
Appendix
We provide a detailed description of the K-Lane dataset

and the development kits (devkits), and detailed structure of
proposed LLDN-GFC with its CNN-based counterparts, in
Section A, and B, respectively. In addition, Section C shows
ablation study for the network hyper-parameters of the pro-
posed LLDN-GFC (i.e., Proj28-GFC-T3), low computa-
tional alternative (i.e., Pillars-GFC-M5), and the counter-
parts. Furthermore, Section D shows qualitative lane detec-
tion results for K-Lane, and visualization of both heatmap
of features and the attention score. Lastly, Section E shows
the comparison between LLDN-GFC and heuristic lane de-
tection methods.

A. K-Lane and Devkits
Section A contains technical details that may helps re-

searchers in using the K-Lane datasets and devkits.

A.1. Details of K-Lane and Devkits
In this section, we present three additional details about

the K-Lane: sequence distributions, compositions, and the
criteria of driving conditions annotations of the dataset.
Sequence Distribution. K-Lane dataset consists of fifteen
sequences that have different set of road conditions. The
details of the sequences are shown in Table 3. For the test
data, we provide additional driving conditions annotations
on each frame (i.e., curve, occlusion, merging, and number
of lanes) with annotation tool shown in Section A.2.
Conditions Criteria. To evaluate the LLDN performance
depending on data characteristics, we provide 13 different
categories of driving conditions as shown in Table 4. Ex-
amples of each condition are shown Fig. 1, and each frame
can have two or more conditions, for example, day time and
occlusion.
Dataset Composition. The K-lane is divided into fifteen di-
rectories, each representing a sequence. Each directory has
one associated file that describe the driving condition of the
frames in the sequence, and contains files for the collected
point cloud data, BEV point cloud tensor (i.e., stacked pil-
lars shown in Fig. 10), BEV label, front (camera) images,
and calibration parameters, as shown in Table 5. Pedestri-
ans’ faces are blurred on the front images for privacy pro-
tection. Interface for pre-processing the files is provided in
Section A.2.

A.2. Details of Development Kits
In addition to the K-Lane dataset, we also provide the

devkits which can be used to expand the dataset, and to de-
velop further LLDNs. The devkits are available to the pub-
lic in the form of three programs: (1) TPC - Total Pipeline
Code for training and evaluation, (2) GLT - Graphic User
Interface (GUI)-based Labeling Tools, and (3) GDT – GUI-

Seq-
uence

Num.
Frames

Location Time

1 1708 Urban roads [city #1] Night
2 803 Urban roads [city #2] Day
3 549 Urban roads [univ. #1] Day
4 1468 Urban roads [univ. #1] Day
5 251 Urban roads [city #2] Day
6 132 Urban roads [city #2] Day
7 388 Urban roads [city #2] Day
8 357 Urban roads [city #2] Day
9 654 Urban roads [city #2] Day

10 648 Urban roads [city #2] Day
11 1337 Urban roads [city #2] Night
12 370 Urban roads [city #2] Night
13 2991 Highway [city #2 to city #3] Day
14 1779 Highway [city #2 to city #3] Night
15 1947 Highway [city #3 to city #2] Night

Table 3. Sequences in K-Lane.

based development Tools for evaluation, visualization, and
additional conditions annotations.
Total Pipeline Code. TPC is a complete neural network
development code that supports pre-processing of the in-
put data and label, train the network, and perform evalua-
tion based on the F1-metric. TPC handles input and out-
put as Python dictionaries and support modularization of
the LLDN (BEV encoder, GFC, detection head), therefore,
providing comprehensive and flexible support to develop-
ers.
GUI-based Labeling Tools. GLT provides an easy way to
develop a labeled dataset for a Lidar and a front view cam-
era, regardless of the Lidar and camera models. As shown
in Fig. 8 (left), GLT provides an easy way for labeling by
showing the intensity of point cloud in a BEV image. Fig. 8
(middle) shows a synchronized front camera image for easy
labeling of point cloud, and Fig. 8 (right) shows the saved
labeled point cloud.
GUI-based Development Tools. GDT is a GUI program
used together with TPC. GDT provides visualization of in-
ference results for each scene as point cloud or camera im-
age with projected lanes (Fig. 9-b), high-accuracy calibra-
tion of camera and Lidar sensors with specific points of the
lanes (Fig. 9-c), and annotation of each frame with set of
buttons (Fig. 9-d).

B. Details of LLDNs
This section provides a detailed neural network structure

of the LLDN-GFC proposed in Section 3.2 of the main pa-
per and its counterparts, CNN-based LLDN.

B.1. Details of LLDN-GFC
This section describes the sub-structure of the proposed



Conditions Explanation Num. Frames
Urban Data acquired from city or university 8607

Highway Data acquired on Highway 6775
Night Data acquired at night (approximately 20:00-2:00) 7139

Daytime Data acquired during the daytime (about 12:00-16:00) 8243
Normal Data without curved or merging lanes (mostly straight lanes) 11065

Gentle Curve Data with curved lanes whose radius of curvature is greater than 160 [m] 1804
Sharp Curve Data with curved lanes whose radius of curvature is less than 160 [m] 1431

Merging Data with a converging or diverging lane at the rightmost or leftmost lane 982
No Occlusion Data without occluded lanes based on the lane label 9443
Occlusion 1 Data with one occluded lane based on the lane label 2660
Occlusion 2 Data with two occluded lanes based on the lane label 2112
Occlusion 3 Data with three occluded lanes based on the lane label 793

Occlusion 4-6
Data with four to six occluded lanes based on the lane label;
Since there are few samples of data with five or six occluded lanes,
they are integrated as a single condition (i.e., four to six occluded lanes).

