
are conducted with different camera image sizes and camera
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Figure 6. Results on the Waymo Open Dataset. 6b, 6d, 6h, 6l are 3D predictions. 6a, 6c, 6g, 6k show the corresponding 2D projections
overlaid on camera images (3D predictions may not be shown under the same viewpoint as the camera images. Best viewed in color).
More results can be found in supplementary.

Camera Network Config Waymo Open Dataset Internal Dataset
Reg. Seg. OKS@3D↑ MPJPE↓ OKS@2D↑

No Camera ✓ 59.10% 10.93cm 77.52%
✓ ✓ 59.58% 10.80cm 77.53%

Inception 48x48 ✓ 61.12% 10.51cm 78.72%
✓ ✓ 62.22% 10.26cm 79.55%

Inception 64x64 ✓ 61.05% 10.46cm 78.95%
✓ ✓ 62.52% 10.28cm 79.44%

ResNet50 256x256 ✓ 62.03% 10.53cm 82.51%
✓ ✓ 63.14% 10.32cm 82.94%

Table 5. Ablation studies on the different camera image sizes and
camera network backbones. ResNet50 with 256x256 image size
achieves the best performance in general.

network backbones with results in Table 5. Here Inception
48x48 uses an Inception [28]-inspired convolutional net-
work backbone with a 48x48 image size; Inception 64x64
is similar to Inception 48x48 but with a 64x64 image size;
ResNet50 256x256 is the ResNet50 backbone used in the
proposed method with a 256x256 image size. From the re-
sults in Table 5, we observe that, even with smaller cam-
era patch size and shallower backbone, the model still ben-
efits from the additional camera modality. This observa-
tion is consistent with or without the auxiliary segmentation
branch. With larger camera patch size and deeper backbone
network, the overall performance is better.

We further studied the effect of different image sizes and
network backbones on per-keypoint prediction errors in Ta-
ble 4. These experiments are all with the proposed auxil-
iary segmentation branch. The results show that 1) Despite
the choice of image size and backbone, addtional camera
images generally bring considerable improvements on el-
bow, wrist, knee and ankle. This is because merely based
on sparse and noisy LiDAR point clouds, accurately local-
izing these limb keypoints is difficult. Additional texture
information from camera images makes the localization rel-

atively easier. 2) Larger image size has better performance
on most difficult keypoints like elbow and wrist. Surpris-
ingly, it performs slightly worse than smaller patch sizes on
other keypoints.

Figure 5 shows visualizations of 3D keypoint predictions
on a pedestrian riding a scooter from the Waymo Open
Dataset. It is a challenging case because of the objects
(backpack, scooter) attached to the pedestrian and the irreg-
ular pose. The LiDAR-only model fails to predict accurate
keypoints in Figure 5a. By introducing modality fusion, im-
provements are observed on keypoints that are difficult to
localize from sparse point clouds like those on the limbs
(elbow, wrist, knee and ankle). The camera network used in
the proposed method (ResNet50 on 256x256 images) pre-
dicts the most accurate keypoints (Figure 5d).

5. Conclusions

LiDAR based 3D HPE in AV differs from other applica-
tions for a variety of reasons including 3D resolution and
range, absence of dense depth maps, and variation in test
conditions. In this paper, we propose a multi-modal 3D
HPE model with 2D weak supervision for autonomous driv-
ing. The model leverages both RGB camera images and
LiDAR point clouds to tackle the challenges of 3D human
pose estimation in unconstrained scenarios. Instead of us-
ing expensive 3D labels, the proposed model is trained on
pure 2D labels. An auxiliary segmentation branch is added
to introduce stronger supervision to the point network. Re-
sults on the Waymo Open Dataset (with evaluation labels to
be released) and our internal dataset, and additional ablation
studies showing the effectiveness of the proposed method.
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