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A. Point Pair Searching Algorithm

In this section, we present the searching algorithm on
finding lane point pairs to impose geometry supervision,
which is implemented as a greedy matching algorithm with
linear time complexity. As shown in Algorithm 1, the
input of this method is two lists of points on the corre-
sponding neighbour lane boundaries, and the output is the
matched key-value pairs of lane keypoints from the shorter
lane boundary to the longer one.

B. Derivation of the 2D Geometry Constraint

In this section, we derive the 2D geometry prior con-
straint proposed in main paper. First we define the 3D Eu-
clidean distance D3D and 2D Euclidean distance Dflat in
Equation 1,
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As illustrated in Figure 1, we define point P 3D
A and P 3D

E

in 3D space, and derive the corresponding target points P 3D
B

and P 3D
F from the formula of parallel curves in 2D para-

metric representation under the assumption of equal height
in the z-axis between corresponding point pairs, as shown
in Equation 2. Let c represent the constant distance between
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Figure 1. Geometry prior of 3D lanes.
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According to the virtual top view projection [2] in Equa-
tion 3, the 3D point is projected onto the ground plane g
w.r.t. the camera height h and lane point height z. Thus
we have the projection of 3D points P 3D

A and P 3D
B to the

ground as P 2D
A and P 2D

B in Equation 4.
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Algorithm 1: Search point pairs between two lane
boundaries using greedy matching with a sliding
window

Require: lane boundary L1 with 3D
points{(xi1, yi1, zi1), i = {1, 2, .., len(L1)}}, lane
boundary L2 with 3D
points{(xj2, yj2, zj2), j = {1, 2, .., len(L2)}}, constant
window size η, constant threshold θdist

Ensure: dict{(i : j)} as a dictionary of indices for all matched
pairs between lane boundary L1 and L2

1: N1← len(L1)
2: N2← len(L2) if N1 > N2, swap(L1, L2) // to ensure L1

is not larger than L2, i.e. we can always find a matched point
in L2 with the corresponding point in L1 as a pair; Always
start searching point pairs from the shorter lane boundary

3: mid1← N1
2

// the index of the middle number in L1, as the
start point for searching

4: mid2← index(Y mid1
ref ) // generate the search start point in

L2 from the identical y-reference of mid1
5: mid2← [mid2−η

2
, mid2+η

2
] and

argminDist3D
mid2

(L1[mid1], L2[mid2]) // to find the pair

(mid1,mid2) between two lane boundaries
// search backward:

6: for (i = mid1− 1; i > 1; i−−) do
7: j ← [mid2− 1,mid2− η] and

argminDist3D
j

(L1[i], L2[j])

8: dict← (i, j) // to find pair(i, j) and add it to dict
9: if |minDist3D(L1[i], L2[j])−minDist3D(L1[i−

1], L2[j − 1])| > θdist then
10: return NULL // to ensure the difference of lane width

is not large locally
11: end if
12: end for

// search forward:
13: for (i = mid1 + 1; i < N1; i++) do
14: j ← [mid2 + 1,mid2 + η] and

argminDist3D
j

(L1[i], L2[j])

15: dict← (i, j) // to find pair(i, j) and add it to dict
16: if |minDist3D(L1[i], L2[j])−minDist3D(L1[i+

1], L2[j + 1])| > θdist then
17: return NULL // to ensure the difference of lane width

is not large locally
18: end if
19: end for
20: return dict
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Following the 3D geometry constraint presented in the
paper, we assume the 3D lane has constant width c for each
lane point pairs, as described in Equation 5,
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thus we have the 2D Euclidean distance of point pairs
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therefore
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Thus,we define theD2D as the 2D Euclidean distanceDflat

weighted by camera height h and the same lane height z.
Thus
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therefore under the assumption of shared lane height be-
tween points, we have
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C. Transformation matrix of augmentation
We show the transformation matrix for imposing lane

augmentation on pitch (x), roll (y) and yaw (z) axes respec-



tively as
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D. Detailed Experimental Results
In this section, we first provide detailed quantitative re-

sults of lane lines in Table 1 and center lines in Table 2
on the data split of balanced scenes, rarely observed, visual
variations and extra-long range following the same setting
in the main paper. The joint metric results are evaluated on
all methods within the identical data split in the same ta-
ble, thus cross-split and cross-table comparison of the joint
metric is meaningless. Table 3 presents the ablation study
results on center lines, similar to the one for lane lines pre-
sented in our main paper.