374

Table 4. Condition details

Datum Type Extension Format Comment

Point cloud .pcd Point cloud with 131072 points
Input to point projector and
heuristic technique

BEV point cloud tensor .pickle Ng ×Nc ×Np size array Input to pillar encoder

BEV label .pickle Hbev × (Wbev + 6) size array
Lane label including unlabeled lane
per row (6 columns are for the possible
row-wise detection-based approaches)

Front image .png RGB image For annotation and visualization
Calibration parameters .txt Intrinsic and extrinsic parameters For Lidar-camera projection

Condition .txt Condition (e.g., night and day) For evaluation

Table 5. Dataset Composition

Figure 8. GUI-based Labeling Tool (GLT): (a) Overall components of GLT, (b) Labeling process of a point cloud, (c) Finalizing and saving
the label.

baseline LLDN-GFC, first shown in Fig. 4. We divide the
LLDN-GFC structure into three parts: the BEV encoder, the
global feature corrector (GFC), and the detection head. The
functions (1)∼(5) of Fig. 4 are equivalent to the functions
(1)∼(5) of Fig. 10∼12. (e.g., (1) of Fig. 4 is equivalent to
(1-1) and (1-2) of Fig. 10.)
BEV Encoder. BEV encoder projects 3D point cloud into
a horizontal plane to produce 2D pseudo-BEV image. A
large number of heuristic path planning algorithms, such as

A* [4], RRT* [7], and End-to-End autonomous driving al-
gorithms [1] require lane lines on 2D BEV images. The pro-
posed LLDN-GFC variants use one of the two most com-
mon 2D BEV encoders, as shown in Fig. 10.

The primary 2D BEV encoder for the LLDN-GFC is the
point projector [8, 12] that projects point clouds into xy-
horizontal plane and produces pseudo-BEV images using
CNN. In this case, three additional information (z, intensity,
and reflectivity) other than x and y of the point cloud is used



Figure 9. GUI-based Development Tools (GDT): (a) overall components of GDT and loading a data, (b) visualization of the LLDN
inference results, (c) calibrating Lidar with camera (d) annotating a frame.

Figure 10. Detail structure of two BEV encoder: Point Projector
and Pillar Encoder.

to generate three channels of the produced pseudo-BEV im-
age. In order not to lose lane information while maintain-
ing the real-time speed, we use only to a depth of the CNN
where the feature map becomes the 1/82 of the pseudo-BEV
image input. To this end, we may use the first 14, 28, and
41 convolutional layers of the ResNet-18, ResNet-34, and
ResNet-50 [5], respectively. Note that we denote these par-
tial ResNets as ResNet14, ResNet28, and ResNet41 in the
ablation studies in Section C, and that ResNet28 is the one
used for the proposed LLDN-GFC.

An alternative for low computational 2D BEV encoder
is the pillar encoder based on Point Pillars [9] that has rela-
tively small network size. Pillar encoder has slightly lower

performance but faster inference speed than the CNN-based
point projector. Therefore, in this paper, pillar encoder
is presented for real-time applications. As shown in Fig.
10, the pillar encoder aligns the point cloud in each grid
of the horizontal plane to generate stacked pillars of size
Ng×Nc×Np, where Ng is the total number of grids, Nc is
the point feature components, and Np is the maximum num-
ber of points present on the grid. Then, a simplified version
of PointNet [10] consisting of shared MLP’s of size Nc×C
is applied to each grid to extract pseudo-BEV image of size
Hbev ×Wbev × C. In this paper, considering that a lane in
the real-world has a width of about 16cm and stretches long
in the longitudinal direction of the road, the grid size in the
pseudo-BEV is set to 32cm in the longitudinal direction and
16cm in the lateral direction.
Global Feature Correlator. Due to the advantage of patch-
wise self attention networks (i.e., calculating the correlation
in high resolution between distant grids within the feature
map) for Lidar lane detection, we utilize two types of patch-
wise self-attention network for global correlation, ViT [2]
and MLP-Mixer [15] to propose two possible GFCs, GFC-T
(the main proposal) and GFC-M (the computational alterna-
tive), respectively. In this section, we provide the structure
of those GFCs in detail.

Fig. 11 shows the details of the two types of GFC, GFC-
T and GFC-M. Both of the two GFCs employ (2-1), (2-2),
(4-1), and (4-2) functions, while GFC-T employs (A) Trans-
former blocks and, a low computational alternative, GFC-



Figure 11. Details of proposed Global Feature Correlators; the
input size is expressed with height Hbev , width Wbev , and number
of channels C, and a patch size has height Hp and width Wp.
The input and output size in Mixer block and Transformer encoder
block is the same and the block repeats ND times.

