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This appendix provides supplementary details of the pro-
posed method and additional results aside from the main
paper.

1. Self-Consistency of Motion Prediction
We analyze the self-consistency of motion prediction by

validating the accuracy of the estimated motion vectors. We
first predict the bounding boxes Ŷt+1 on Xt+1 using SDC-
Net [2], given the current ground truth bounding box Yt, Xt,
and Xt−1. We then reconstruct Y̌t by using reversed motion
prediction from Ŷt+1, Xt+1, and Xt+2. Finally, we measure
the IoU between Yt and Y̌t as the self-consistency estima-
tion. We randomly select 100 images from the Cityscapes
dataset [1] and measure such IoU performance. A total of
2, 167 bounding boxes are measured, and the mean of all
the measured IoUs is 0.81. We can see from this result that
the SDC-Net motion estimation consistency is indeed high.

Fig. 1(a) shows the probability mass function of the mea-
sured IoUs from the above self-consistency test on the 100
random Cityscapes images. There are a few IoU = 0 cases,
which is mainly due to: (1) The predicted bounding boxes
are outside video frames, where the original boxes are near
frame boundary: with probability Pr(Out | IoU = 0) =
25%. (2) Small objects are more error-prone to reconstruc-
tion: with probability Pr(Height ≤ 45 | IoU = 0) = 46%,
where the average height for all objects is 96 pixels.

The scatter plot in Fig. 1(b) shows the relationship be-
tween the object height and IoU for this self-consistency
test, with Pearson correlation coefficient 0.07 (little or no
relationship). In other words, the IoU is not biased toward
either tall or short objects. A similar observation is also
found for object area versus IoU. Table 1 lists the per-class
average IoU from the self-consistency test. Observe in this
table that two specific types of vehicles, namely bus and
truck, are with higher IoU. This may be due to the slow
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Figure 1. Self-consistency test. (a) The probability mass func-
tion for IoU using pre-trained SDC-Net. (b) Scatter plot of object
height versus IoU. (c) A visualization example, where green de-
picts the ground truth boxes, and red depicts the reconstructed
bounding boxes.

motion of buses and trucks, which is easier to estimate (in
contrast, other vehicle types tend to move faster). Another
potential reason is that buses and trucks do not often ap-
pear in groups unlike people and cars. The grouping for
objects makes motion estimation difficult due to potential
occlusions, and Fig. 1(c) shows one example. On the left-
hand side of this figure, motion deviation is large for the
group of people. Also, observe that all three buses are with
good bounding box reconstruction.
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Class car person truck rider motorcycle bicycle bus
IoU 0.84 0.76 0.89 0.78 0.76 0.78 0.92

Table 1. Per-class average IoU from the self-consistency test. Only
7 classes are shown, as there are no train instance from the 100
randomly sampled images.

2. Additional Details of PseudoProp
In this section, we will provide an example to explain the

procedure of BPLP and the details of WBF.

2.1. An Example Explaining Ŷt+1

This section explains the bidirectional pseudo-label
propagation (BPLP) on the frame Xt+1 to generate Ŷt+1

by setting k = 2 in Eq.(2) of the main paper.
Given k = 2, then K = {−2,−1, 1, 2}. Thus we should

do motion propagation from Yt+3 (for i = −2), Yt+2 (for
i = −1), Yt (for i = 1), and Yt−1 (for i = 2) to Yt+1,
respectively.

For Yt+3, the motion vector should be the combi-
nation of M(Xt+2:t+4, Vt+3:t+2) (for j = −2) and
M(Xt+1:t+3, Vt+2:t+1) (for j = −1). Therefore, we ob-
tain

Ŷ −2
t+1

= T
(
M(Xt+2:t+4, Vt+3:t+2) +M(Xt+1:t+3, Vt+2:t+1), Yt+3.