For our proposed framework, the camera pose for view
projection can be estimated by an optional pose regression
branch jointly trained with the top view mask in the feature
extraction network. As a result, we conduct a comparison
for the 3D lane detection under predicted camera pose. We
also report the top view mask intersection-over-union (IoU)
for a better illustration of the effect on joint training of 2D
lane mask and camera pose. As shown in Table 4, when us-
ing predicted camera pose, the IoU of predicted lane mask
drops for roughly 3%, however, our proposed augmentation
can greatly ease the accuracy drop under unstable camera
pose prediction and result in only a slightly drop in the ac-
curacy of the 3D lane detection.

Also, we conduct an ablation study of the proposed aug-
mentation method. As shown in Table 5, the removal of
any augmentation method will result in an accuracy drop on
both segmentation and lane detection, which proves the ef-
fectiveness of all proposed augmentations. Specifically, the
roll augmentation should be considered significant for the
refinement of the segmentation mask by efficiently generat-
ing enriched lane patterns, and pitch augmentation is criti-
cal for generating new data with greater fluctuation of lane
height which will boost the results of the offset on the far
side.

E. Qualitative comparison
We present a detailed qualitative comparison of our pro-

posed method in Figure 4, 5 and 6. Compared to previ-
ous methods, our proposed solution makes tremendously

Figure 2. An extreme case of lane height

progress in noise elimination, outlier rejection, and struc-
ture preservation for 3D lanes. Result shows that our
method remains robust even under extreme lightness and
strong occlusion. Besides, we provide extra examples on
top view mask predictions of [2] and ours in 3, which
proves that our method could tremendously resolve the
problem of feature confusion especially in the far end.

F. Limitation

In this paper, the proposed pipeline of 3D lane detection
is based on 2D-3D lane reconstruction from the top view
lane representation. Compared with previous image feature
based 3D-LaneNet [1], the lane-mask based method could
tremendously reduce the number of network parameters by
extracting the lane height information from the flat ground
lane representation under the virtual top view projection.
However, one underlying limitation of such method is the
detection range on lane height. For the virtual top view pro-
jection utilized in Gen-LaneNet [2] and our paper, the lane
representation on flat ground is generated by projecting 3D
lanes via a ray start from the camera center. As a result, as
shown in Figure 2, for the cases when part of the lane ex-
ceeds the camera height, the 3D lane would be projected to
the backside of the camera and become invisible from the
top view. In this situation, the network could only make im-
plicit prediction on the out-of-range lanes by following the
geometry structure of the visible parts. Even though such
hard cases exist, our method could make a certain improve-
ment over Gen-LaneNet [2] on these cases by involving ge-
ometry prior.

For the vast majority of lane lines in reality, the lane
height would not exceed the camera height within the de-
tection range, which make it a trivial problem in most of the
cases. Thus we choose not to propose a detailed solution in
this paper for this problem and leave it to the future work.



Figure 3. Examples of front view supervision with mask pro-
jection [2] (top) and our top view supervision with feature pro-
jection (bottom).

G. Future Work
For the problem mentioned in the limitation section, we

consider to address this problem by two solutions in the fu-
ture work. First, utilizing multi-view feature fusion for a
combination of the full lane visibility in front view and the
accurate mask representation in top view. Second, involving
the “virtual camera view”, where multiple virtual cameras
are utilized to simulate different installation height for the
ensemble of detection results from various view projection.
Thus, the edge case of extra-height lanes would be fully
considered and the existing pipeline can be more robust un-
der extreme cases.
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Table 1. Evaluation results on lane lines.