M uses (B) Mixer blocks for global correlation. In Fig.
11, function (2-1) reshapes the pseudo-BEV image into a
2D tensor for global correlation. Function (2-2) performs
per-patch linear transform, and functions (3-1) and (3-2)
perform global correlation through per-channel MLPs (i.e.,
Multi-head attention or Token-mixing MLP) and per-patch
MLPs (i.e., Feed forward or Channel-mixing MLP), respec-
tively. The Transformer encoder block in (A) performs
global correlation between image patches using three MLPs
calculating query, key, and value and utilizes the global cor-
relation result to pay more attention (i.e., larger attention
score) to the important patches to improve the global feature
extraction. In addition, the Transformer encoder block al-
lows visualization of the attention score, which can be used
for analyzing the network inference, as shown in Appendix
H. However, since the Transformer encoder block becomes
a large network for the three MLPs and repeats calculat-
ing the attention score for every query (i.e., patch), the total
computational cost increases in quadratic with the number
of patches. On the other hand, Mixer block in (B) replace
the multi-head attention, (3-1) in (A), with a single MLP,
(3-1) in (B), which allows smaller network size and lower
computational cost but it becomes difficult to analyze the
network through attention score and causes lower model in-
ductive bias than the Transformer block. Nonetheless, the
two types of GFCs (GFC-T and GFC-M) show strong per-
formance improvement in the Lidar lane detection.

Function (4-1) reshapes the last output of Transformer
encoder and Mixer block to the size required for the lane
detection head. Note that ViT and MLP-Mixer for the con-
ventional image classification compress the detected feature
with a classification token and global average pooling, re-
spectively, but the proposed GFC reshapes the size up to

Hbev × Wbev that is the input size to the function (2-1).
This is how the proposed GFC provides inductive bias to
the output feature map, which is testified with the visual-
ized heatmap in Section 4.1, where high activation result
is obtained in the resolution of pixels (much smaller reso-
lution than patches). Note that the number of total pixels
after the reshape becomes Hp × Wp times the number of
total patches (Npatch = Hbev/Hp ×Wbev/Wp) before the
reshape, which means that each pixel of the reshaped fea-
ture map has Nh/(Hp ×Wp) dimension as a result. Since
the channel size of the reshaped output image depends on
the hidden dimension Nh, it can be smaller than that of the
input BEV image, Cbev . This may cause bottleneck [14],
so function (4-2) applies 1x1 convolution and produces the
final output feature map for the detection head.

Detection Head. Fig. 12 shows the detection head intro-
duced in Section 3.2. There are two segmentation heads:
the classification head and the confidence head. Given an
input of Hbev × Wbev × Cout feature map from the GFC,
we employ two sequential shared-MLPs to create the final
prediction maps output. The first shared-MLP expands the
dimension of the feature map from Cout to 2Cout for both
classification and confidence heads to increase the represen-
tation capacity. The second shared-MLP then transforms
the feature maps from 2Cout to Ncls and from 2Cout to
1 for the classification head and confidence head, respec-
tively, resulting in a classification map and confidence map
predictions. We then apply a grid-wise softmax to the clas-
sification map to get the Hbev ×Wbev ×Ncls classification
map output, and a grid-wise sigmoid to the confidence map
to get the Hbev×Wbev×1 confidence map output. The clas-
sification map shows per-class-probabilities of each grid,
while the confidence map only shows the probability of the
grid being a lane or not. The implementation of both classi-
fication and confidence tasks in parallel enables the LLDN
to simultaneously predict the lane shape and the lane class.

As stated in Section 3.2, we use the soft dice loss [13]

Figure 12. Detection head of the proposed LLDN-GFC.



for supervising the confidence loss Lconf , defined as
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where ϵ is set to be 10−12 to prevent division by zero. The
grid-wise cross-entropy loss [11] is used as the classifica-
tion loss Lcls, defined as

Lcls =
1
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log(p(x̂clsi,j )), (2)

where p(x̂clsi,j ) is the softmax of the classification predic-
tion for class k = xclsi,j at grid (i, j), defined as

p(x̂clsi,j ) =
exp(x̂clsi,j,k)∑C

k′=1 exp(x̂clsi,j,k′ )
. (3)

The grid-wise cross-entropy loss penalizes the network
based on the deviation of p(x̂clsi,j ) from 1, which is equiv-
alent to maximizing the probability of the correct class for
each grid on the final classification map output. The total
loss function Ltotal is the summation of both classification
loss and the confidence loss as

Ltotal = Lconf + Lcls. (4)

B.2. Details of CNN-based LLDN
As we introduce in Section 4.1, we consider three

types of CNN-based backbone as the counterparts of GFC,
ResNet and FPN (RNF)-based backbone: (1) RNF-S, (2)
RNF-D, and (3) RNF-C, where S, D, and C represent
residual blocks implemented with strided convolution, di-
lated convolution, and convolutional block attention mod-
ule (CBAM) [16], respectively. As shown in Fig. 6, there
are 5 residual blocks composed of 3, 5, 5, 5, and 5 convo-
lutional layers in the ResNet side. Each block produces a
feature map that is 22 times smaller than the input feature
map, and the feature pyramid network (FPN) concatenates
the feature maps from each block to produce the final output
feature map.

