Supplementary Material for the Paper:
Performance Prediction for Semantic Segmentation
by a Self-Supervised Image Reconstruction Decoder

1. Our Distortion Settings

In the following, we provide additional information
about our distortion settings.

1.1. Theoretical Background

For better readability, we repeat a few definitions from
the main paper. We define clean input € = (z;.) €
[H>XWxC distorted input e = (Teic) € [HXWXC (con-
strained) distortion 7. = (r¢;.) € [—1,1]H>*W>C and
(effective) distortion strength

1
HWC

following [2]. Further, H, W, and C' refer to height, width,
and number of color channels, respectively, I is the input
space defined as I = [0, 1], and indices i, ¢ refer to pixel
indices Z = {1, ..., H - W} and color channel indices C =
{1,...,C}, respectively. Further, x, ., and r. are related
via

E (|[rell3), (1)

Te =T — T. 2)
1.2. On Defining an Unconstrained Distortion

We extend our formulation in Section 1.1 and respective
related parts of our main paper with an unconstrained distor-
tion 7 = (Feic) € REXWXC which is typically the out-
put of any distortion algorithm, e.g., a Gaussian noise gener-
ator or an FGSM attack. As 7. is not constrained, a clipping
operation has to be performed to guarantee z. ; . € I, with

Ze,ic = min(max(x; c + Te e, 0),1). 3)

If we consider x = (z;.) to be given, then (3) can be
understood as a constraint applied to distortion .. Thus,
our unconstrained distortion 7. is indirectly subject to the
constraint (3), resulting in the constrained distortion 7. (2).
With increasing €, more and more pixels will be affected
by (3), resulting in differences between 7. and r.. How-
ever, for ¢ < 1 as is the case in our paper, this effect can
typically be neglected, which we assume in the following
mathematical description, i.e., 7. = 7.

1.3. On Defining a Target Distortion Strength

In (1) we define the distortion strength e, following [2].
However, note that this can be considered as an effective dis-
tortion strength, i.e., the distortion strength that is measured
after having generated the distortion r.. During the gener-
ation process, however, we may already need to set a de-
sired distortion strength—a classical chicken-and-egg situa-
tion. Thus we define the target distortion strength €, which,
potentially jointly with the clean input @, determines the
strength of the resulting unconstrained distortion .. Typi-
cally, but not necessarily, we have € being close to €. Next,
we will explain the role of € for each of our investigated
distortions and also the relation between € and €.

1.4. On the Configuration of Our Distortions

In the following, we reintroduce our distortion types and
emphasize on their configuration using the target distortion
strength €. For simplicity, we neglect the effect of clip-
ping introduced in (3). Thus, we can assume 7 ; . = T¢ i c,
which is effectively a low distortion strength assumption.

Gaussian Noise: With Gaussian noise, it is fairly simple.
We set the mean to 0 and the variance to €2 for each ele-
ment of 7. Accordingly, we have E (||7||3) = HWC €.
When inserting this expression into (1), we obtain € = € as
our effective distortion strength e.

Salt-and-Pepper Noise: We randomly set some ele-
ments x; . of . to 0 or 1, both with equal probability,
ie.,

Teje = (Tic+reic) €{0,1}, forsomei,c. (4)

Thus, by design, there will be no difference between con-
strained distortion r. = (rc; ) and unconstrained distor-
tion # = (7¢; ), instead, we truly have r. = 7.. Further,
in practice, we observe the pixel expectation to be

1
E ic) = Treiro~ i,c — Y. 5a
(Zic) HWC;I;I’ 0.5+ 5)

with a small value §. If we now define n, to be the amount
of pixels for which (4) holds (salt-and-pepper pixels), our



assumption in (5) yields
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with D = HWC. Inserting E(||r¢||3) = €2- HW C (cf. (1))
into (6), we obtain the amount of salt-and-pepper pixels
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Nep = -HWC. 3)
Now, we can freely choose € = ¢, and accordingly we can
generate the salt-and-pepper noise on a ratio of

Nsp e

HWC 1442

€))

of the pixels. Note that J is to be measured upfront from the
data according to (5), or one can simply assume 6 = 0 (our
choice).

FGSM and PGD: Considering FGSM and PGD, we fol-
low [1, 3] and set € to be the upper bound for the uncon-
strained distortion 7 yielding

[Pelloc <€ (10)

For FGSM, we can actually further tighten (10) to
|Fe.i,c] = €as we have

7. =¢-sign(VgJ), an

with the sign operator sign() € {—1,1} and with V.J as
the input gradient with respect to loss J. Under the low dis-
tortion strength assumption, we have r. = 7., and therefore
we obtain € = € for FGSM.

For PGD, (10) is usually ensured by a clipping operation
similar to (3). As PGD follows an iterative optimization
process for obtaining 7. (we set the number of iterations to
40 and choose a step size of %), we cannot ensure that all
pixel values of 7. actually converge to the upper bound of
(10), as with FGSM, for instance. Thus, we usually obtain
€ < € in practice.
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