)
For Yt+2, the motion vector should be

M(Xt+1:t+3, Vt+2:t+1) (for j = −1). Therefore, we
have

Ŷ −1
t+1 = T

(
M(Xt+1:t+3, Vt+2:t+1), Yt+2

)
.

For Yt, the motion vector should be
M(Xt−1:t+1, Vt:t+1) (for j = 1). Therefore, we
have

Ŷ 1
t+1 = T

(
M(Xt−1:t+1, Vt:t+1), Yt

)
.

For Yt−1, the motion vector should be the combination
of M(Xt−2:t, Vt−1:t) (for j = 2) and M(Xt−1:t+1, Vt:t+1)
(for j = 1). Therefore, we have

Ŷ 2
t+1 = T

(
M(Xt−2:t, Vt−1:t) +M(Xt−1:t+1, Vt:t+1), Yt−1

)
.

Hence the final Ŷt+1 should be

Ŷt+1 = Ŷ −2
t+1 ∪ Ŷ −1

t+1 ∪ Ŷ 1
t+1 ∪ Ŷ 2

t+1.

2.2. The Weighted Box Fusion (WBF)

This section explains details of the weighted box fusion
(WBF), and the following procedure is organized from the
content of the original paper [3].

1. First, bounding boxes in Y t+1,c are sorted and saved in
a descending order list B according to their confidence
scores.

2. Define two lists L = ∅ and F = ∅ for box clus-
ters and fused boxes, respectively. Each position in the
list L can contain a set of boxes, which form a clus-
ter. Each position in F contains one box, which is the
fused box from the corresponding cluster in L.

3. Iterate through boxes in B and try to find a matching
box in the list F . The matching should satisfy that IoU
is greater than a user-defined threshold Thr.

4. If a match box is not found, add the current box from B
to the end of list L and F as new elements and proceed
to the next box in B.

5. If a match is found, add this box to the list L at cluster
r corresponding to the matching box in list F

6. For boxes in each cluster r, we calculate their average
confidence score Cr, and regard their individual confi-
dence score as a weight for their positions and do the
weighted average for the positions as follows.

Cr =
1

T

T∑
l=1

Cl
r, Pr =

∑T
l=1 C

l
r · P l

r∑T
l=1 C

l
r

,

where T is the total number of boxes in the cluster r.
Cl

r and P l
r are the confidence scores and the position

of the l-th box in the cluster r, respectively.

7. Re-scale Cr by Cr = Cr · min(T,|K|+1)
|K|+1 , where |K|

is the size of the set K from Eq. (3). Finally, Y t+1,c

only contains the average bounding box information
(c, Pr, Cr) from each cluster.

3. Additional Experimental Results
In this section, we will provide more experimental re-

sults.

3.1. The Details of Model Performance

We show the details of model performance under differ-
ent settings and also report the mAP50 performance on each
class in Table 2, 3, 4, 5, 6, and 7.

From Table 2, we can find our method can get the best
performance when using 1× pseudo-labeled data. How-
ever, when we increase pseudo-labeled data, the VideoProp
method has better performance. The reason is that the gen-
erated pseudo-labels from the VideoProp method are very
close to the GT labels. Therefore, the pseudo-labeled data
has high quality. But this method can only generate pseudo-
labels near the GT. Our model is more flexible and general
than the VideoProp. On the other hand, if we compare the
model performance in the “train” class, it is clear that our
method has high performance in the rare class when us-
ing 1× and 2× pseudo-labeled data. For Table 3, we can



Models Pseudo-labled
Data Ratio mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck

EfficientDet-D1 - 19.0 35.5 17.2 29.4 45.4 53.6 22.8 32.2 36.7 38.9 25.4
SSD - - 36.7 - 30.1 47.5 60.2 26.9 36.3 37.2 28.8 26.6