Figure 6. Overall structure of the conventional CNN-based back-
bone.

C. Ablations
In this section, we perform several ablation studies on

the proposed LLDN-GFC, the low computational alterna-
tive, and the the conventional CNN-based LLDNs.
Ablations on Network Depth. Since hyperparameters re-
lated to the depth of LLDN are BEV encoder depth, the
depth of backbone, we provide ablation studies in the fol-
lowing tables (Table 6∼9) to compare the performance
of the LLDN with various BEV encoder, such as Proj14,
Proj28, Proj41, and Pillars, and the depth of backbone. Ta-
bles in this subsection shows F1-score on the confidence
(upper value) and that on the classification (lower value) in
each table bin. FPS stands for frame per second, represent-
ing the overall computational cost of inference.

As shown in the Table 7, when we use Proj28 and in-
crease the depth of GFC-T from GFC-T1 to GFC-T3, the
performance increases by +2.3 and +2.3 in F1-scores on the
confidence and the classification, respectively. In addition,
as shown in the Table 6 and Table 7, when we use GFC-
T3 and varies BEV depth from Proj14 to Proj28, the per-
formance increases by +1.1 and +2.2 in F1-scores on the
confidence and the classification, respectively. However,
performance degradations are observed when the depth of
GFC-T is increased from GFC-T3 to GFC-T5 for Proj28
and when depth of BEV encoder is increased from Proj28
to Proj41 for GFC-T3. From our ablation studies, we find
that the model with an appropriate capacity can be Proj28-
GFC-T3 for the proposed LLDN-GFC, Pillars-GFC-M5 for
the low-computational alternative, and Proj28-RNF-S13,
Proj28-RNF-C13, Proj28-RNF-D23 for the LLDNs using
the conventional CNN-based backbones.

Note that for models with larger capacities, some reg-
ularization methods or more sophisticated learning tech-
niques may be applied to reduce overfitting. However, those
learning techniques are out of the scope of our study, since
we focus on the network architecture and dataset.
Ablations on Hidden Dimension. As shown in the Table
10 and 11, we perform ablation studies on different hid-
den dimension size for Proj28-GFC-T3 and Pillars-GFC-
M5, which are the best performing model of the proposed
LLDN-GFC and its low computational alternative, respec-
tively. As denoted in Section B.1, the hidden dimension Nh

is the number of channels for each patch after the per-patch
linear transform, indicating that higher value of hidden di-
mension leads to higher model capacity per each grid.

Table 10 shows the performance for various hidden di-
mension Nh of Proj28-GFC-T3; Nh=512 outperforms other
variants, such as Nh=128 and Nh=2048. On the other hand,
since Pillars-GFC-M5 requires more model capacity per
each grid than Proj-GFC-T, Pillars-GFC-M with Nh=2048
outperforms that with Nh=512.
Ablations on Patch Size. We also perform ablation studies
on the patch size of the Proj28-GFC-T3 and Pillars-GFC-



Back-
bone

Total Day Night
Ur-
ban

High-
way

Nor-
mal

Gentle
Curve

Sharp
Curve

Mer-
ging

No
Occ

Occ
1

Occ
2

Occ
3

Occ
4-6

FPS

GFC
-T1

77.5 77.3 77.8 76.1 79.1 78.2 78.1 70.3 77.3 78.5 76.9 76.5 73.1 69.8
12.7

76.1 76.1 76.1 74.6 77.9 76.9 76.6 68.4 76.5 77.1 74.9 75.7 73.1 69.0
GFC
-T3

81.0 81.0 80.9 80.1 82.0 82.0 81.7 75.2 79.8 81.8 80.5 80.1 77.2 75.7
12.680.1 80.4 79.7 79.0 81.3 81.0 81.0 74.0 79.1 80.8 79.2 79.8 76.4 75.4

GFC
-M1

74.8 74.7 74.9 72.9 77.1 74.2 77.0 66.1 73.1 75.5 74.5 75.2 70.6 65.0
16.1

73.4 73.6 73.3 71.2 76.1 74.2 75.7 63.7 72.2 74.1 72.2 74.8 69.3 64.1
GFC
-M3

78.9 79.0 78.9 77.5 80.6 79.5 80.4 72.2 77.6 79.8 78.3 78.5 74.7 70.1
15.4

77.8 78.0 77.6 76.2 79.8 78.4 79.4 70.5 76.7 78.7 76.8 77.8 73.8 69.4
RNF
-S8

74.6 73.3 76.0 73.2 76.2 74.8 76.1 69.6 75.8 76.5 73.9 71.7 66.3 61.8 16.5
58.0 58.0 58.0 58.8 57.1 58.3 57.3 54.9 62.0 60.8 55.0 54.2 50.3 42.6