Dataset Split Method F-Score AP x error near (m) x error far (m) joint x error far (m) z error near (m) z error far (m) joint z error far (m)

balanced scenes

3D-LaneNet [1] 86.4 89.3 0.068 0.477 0.454 0.015 0.202 0.186
Gen-LaneNet [2] 88.1 90.1 0.061 0.496 0.480 0.012 0.214 0.196
Ours 91.9 93.8 0.049 0.387 0.340 0.008 0.213 0.175
Gen-LaneNet(GT mask) [2] 91.8 93.8 0.054 0.412 0.361 0.011 0.226 0.180
Ours (GT mask) 92.8 94.7 0.044 0.360 0.306 0.007 0.219 0.172

rarely observed

3D-LaneNet [1] 72.0 74.6 0.166 0.855 0.906 0.039 0.521 0.551
Gen-LaneNet [2] 78.0 79.0 0.139 0.903 0.950 0.030 0.539 0.570
Ours 83.7 85.2 0.126 0.903 0.870 0.023 0.625 0.567
Gen-LaneNet(GT mask) [2] 84.7 86.6 0.117 0.839 0.785 0.024 0.611 0.548
Ours (GT mask) 87.8 89.5 0.101 0.791 0.719 0.017 0.605 0.526

visual variations

3D-LaneNet [1] 72.5 74.9 0.115 0.601 0.546 0.032 0.230 0.175
Gen-LaneNet [2] 85.3 87.2 0.074 0.538 0.444 0.015 0.232 0.161
Ours 89.9 92.1 0.06 0.446 0.331 0.011 0.235 0.156
Gen-LaneNet(GT mask) [2] 90.2 92.3 0.073 0.502 0.385 0.013 0.249 0.150
Ours (GT mask) 91.3 93.2 0.055 0.435 0.309 0.010 0.249 0.155

extra-long range

3D-LaneNet [1] 60.1 63.2 0.106 0.559 0.544 0.014 0.139 0.123
Gen-LaneNet [2] 68.5 69.2 0.064 0.524 0.503 0.010 0.112 0.088
Ours 83.6 85.3 0.039 0.290 0.250 0.007 0.087 0.072
Gen-LaneNet(GT mask) [2] 80.7 82.5 0.052 0.335 0.300 0.011 0.097 0.084
Ours (GT mask) 87.2 89.1 0.032 0.242 0.221 0.006 0.054 0.047

Table 2. Evaluation results on center lines.

Dataset Split Method F-Score AP x error near (m) x error far (m) joint x error far (m) z error near (m) z error far (m) joint z error far (m)

balanced scenes

3D-LaneNet [1] 89.5 91.4 0.066 0.456 0.433 0.015 0.179 0.160
Gen-LaneNet [2] 90.8 92.6 0.055 0.457 0.444 0.011 0.176 0.167
Ours 94.6 96.9 0.046 0.346 0.306 0.007 0.185 0.149
Gen-LaneNet (GT mask) [2] 94.5 96.8 0.050 0.372 0.325 0.010 0.190 0.149
Ours (GT mask) 95.0 97.2 0.038 0.317 0.273 0.006 0.180 0.140

rarely observed

3D-LaneNet [1] 77.0 80.0 0.162 0.883 0.927 0.040 0.557 0.587
Gen-LaneNet [2] 79.5 80.6 0.121 0.885 0.937 0.026 0.547 0.606
Ours 84.1 85.7 0.127 0.887 0.851 0.024 0.625 0.575
Gen-LaneNet (GT mask) [2] 85.9 87.7 0.105 0.845 0.812 0.022 0.622 0.576
Ours (GT mask) 87.7 89.7 0.086 0.785 0.743 0.015 0.616 0.559

visual variations

3D-LaneNet [1] 75.5 77.7 0.120 0.636 0.578 0.030 0.227 0.174
Gen-LaneNet [2] 88.2 90.0 0.072 0.438 0.430 0.015 0.187 0.143
Ours 92.2 94.3 0.055 0.411 0.300 0.010 0.213 0.131
Gen-LaneNet (GT mask) [2] 92.3 94.2 0.071 0.467 0.356 0.013 0.234 0.135
Ours (GT mask) 93.7 96.1 0.055 0.397 0.281 0.009 0.222 0.130

extra-long range

3D-LaneNet [1] 62.2 64.0 0.106 0.559 0.526 0.014 0.139 0.071
Gen-LaneNet [2] 69.4 70.1 0.058 0.507 0.465 0.009 0.082 0.040
Ours 85.8 87.6 0.037 0.264 0.204 0.007 0.067 0.032
Gen-LaneNet (GT mask) [2] 83.0 84.3 0.050 0.313 0.251 0.011 0.076 0.035
Ours (GT mask) 88.6 90.4 0.031 0.205 0.147 0.007 0.054 0.028

Table 3. Ablation study on center line prediction.