DSPNet - - 36.9 - 30.0 49.3 59.1 24.6 34.9 37.7 30.4 29.4

VideoProp
1× 21.7 40.3 19.9 32.4 52.8 59.4 26.5 35.1 39.7 42.4 33.9
2× 21.9 43.0 19.6 32.1 55.0 60.8 27.0 36.1 42.6 56.3 33.7
3× 22.3 42.0 19.8 34.1 55.1 60.3 24.4 37.6 41.5 48.4 34.7

Naive-Student (iteration 1)
1× 20.8 39.0 18.8 29.3 51.0 55.6 25.3 33.8 36.8 50.0 30.5
2× 21.2 38.9 19.6 31.1 49.7 55.5 23.4 33.9 37.7 48.3 31.8
3× 21.0 39.7 18.7 29.9 50.7 56.0 26.5 34.3 38.0 52.0 30.0

PseudoProp (iteration 1)
1× 21.6 40.4 19.9 30.9 50.3 56.3 24.5 34.9 37.5 56.4 32.2
2× 21.7 41.0 20.2 30.3 52.2 55.9 25.6 34.4 38.2 59.6 31.6
3× 21.7 40.0 19.8 31.2 50.4 57.0 25.4 35.8 38.4 49.3 32.3

Table 2. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of different object detection baseline models on the Cityscapes test dataset.
For semi-supervised models, we test different pseudo-labeled data ratio. The mAP50 (%) performance for each class is also reported.

Thresholds k mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck

0
1 21.8 39.5 20.5 31.0 50.0 56.1 26.2 34.2 38.1 49.4 31.1
2 20.4 39.9 18.0 29.5 49.7 55.3 24.9 33.6 37.1 57.6 31.2
3 21.7 40.3 20.0 30.5 51.3 55.8 26.0 33.4 37.2 57.9 30.8

0.1
1 21.6 40.4 19.9 30.9 50.3 56.3 24.5 34.9 37.5 56.4 32.2
2 21.3 39.6 19.4 30.6 51.8 55.3 25.1 34.3 38.0 52.1 29.4
3 20.8 40.1 18.9 30.7 50.9 55.4 24.1 34.5 37.8 56.0 31.1

0.2
1 21.8 40.3 20.3 29.5 51.9 56.2 24.8 33.8 37.4 58.4 30.2
2 20.6 39.1 18.6 31.0 49.2 55.3 23.4 33.7 37.5 55.1 27.9
3 20.5 39.5 18.4 31.0 48.5 55.1 24.5 33.9 37.2 54.7 31.2

0.3
1 21.0 40.1 18.6 31.7 48.6 56.5 22.2 34.0 37.1 58.5 32.3
2 20.7 39.2 18.0 30.7 48.0 55.5 23.8 33.9 37.3 55.1 29.5
3 20.7 39.3 19.7 30.1 48.3 55.4 21.2 33.8 36.9 56.4 32.4

Table 3. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of the PseudoProp model on the Cityscapes test dataset when using different
thresholds and different k values. The mAP50 (%) performance for each class is also reported.

Fusion Methods mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck
NMS 21.0 39.7 19.1 30.0 51.1 55.3 24.6 34.3 37.3 54.5 30.8
NMW 21.0 39.8 19.1 29.1 50.0 55.2 24.9 34.3 36.0 56.5 32.3
SNMS 21.2 39.8 19.3 30.2 50.7 55.1 24.6 33.2 36.5 57.7 30.1
WBF 21.0 39.6 19.1 30.6 49.4 55.3 24.6 34.0 37.0 55.9 30.1

SWBF 21.6 40.4 19.9 30.9 50.3 56.3 24.5 34.9 37.5 56.4 32.2

Table 4. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of the PseudoProp model on the Cityscapes test dataset when using different
fusion methods. The mAP50 (%) performance for each class is also reported.