RNF
-C8

77.7 76.4 79.3 76.3 79.4 78.0 79.6 72.2 78.0 79.5 77.0 75.0 70.7 66.9
15.5

63.7 62.5 65.0 62.6 65.0 63.9 64.7 58.1 65.9 66.3 60.9 59.6 56.7 48.6
RNF
-D8

74.8 73.4 76.5 73.1 77.0 74.8 77.6 70.1 75.9 76.7 74.6 72.2 65.9 62.0
15.3

55.4 55.5 55.4 56.1 54.6 55.5 55.3 52.7 60.7 57.7 53.1 53.0 47.4 42.1
RNF
-S13

67.4 65.9 69.2 66.4 68.7 67.3 69.6 63.9 69.6 69.2 67.0 64.3 59.6 56.8
15.0

62.0 60.9 63.3 61.4 62.7 61.8 64.1 59.1 65.6 63.9 61.0 59.0 55.2 50.2
RNF
-C13

78.0 77.1 79.0 77.1 79.2 78.4 79.2 72.2 78.7 79.5 77.4 76.1 71.6 66.6
14.9

69.2 69.2 69.3 68.5 70.2 69.7 70.4 62.7 70.6 71.2 67.1 67.4 63.0 54.6
RNF
-D13

76.9 75.7 78.2 75.5 78.5 77.0 79.0 71.5 77.8 78.7 76.2 74.3 69.1 63.6
14.8

60.4 60.2 60.7 61.7 58.9 60.8 59.7 56.21 65.5 62.9 57.6 57.1 53.8 46.7

Table 6. Proj14-based LLDN performance for backbones with various depth.
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mal
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Curve

Sharp
Curve
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ging

No
Occ
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1

Occ
2

Occ
3

Occ
4-6

FPS

GFC
-T1

79.8 79.6 80.0 79.4 80.3 80.2 80.6 75.2 79.4 80.8 79.1 78.7 74.9 72.8
11.8

78.8 78.9 78.7 78.3 79.4 79.3 75.2 73.5 78.4 79.8 77.7 78.2 73.9 72.5
GFC
-T3

82.1 82.2 82.0 81.7 82.5 82.5 82.2 78.0 81.0 82.9 81.4 82.3 78.7 75.9
11.681.1 81.4 80.7 80.6 81.7 81.5 83.0 76.7 80.1 81.9 81.4 81.3 78.7 75.5

GFC
-T5

81.1 81.0 81.2 80.6 81.7 82.0 82.3 76.0 80.0 82.1 80.5 79.6 77.3 77.2
11.2

79.5 79.5 79.4 78.7 80.4 80.0 80.7 73.0 78.8 80.3 78.5 78.6 75.3 76.2
GFC
-M1

78.5 78.5 78.4 77.8 79.3 78.9 80.0 72.5 78.0 79.4 77.8 77.7 74.5 70.2 13.4
77.3 77.6 77.0 76.4 78.4 77.8 79.1 70.2 76.9 78.2 77.8 77.7 74.5 69.5

GFC
-M3

79.7 79.9 79.6 78.9 80.8 80.1 81.3 74.6 79.0 80.4 79.6 79.4 76.1 72.5
13.3

78.8 79.0 78.4 77.7 80.0 79.2 80.4 72.6 78.1 79.4 78.3 78.9 74.9 71.7
GFC
-M5

78.7 77.3 78.8 78.0 79.6 79.0 80.5 73.5 77.6 79.6 78.2 78.1 74.7 69.9
13.1

79.2 79.5 78.9 78.4 80.1 79.0 81.1 73.6 78.4 80.1 78.6 78.6 75.3 71.4
RNF
-S8

74.6 73.9 75.4 74.4 74.9 74.9 75.3 70.5 76.0 76.5 73.5 71.8 66.9 64.8
13.2

63.0 62.8 63.3 63.4 62.6 63.5 62.7 57.6 66.7 65.3 60.3 60.9 54.7 49.8
RNF
-C8

78.1 77.3 79.1 77.6 78.7 78.2 79.7 74.9 79.0 79.7 77.3 76.1 71.5 68.6
13.1

70.3 69.7 71.0 69.8 70.9 70.4 71.6 66.6 72.0 72.2 68.0 69.0 62.8 58.5
RNF
-S13

73.2 72.6 74.0 73.1 73.3 73.3 74.0 70.5 74.8 74.9 72.2 70.9 65.7 63.5
13.1

70.5 70.1 71.0 70.4 70.6 70.4 71.9 68.1 72.5 72.3 68.4 69.0 63.3 59.0
RNF
-C13

78.0 77.6 78.5 77.7 78.3 77.9 80.0 76.0 78.9 79.6 76.9 76.0 71.9 69.3
13.0

75.3 75.1 75.5 74.8 76.0 75.0 77.9 73.1 76.5 77.0 73.1 74.1 69.2 65.3
RNF
-D13

69.5 68.4 70.8 69.5 69.6 69.6 70.1 67.3 72.1 71.6 68.5 66.2 61.5 58.5
13.1

65.5 64.9 66.2 65.6 65.3 65.5 65.8 62.9 68.7 67.6 63.1 63.0 58.5 54.6
RNF
-D23

72.1 71.3 73.0 71.9 72.3 72.2 72.9. 69.6 74.0 74.0 70.9 69.5 63.8. 61.9
12.7

68.8 68.3 69.4 68.7 69.0 68.8 69.8 66.5 71.8 70.7 66.8 67.2 61.1 57.6

Table 7. Proj28-based LLDN performance for backbones with various depth.

