
Supplementary Material for the Paper:
Performance Prediction for Semantic Segmentation
by a Self-Supervised Image Reconstruction Decoder

1. Our Distortion Settings
In the following, we provide additional information

about our distortion settings.

1.1. Theoretical Background

For better readability, we repeat a few definitions from
the main paper. We define clean input x = (xi,c) ∈
IH×W×C , distorted input xϵ = (xϵ,i,c) ∈ IH×W×C , (con-
strained) distortion rϵ = (rϵ,i,c) ∈ [−1, 1]H×W×C , and
(effective) distortion strength

ϵ =

√
1

HWC
E (||rϵ||22), (1)

following [2]. Further, H,W, and C refer to height, width,
and number of color channels, respectively, I is the input
space defined as I = [0, 1], and indices i, c refer to pixel
indices I = {1, ...,H ·W} and color channel indices C =
{1, ..., C}, respectively. Further, x, xϵ, and rϵ are related
via

rϵ = xϵ − x. (2)

1.2. On Defining an Unconstrained Distortion

We extend our formulation in Section 1.1 and respective
related parts of our main paper with an unconstrained distor-
tion r̃ϵ = (r̃ϵ,i,c) ∈ RH×W×C , which is typically the out-
put of any distortion algorithm, e.g., a Gaussian noise gener-
ator or an FGSM attack. As r̃ϵ is not constrained, a clipping
operation has to be performed to guarantee xϵ,i,c ∈ I, with

xϵ,i,c = min(max(xi,c + r̃ϵ,i,c, 0), 1). (3)

If we consider x = (xi,c) to be given, then (3) can be
understood as a constraint applied to distortion r̃ϵ. Thus,
our unconstrained distortion r̃ϵ is indirectly subject to the
constraint (3), resulting in the constrained distortion rϵ (2).
With increasing ϵ, more and more pixels will be affected
by (3), resulting in differences between r̃ϵ and rϵ. How-
ever, for ϵ ≪ 1 as is the case in our paper, this effect can
typically be neglected, which we assume in the following
mathematical description, i.e., r̃ϵ ≈ rϵ.

1.3. On Defining a Target Distortion Strength

In (1) we define the distortion strength ϵ, following [2].
However, note that this can be considered as an effective dis-
tortion strength, i.e., the distortion strength that is measured
after having generated the distortion rϵ. During the gener-
ation process, however, we may already need to set a de-
sired distortion strength—a classical chicken-and-egg situa-
tion. Thus we define the target distortion strength ϵ, which,
potentially jointly with the clean input x, determines the
strength of the resulting unconstrained distortion r̃ϵ. Typi-
cally, but not necessarily, we have ϵ being close to ϵ. Next,
we will explain the role of ϵ for each of our investigated
distortions and also the relation between ϵ and ϵ.

1.4. On the Configuration of Our Distortions

In the following, we reintroduce our distortion types and
emphasize on their configuration using the target distortion
strength ϵ. For simplicity, we neglect the effect of clip-
ping introduced in (3). Thus, we can assume rϵ,i,c ≈ r̃ϵ,i,c,
which is effectively a low distortion strength assumption.

Gaussian Noise: With Gaussian noise, it is fairly simple.
We set the mean to 0 and the variance to ϵ2 for each ele-
ment of r̃ϵ. Accordingly, we have E

(
||r̃ϵ||22

)
= HWC · ϵ2.

When inserting this expression into (1), we obtain ϵ = ϵ as
our effective distortion strength ϵ.

Salt-and-Pepper Noise: We randomly set some ele-
ments xϵ,i,c of xϵ to 0 or 1, both with equal probability,
i.e.,

xϵ,i,c = (xi,c + rϵ,i,c) ∈ {0, 1}, for some i, c. (4)

Thus, by design, there will be no difference between con-
strained distortion rϵ = (rϵ,i,c) and unconstrained distor-
tion r̃ϵ = (r̃ϵ,i,c), instead, we truly have rϵ = r̃ϵ. Further,
in practice, we observe the pixel expectation to be

E(xi,c) =
1

HWC

∑
i∈I

∑
c∈C

xi,c = 0.5 + δ, (5)

with a small value δ. If we now define nsp to be the amount
of pixels for which (4) holds (salt-and-pepper pixels), our
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assumption in (5) yields

1

D
E
(
||rϵ||22

)
=

nsp

2D
·
[
(0.5− δ)2 + (0.5 + δ)2

]
(6)

=
nsp

D
·
[
1

4
+ δ2

]
= ϵ2, (7)

with D = HWC. Inserting E(∥rϵ∥22) = ϵ2 ·HWC (cf. (1))
into (6), we obtain the amount of salt-and-pepper pixels

nsp =
ϵ2

1
4 + δ2

·HWC. (8)

Now, we can freely choose ϵ = ϵ, and accordingly we can
generate the salt-and-pepper noise on a ratio of

nsp

HWC
=

ϵ2

1
4 + δ2

(9)

of the pixels. Note that δ is to be measured upfront from the
data according to (5), or one can simply assume δ = 0 (our
choice).

FGSM and PGD: Considering FGSM and PGD, we fol-
low [1, 3] and set ϵ to be the upper bound for the uncon-
strained distortion r̃ϵ yielding

∥r̃ϵ∥∞ ≤ ϵ. (10)

For FGSM, we can actually further tighten (10) to
|r̃ϵ,i,c| = ϵ as we have

r̃ϵ = ϵ · sign(∇xJ), (11)

with the sign operator sign() ∈ {−1, 1} and with ∇xJ as
the input gradient with respect to loss J . Under the low dis-
tortion strength assumption, we have rϵ = r̃ϵ, and therefore
we obtain ϵ = ϵ̃ for FGSM.

For PGD, (10) is usually ensured by a clipping operation
similar to (3). As PGD follows an iterative optimization
process for obtaining r̃ϵ (we set the number of iterations to
40 and choose a step size of 2

255 ), we cannot ensure that all
pixel values of r̃ϵ actually converge to the upper bound of
(10), as with FGSM, for instance. Thus, we usually obtain
ϵ ≤ ϵ in practice.
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