Methods Labled
Data Size mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck

Naive-Student (iteration 1)
2000 20.8 39.8 18.3 30.0 49.4 55.5 25.0 35.1 38.1 56.2 29.5
1000 18.5 36.4 16.5 29.3 47.3 53.8 24.1 33.0 34.8 41.3 27.5
500 17.7 34.7 15.5 28.8 45.7 53.6 21.4 32.5 34.7 37.6 23.4

PseudoProp (iteration 1)
2000 20.8 39.8 18.3 30.0 49.4 55.5 25.0 35.1 38.1 56.2 29.5
1000 19.6 37.2 17.5 28.2 47.5 54.4 23.8 33.3 36.1 42.2 32.3
500 18.6 36.1 16.7 28.5 49.9 54.2 22.1 33.2 34.4 36.4 30.1

Table 5. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of the Naive-Student and PseudoProp models on the Cityscapes test dataset
when using different small labeled data size. The mAP50 (%) performance for each class is also reported.

Methods mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck
Naive-Student (iteration 2) 22.2 40.8 20.3 30.9 50.6 56.7 25.7 36.1 38.1 55.5 32.7
PseudoProp (iteration 2) 22.6 41.4 20.9 32.9 50.0 58.2 24.7 36.9 39.5 55.7 33.6

Table 6. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of the Naive-Student and PseudoProp models on the Cityscapes test dataset
at iteration 2. The mAP50 (%) performance for each class is also reported.

find the mAP, mAP50, and mAP75 performance of Pseu-
doProp method can achieve the best when we set k = 1.
For Table 4, we can find the SWBF fusion method outper-
forms other methods. Specifically, when we compare WBF

and SWBF, it is clear that applying the similarity method to
the WBF method can improve the model performance. For
Table 5, when we decrease the labeled data size, the per-
formance gap between Naive-Student and our PseudoProp



Models Pseudo-labled
Data Ratio mAP mAP50 mAP75 bicycle bus car motorcycle person rider train truck

Naive-Student* (iteration 1) 2× 22.8 43.3 19.8 34.0 54.6 60.5 26.1 38.0 41.2 56.6 35.6
3× 23.1 43.2 21.5 33.3 54.1 60.5 28.3 38.5 41.2 51.8 38.2

PseudoProp* (iteration 1) 2× 23.2 44.4 20.9 34.7 50.8 60.8 31.4 38.3 41.4 62.1 35.6
3× 23.1 43.9 21.3 34.2 55.2 61.3 30.8 39.0 41.7 53.4 35.5

Table 7. Comparison of mAP (%), mAP50 (%), and mAP75 (%) of the Naive-Student* and PseudoProp* models on the Cityscapes test
dataset at iteration 1 when using different pseudo-labled data ratio. The mAP50 (%) performance for each class is also reported.

will become large. This means the generated pseudo-labels
from our model are more reliable. For Table 6, comparing
Naive-Student and PseudoProp, we can find the proposed
SWBF method can be well adapted to the teacher-student
semi-supervised learning framework. For Table 7, when we
increase pseudo-labeled data size, both model performances
will be decreased. The reason is that more pseudo-labeled
data indicates more noise will be inserted and used in the
training procedure. However, we can find our method can
also get the best performance in mAP50.

3.2. Additional Visual Results

We compare the visual results in Figure 2, 3, 4, and 5, for
the ground truth, Naive-Student, VideoProp, and our pro-
posed PseudoProp respectively on the Cityscapes validation
dataset. From these figures, we can see that our PseudoProp
model can eliminate miss and false detections. This means
the pseudo-labels generated by our model are more robust.
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Figure 2. Visual comparison for the ground truth, Naive-Student, VideoProp, and our proposed PseudoProp on Cityscapes.
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Figure 3. Visual comparison for the ground truth, Naive-Student, VideoProp, and our proposed PseudoProp on Cityscapes.
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Figure 4. Visual comparison for the ground truth, Naive-Student, VideoProp, and our proposed PseudoProp on Cityscapes.
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Figure 5. Visual comparison for the ground truth, Naive-Student, VideoProp, and our proposed PseudoProp on Cityscapes.
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