M5. The results in Table 10 and 11 show that there is a
significant performance drop as P is increased from 8 to 16.

This is because when the patch size is increased to 16 (from
8), the number of grids covered by a patch increases four
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bone
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GFC
-T1

77.8 77.7 77.9 77.5 78.2 78.3 78.5 72.3 78.0 78.9 76.7 76.5 74.2 70.0
11.0

76.4 76.7 76.1 76.2 76.6 77.0 76.9 70.4 77.2 77.4 75.0 75.6 73.0 69.7
GFC
-T3

80.5 80.6 80.5 80.4 80.7 81.2 80.9 75.2 79.3 81.4 79.8 79.4 77.3 75.0
10.979.1 79.4 78.8 79.1 79.1 79.8 79.4 73.4 78.3 79.9 78.2 78.5 75.9 74.5

GFC
-M1

78.2 78.3 78.1 77.0 79.7 78.8 79.6 71.5 77.2 79.0 77.6 78.1 73.9 71.2 11.7
77.1 77.4 76.7 75.7 78.9 77.8 78.4 69.4 76.3 77.9 77.5 77.5 72.7 70.6

GFC
-M3

79.9 80.1 79.7 79.2 80.9 80.5 80.6 74.9 79.0 80.9 79.0 79.5 76.1 72.2
11.6

78.8 79.2 78.4 77.8 80.1 79.4 72.5 72.5 77.9 79.7 77.4 79.0 75.0 71.2
GFC
-M5

79.7 79.8 79.7 79.0 80.7 80.1 81.1 74.6 79.6 80.6 79.4 79.1 75.7 70.6
11.4

78.8 79.0 78.6 77.9 79.9 79.2 80.3 72.7 78.6 79.6 78.3 78.7 74.8 69.9
RNF
-S8

75.1 73.8 76.5 74.4 75.8 75.0 76.3 72.3 77.1 77.0 74.6 71.8 66.8 63.6
11.1

61.8 61.7 62.0 62.8 60.7 61.9 61.3 59.5 67.0 64.0 59.5 59.4 54.2 48.6
RNF
-C8

76.0 75.0 77.1 75.1 77.1 76.0 77.5 72.4 77.8 77.8 74.9 73.7 68.1 65.9
10.7

69.4 68.7 70.1 68.1 70.9 69.3 71.2 65.7 71.7 71.4 66.8 67.5 62.5 56.9
RNF
-D8

72.2 70.6 74.0 71.4 73.1 72.0 73.8 70.3 74.5 74.3 71.3 68.7 63.3 58.9
10.9

65.9 64.7 67.2 65.3 66.6 65.5 67.7 63.8 69.3 68.1 63.8 63.1 57.6 51.5
RNF
-S13

69.8 68.8 70.9 69.7 69.9 70.0 70.7 67.1 72.4 71.7 69.1 66.6 61.7 57.6
10.8

66.3 65.5 67.1 66.3 66.2 65.1 66.5 63.8 69.6 68.5 64.2 63.8 58.5 51.4
RNF
-C13

77.6 76.8 78.5 76.7 78.6 78.0 79.3 73.9 78.1 79.2 76.8 75.5 70.5 67.6
10.5

73.9 73.4 74.5 73.0 75.0 74.0 75.9 70.2 75.1 75.8 71.7 72.3 66.9 61.9.
RNF
-D13

69.9 68.7 71.3 69.5 70.4 69.8 70.9 67.6 72.7 71.8 69.1 66.6 62.7 59.2
10.8

65.4 64.5 66.3 65.3 65.5 79.2 80.3 63.4 69.4 67.3 63.5 63.2 58.8 52.8
RNF
-S23

69.9 68.7 71.4 69.6 70.3 70.0 70.7 67.2 72.1 71.9 69.1 66.7 62.0 58.7
10.3

66.4 65.6 67.3 66.0 66.9 66.0 67.8 63.0 69.1 68.5 64.3 63.6 60.0 54.6
RNF
-D23

70.1 69.7 72.7 70.4 70.6 70.1 71.2 67.1 72.9 72.3 70.4 66.9 62.5 59.3
10.2

66.1 65.1 67.2 65.4 67.3 66.1 67.3 63.4 70.4 68.9 64.2 63.3 59.2 52.6

Table 8. Proj41-based LLDN performance for backbones with various depth.

times, so that the GFC has to extract global features from a
map with four times lower resolution.

D. Qualitative Results Visualization
In addition to the numerical results in Section 4.1, we

provide qualitative results of the proposed LLDN-GFC,
Proj28-GFC-T3, its low computational alternative, Pillars-
GFC-M5, and the conventional CNN-based LLDNs, such
as Proj28-RNF-S13, Proj28-RNF-C13, and Pillars-RNF-
C13, using visualization.

