

# Supplementary Material for the Paper: Performance Prediction for Semantic Segmentation by a Self-Supervised Image Reconstruction Decoder

## 1. Our Distortion Settings

In the following, we provide additional information about our distortion settings.

### 1.1. Theoretical Background

For better readability, we repeat a few definitions from the main paper. We define clean input  $\mathbf{x} = (x_{i,c}) \in \mathbb{I}^{H \times W \times C}$ , distorted input  $\mathbf{x}_\epsilon = (x_{\epsilon,i,c}) \in \mathbb{I}^{H \times W \times C}$ , (constrained) distortion  $\mathbf{r}_\epsilon = (r_{\epsilon,i,c}) \in [-1, 1]^{H \times W \times C}$ , and (effective) distortion strength

$$\epsilon = \sqrt{\frac{1}{HWC} \mathbb{E}(\|\mathbf{r}_\epsilon\|_2^2)}, \quad (1)$$

following [2]. Further,  $H$ ,  $W$ , and  $C$  refer to height, width, and number of color channels, respectively,  $\mathbb{I}$  is the input space defined as  $\mathbb{I} = [0, 1]$ , and indices  $i, c$  refer to pixel indices  $\mathcal{I} = \{1, \dots, H \cdot W\}$  and color channel indices  $\mathcal{C} = \{1, \dots, C\}$ , respectively. Further,  $\mathbf{x}$ ,  $\mathbf{x}_\epsilon$ , and  $\mathbf{r}_\epsilon$  are related via

$$\mathbf{r}_\epsilon = \mathbf{x}_\epsilon - \mathbf{x}. \quad (2)$$

### 1.2. On Defining an Unconstrained Distortion

We extend our formulation in Section 1.1 and respective related parts of our main paper with an unconstrained distortion  $\tilde{\mathbf{r}}_\epsilon = (\tilde{r}_{\epsilon,i,c}) \in \mathbb{R}^{H \times W \times C}$ , which is typically the output of any distortion algorithm, e.g., a Gaussian noise generator or an FGSM attack. As  $\tilde{\mathbf{r}}_\epsilon$  is not constrained, a clipping operation has to be performed to guarantee  $x_{\epsilon,i,c} \in \mathbb{I}$ , with

$$x_{\epsilon,i,c} = \min(\max(x_{i,c} + \tilde{r}_{\epsilon,i,c}, 0), 1). \quad (3)$$

If we consider  $\mathbf{x} = (x_{i,c})$  to be given, then (3) can be understood as a constraint applied to distortion  $\tilde{\mathbf{r}}_\epsilon$ . Thus, our unconstrained distortion  $\tilde{\mathbf{r}}_\epsilon$  is indirectly subject to the constraint (3), resulting in the constrained distortion  $\mathbf{r}_\epsilon$  (2). With increasing  $\epsilon$ , more and more pixels will be affected by (3), resulting in differences between  $\tilde{\mathbf{r}}_\epsilon$  and  $\mathbf{r}_\epsilon$ . However, for  $\epsilon \ll 1$  as is the case in our paper, this effect can typically be neglected, which we assume in the following mathematical description, i.e.,  $\tilde{\mathbf{r}}_\epsilon \approx \mathbf{r}_\epsilon$ .

### 1.3. On Defining a Target Distortion Strength

In (1) we define the distortion strength  $\epsilon$ , following [2]. However, note that this can be considered as an *effective distortion strength*, i.e., the distortion strength that is measured *after* having generated the distortion  $\mathbf{r}_\epsilon$ . During the generation process, however, we may already need to set a desired distortion strength—a classical chicken-and-egg situation. Thus we define the *target distortion strength*  $\bar{\epsilon}$ , which, potentially jointly with the clean input  $\mathbf{x}$ , determines the strength of the resulting unconstrained distortion  $\tilde{\mathbf{r}}_\epsilon$ . Typically, but not necessarily, we have  $\bar{\epsilon}$  being close to  $\epsilon$ . Next, we will explain the role of  $\bar{\epsilon}$  for each of our investigated distortions and also the relation between  $\epsilon$  and  $\bar{\epsilon}$ .

### 1.4. On the Configuration of Our Distortions

In the following, we reintroduce our distortion types and emphasize on their configuration using the target distortion strength  $\bar{\epsilon}$ . For simplicity, we neglect the effect of clipping introduced in (3). Thus, we can assume  $r_{\epsilon,i,c} \approx \tilde{r}_{\epsilon,i,c}$ , which is effectively a *low distortion strength assumption*.