Method F-Score AP x error near (m) x error far (m) joint x error far (m) z error near (m) z error far (m) joint z error far (m)
3D-LaneNet [1] 89.5 91.4 0.066 0.456 0.427 0.015 0.179 0.157
Gen-LaneNet [2] 90.8 92.6 0.055 0.457 0.435 0.011 0.176 0.164
Ours w/ GS 92.3 94.2 0.047 0.415 0.372 0.008 0.186 0.150
Ours w/ TVS 92.7 94.7 0.059 0.411 0.360 0.012 0.208 0.158
Ours w/ GS + TVS 93.7 95.9 0.062 0.377 0.333 0.008 0.187 0.150
Ours w/ GS + TVS + Aug 94.6 96.9 0.046 0.346 0.300 0.007 0.185 0.146
Gen-LaneNet (GT mask) [2] 94.5 96.8 0.050 0.372 0.318 0.010 0.190 0.145
Ours (GT mask) 95.0 97.2 0.038 0.317 0.268 0.006 0.180 0.137

Table 4. Ablation study on camera pose and augmentation.

Task Method Top-view mask IoU F-Score AP x error near (m) x error far (m) joint x error far (m) z error near (m) z error far (m) joint z error far (m)

Lane line

Pred cam pose w/o Aug 91.7 90.1 92.2 0.064 0.447 0.426 0.017 0.243 0.222
Pred cam pose w Aug 92.9 91.0 93.2 0.066 0.444 0.407 0.019 0.240 0.222
GT cam pose w/o Aug 94.7 91.2 93.2 0.065 0.415 0.394 0.009 0.220 0.207
GT cam pose w Aug 96.4 91.9 93.8 0.049 0.387 0.363 0.008 0.213 0.200

Center line

Pred cam pose w/o Aug 91.7 92.9 94.9 0.058 0.419 0.394 0.017 0.213 0.196
Pred cam pose w Aug 92.9 93.3 95.4 0.063 0.408 0.369 0.018 0.212 0.194
GT cam pose w/o Aug 94.7 93.7 95.9 0.062 0.377 0.354 0.008 0.187 0.173
GT cam pose w Aug 96.4 94.6 96.9 0.046 0.346 0.322 0.007 0.185 0.169



Table 5. Ablation study on 3D lane augmentation on different axes.

Task Method Top-view mask IoU F-Score AP x error near (m) x error far (m) z error near (m) z error far (m)

Lane line

No Aug 94.7 91.2 93.2 0.065 0.415 0.009 0.220
Pitch + Yaw (w/o Roll) 95.0 91.3 93.3 0.051 0.402 0.012 0.219
Pitch + Roll (w/o Yaw) 95.4 91.4 93.4 0.049 0.414 0.010 0.217
Yaw + Roll (w/o Pitch) 95.4 91.2 93.3 0.060 0.438 0.011 0.228
Pitch + Yaw + Roll (Ours) 96.4 91.9 93.8 0.049 0.387 0.008 0.213

Center line

No Aug 94.7 93.7 95.9 0.062 0.377 0.008 0.187
Pitch + Yaw (w/o Roll) 95.0 94.2 96.6 0.050 0.359 0.010 0.188
Pitch + Roll (w/o Yaw) 95.4 93.7 95.8 0.047 0.365 0.008 0.187
Yaw + Roll (w/o Pitch) 95.4 93.5 95.7 0.057 0.386 0.010 0.191
Pitch + Yaw + Roll (Ours) 96.4 94.6 96.9 0.046 0.346 0.007 0.185

Figure 4. Qualitative comparison results of proposed method on lane lines with a maximum range of 100m. First row: 3D-
LaneNet [1]; Second row: Gen-LaneNet [2]; Third row: Our proposed method.

Figure 5. Qualitative comparison results of proposed method on lane lines with a maximum range of 200m. First row: 3D-
LaneNet [1]; Second row: Gen-LaneNet [2]; Third row: Our proposed method.

Figure 6. Qualitative comparison results of proposed method on center lines. First row: 3D-LaneNet [1]; Second row: Gen-
LaneNet [2]; Third row: Our proposed method.