D.1. Qualitative Results
Fig. 13∼16 in this subsection has 4 rows and 5 columns,

where each row shows inference results for different scenes
(conditions) and each column shows inference results for
different GFCs. Each inference result has upper and lower
plots for the projection of inference results into the front
view image with true labels in the upper left corner and for
the inference on top of the BEV point cloud, respectively.

Fig. 13 and 14 show inference results of LLDNs with
Proj28 for scenes with moderate (e.g., normal, no occlusion,
and gentle curve) and severe (e.g., occlusion, merging, and
sharp curve) lane detection difficulties, respectively, while

Fig. 15 and 16 show inference results of LLDNs with Pil-
lars.

In all figures shown in this subsection, LLDNs based on
GFC-T and GFC-M (shown in (a) and (b) of figures, respec-
tively) show better performance than other LLDNs (in (c),
(d), and (e) of figures) regardless of the lane detection dif-
ficulties and BEV encoders (i.e., Proj28 and Pillars). For
example, plots in (a) and (b) show a strong lane detection
performance even for images of severe occlusion, where a
good portion of point cloud data are missing.

D.2. Qualitative Heatmaps

We emphasize the performance of the proposed GFC,
GFC-T, and its low computational alternative, GFC-M, us-
ing the visualization of the heatmaps for occlusion scenes
as shown in Fig. 6 in Section 4.1. In addition to the re-
sults in Fig. 6, we provide more visualization of heatmaps
for various difficult scenes, such as curved lanes, merg-
ing lanes, and other severe occlusion cases, to emphasize
the superior performance of the proposed GFC and its low-
computational alternative GFC.

All of the figures in this subsection follow the same for-
mat used for Fig. 6 in Section 4.1. The four columns are



Back-
bone

Total Day Night
Ur-
ban

High-
way

Nor-
mal

Gentle
Curve

Sharp
Curve

Mer-
ging

No
Occ

Occ
1

Occ
2

Occ
3

Occ
4-6

FPS

GFC
-T1

64.3 63.7 64.9 61.0 68.2 65.3 66.2 51.4 64.6 64.9 63.2 65.6 59.8 56.1
14.0

62.4 61.9 62.9 58.9 68.2 63.5 64.5 48.5 63.3 63.1 60.3 64.4 58.1 54.4
GFC
-T3

76.2 76.2 76.1 73.6 79.2 76.8 78.7 67.0 75.0 76.7 75.5 77.1 72.2 69.2
13.9

74.7 75.0 74.4 72.0 78.1 75.4 77.3 64.8 74.0 75.3 73.1 76.5 71.0 68.6
GFC
-T5

78.5 78.5 78.4 77.8 79.2 77.9 79.0 72.5 78.0 79.4 77.8 77.7 74.5 70.2
13.877.3 77.6 77.0 76.4 78.4 77.6 77.8 70.2 76.9 78.2 76.3 77.2 73.2 69.5

GFC
-M1

64.5 63.7 65.5 59.1 71.0 65.3 69.8 50.6 59.9 65.1 63.9 66.7 60.0 50.4 16.6
62.9 62.1 63.8 57.2 69.7 63.8 68.4 47.7 59.0 63.6 61.3 65.6 58.4 48.7

GFC
-M3

70.0 69.8 70.1 66.0 74.7 71.0 73.7 56.7 66.4 70.6 69.4 72.0 64.6 57.5
16.4

60.6 61.2 59.8 56.8 65.1 62.0 63.6 44.3 57.8 61.6 58.1 63.0 56.3 42.9
GFC
-M5

74.8 74.8 74.9 72.0 78.2 75.6 77.9 64.6 72.0 75.5 74.4 76.0 69.3 65.2
16.3

73.5 73.6 73.4 70.5 77.1 74.4 76.6 62.2 71.1 74.2 72.3 75.5 67.6 62.3
RNF
-C8

70.1 69.3 71.1 67.6 73.2 69.9 75.7 62.9 70.2 71.5 70.9 69.0 61.9 50.9
15.9

22.1 22.3 21.9 25.1 18.5 23.2 19.1 17.4 23.1 25.8 16.9 16.6 12.7 8.5
RNF
-S13

64.6 62.9 66.5 59.4 70.7 51.1 72.1 51.2 63.4 65.5 65.9 65.0 56.9 44.9
15.7

18.2 16.4 20.4 15.6 21.4 13.1 22.6 13.1 16.0 19.2 18.7 16.8 16.0 4.7
RNF
-C13

76.8 75.9 77.8 74.5 79.6 67.6 81.4 67.6 76.6 77.9 77.9 75.7 69.5 62.5
15.5

40.6 39.1 42.4 40.6 40.6 32.5 43.6 32.5 42.6 43.6 38.3 35.7 32.8 20.4
RNF
-D13

61.4 60.0 62.9 56.8 66.8 61.0 69.5 51.8 60.0 62.3 62.7 61.2 53.8 42.6
15.4

16.5 14.8 18.4 13.5 20.0 15.8 22.6 12.2 13.9 17.4 16.7 14.5 14.2 4.5
RNF
-S23

58.5 56.9 60.4 52.6 65.6 59.2 64.9 42.2 55.8 59.1 59.1 59.9 51.5 43.6
15.3

31.9 29.9 34.2 28.4 36.1 32.0 42.2 23.2 30.2 32.6 32.1 32.0 28.5 17.3
RNF
-D23

63.2 61.6 65.0 58.6 68.6 51.1 70.7 51.3 62.2 64.2 64.3 63.1 55.1 43.9
15.2

19.0 17.0 21.2 17.2 21.1 13.5 23.7 13.5 17.2 20.2 20.2 19.1 16.7 4.9

Table 9. Pillars-based LLDN performance for backbones with various depth.