**Gaussian Noise:** With Gaussian noise, it is fairly simple. We set the mean to 0 and the variance to  $\bar{\epsilon}^2$  for each element of  $\tilde{\mathbf{r}}_\epsilon$ . Accordingly, we have  $\mathbb{E}(\|\tilde{\mathbf{r}}_\epsilon\|_2^2) = HWC \cdot \bar{\epsilon}^2$ . When inserting this expression into (1), we obtain  $\epsilon = \bar{\epsilon}$  as our effective distortion strength  $\epsilon$ .

**Salt-and-Pepper Noise:** We randomly set some elements  $x_{\epsilon,i,c}$  of  $\mathbf{x}_\epsilon$  to 0 or 1, both with equal probability, i.e.,

$$x_{\epsilon,i,c} = (x_{i,c} + r_{\epsilon,i,c}) \in \{0, 1\}, \text{ for some } i, c. \quad (4)$$

Thus, by design, there will be no difference between constrained distortion  $\mathbf{r}_\epsilon = (r_{\epsilon,i,c})$  and unconstrained distortion  $\tilde{\mathbf{r}}_\epsilon = (\tilde{r}_{\epsilon,i,c})$ , instead, we truly have  $\mathbf{r}_\epsilon = \tilde{\mathbf{r}}_\epsilon$ . Further, in practice, we observe the pixel expectation to be

$$\mathbb{E}(x_{i,c}) = \frac{1}{HWC} \sum_{i \in \mathcal{I}} \sum_{c \in \mathcal{C}} x_{i,c} = 0.5 + \delta, \quad (5)$$

with a small value  $\delta$ . If we now define  $n_{\text{sp}}$  to be the amount of pixels for which (4) holds (salt-and-pepper pixels), our

assumption in (5) yields

$$\frac{1}{D} \mathbb{E} (\|r_\epsilon\|_2^2) = \frac{n_{\text{sp}}}{2D} \cdot [(0.5 - \delta)^2 + (0.5 + \delta)^2] \quad (6)$$

$$= \frac{n_{\text{sp}}}{D} \cdot \left[ \frac{1}{4} + \delta^2 \right] = \epsilon^2, \quad (7)$$

with  $D = HWC$ . Inserting  $\mathbb{E}(\|r_\epsilon\|_2^2) = \epsilon^2 \cdot HWC$  (cf. (1)) into (6), we obtain the amount of salt-and-pepper pixels

$$n_{\text{sp}} = \frac{\epsilon^2}{\frac{1}{4} + \delta^2} \cdot HWC. \quad (8)$$

Now, we can freely choose  $\bar{\epsilon} = \epsilon$ , and accordingly we can generate the salt-and-pepper noise on a ratio of

$$\frac{n_{\text{sp}}}{HWC} = \frac{\bar{\epsilon}^2}{\frac{1}{4} + \delta^2} \quad (9)$$

of the pixels. Note that  $\delta$  is to be measured upfront from the data according to (5), or one can simply assume  $\delta = 0$  (our choice).

**FGSM and PGD:** Considering FGSM and PGD, we follow [1, 3] and set  $\bar{\epsilon}$  to be the upper bound for the *unconstrained* distortion  $\tilde{r}_\epsilon$  yielding

$$\|\tilde{r}_\epsilon\|_\infty \leq \bar{\epsilon}. \quad (10)$$

For FGSM, we can actually further tighten (10) to  $|\tilde{r}_{\epsilon,i,c}| = \bar{\epsilon}$  as we have

$$\tilde{r}_\epsilon = \bar{\epsilon} \cdot \text{sign}(\nabla_x J), \quad (11)$$

with the sign operator  $\text{sign}() \in \{-1, 1\}$  and with  $\nabla_x J$  as the input gradient with respect to loss  $J$ . Under the low distortion strength assumption, we have  $r_\epsilon = \tilde{r}_\epsilon$ , and therefore we obtain  $\epsilon = \bar{\epsilon}$  for FGSM.

For PGD, (10) is usually ensured by a clipping operation similar to (3). As PGD follows an iterative optimization process for obtaining  $\tilde{r}_\epsilon$  (we set the number of iterations to 40 and choose a step size of  $\frac{2}{255}$ ), we cannot ensure that all pixel values of  $\tilde{r}_\epsilon$  actually converge to the upper bound of (10), as with FGSM, for instance. Thus, we usually obtain  $\epsilon \leq \bar{\epsilon}$  in practice.

## References

- [1] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial Examples. In *Proc. of ICLR*, pages 1–10, San Diego, CA, USA, May 2015. [2](#)
- [2] Marvin Klingner and Tim Fingscheidt. Online Performance Prediction of Perception DNNs by Multi-Task Learning with Depth Estimation. *IEEE Transactions on Intelligent Transportation Systems (T-ITS)*, 22(7):4670–4683, July 2021. [1](#)
- [3] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. In *Proc. of ICLR*, pages 1–28, Vancouver, BC, Canada, Apr. 2018. [2](#)