Back-
bone

Total Day Night
Ur-
ban

High-
way

Nor-
mal

Gen.
Cur.

Sha.
Cur.

Mer-
ging

No
Occ

Occ
1

Occ
2

Occ
3

Occ
4-6

FPS

P8
Nh512

82.1 82.2 82.0 81.7 82.5 82.5 82.2 78.0 81.0 82.9 81.4 82.3 78.7 75.9
11.681.1 81.4 80.7 80.6 81.7 81.5 83.0 76.7 80.1 81.9 81.4 81.3 78.7 75.5

P16
Nh512

80.2 79.3 81.2 78.4 82.4 81.0 82.4 73.3 78.9 80.7 80.5 79.7 76.6 75.6 11.9
78.1 77.6 78.7 75.8 80.9 79.0 80.5 70.4 76.9 78.5 77.7 78.5 75.1 74.6

P8
Nh128

81.5 81.5 81.5 81.1 82.0 81.9 82.8 76.9 80.2 82.5 81.2 80.6 76.0 74.3
11.8

75.3 75.7 74.9 74.5 76.4 76.2 76.6 66.2 74.6 76.3 73.9 75.5 70.3 68
P8

Nh2048
76.6 75.9 77.4 75.5 77.8 77.4 78.3 67.3 76.1 77.8 76.7 74.9 71.3 64.7

10.7
61.2 60.4 62.1 59.6 63.1 62.3 61.9 50.2 62.6 63.1 58.5 60.1 55.5 44.9

Table 10. Performance of Proj28-GFC-T3 for various hidden dimension and patch sizes, where P and Nh represent the patch size and the
hidden dimension size with default value 8 and 512, respectively.

Back-
bone

Total Day Night
Ur-
ban

High-
way

Nor-
mal

Gen.
Cur.

Sha.
Cur.

Mer-
ging

No
Occ

Occ
1

Occ
2

Occ
3

Occ
4-6

FPS

P8
Nh512

74.8 74.8 74.9 72.0 78.2 77.9 75.6 64.6 72.0 75.5 74.4 76.0 69.3 65.2
16.3

73.5 73.6 73.4 70.5 77.1 74.4 76.6 62.2 71.1 74.2 72.3 75.5 67.6 62.3
P16

Nh512
72.2 72.0 72.4 68..8 76.2 67.0 75.9 58.4 70.2 72.6 71.5 73.4 68.9 63.4 16.6
65.2 65.2 65.2 61.8 69.3 73.0 67.2 49.5 64 66.2 62.8 66.8 60.5 55.8

P8
Nh128

70.9 70.9 71.0 67.7 74.8 71.7 74.6 59.4 68.4 71.6 70.2 72.5 65.7 60.2
16.5

63.1 62.7 63.4 59.4 67.4 64.1 66.0 49.2 61.7 64.1 60.7 65.4 56.7 48.5
P8

Nh2048
75.6 75.5 75.6 72.9 78.8 76.4 78.8 64.5 73.5 76.2 74.8 76.6 71.2 66.5

14.774.1 74.4 73.8 71.2 77.6 75.0 77.2 62.6 72.6 74.8 72.5 76.1 69.7 68.2

Table 11. Performance of Pillars-GFC-M5 for various hidden dimension and patch sizes; where P and Nh represent the patch size and the
hidden dimension size with default value 8 and 512, respectively.



Figure 13. Lane detection performance comparison for LLDNs
with Proj28 for images with moderate difficulty (e.g., normal, no
occlusion, and gentle curve).

Figure 14. Lane detection performance comparison for LLDNs
with Proj28 for images with high difficulty (e.g., occlusion, merg-
ing, and sharp curve).

Figure 15. Lane detection performance comparison for LLDNs
with Pillars for images with moderate difficulty (e.g., normal, no
occlusion, and gentle curve).

Figure 16. Lane detection performance comparison for LLDNs
with Pillars for images with high difficulty (e.g., occlusion, merg-
ing, and sharp curve).



Figure 17. Comparison of the lane detection performance of
the proposed LLDN-GFC, Proj28-GFC-T3, to the Proj28-GFC-
T3 and other CNN-based LLDNs (Proj28-RNF-C13 and Proj28-
RNF-S13) for curved lanes.

Figure 18. Comparison of the lane detection performance of
the proposed LLDN-GFC, Proj28-GFC-T3, to the Proj28-GFC-
M3 and other CNN-based LLDNs (Proj28-RNF-C13 and Proj28-
RNF-S13) for merging lanes.

inference results for (a) Proj28-GFC-T3, (b) Proj28-GFC-
M3, (c) Proj28-RNF-C13, and (d) Proj28-RNF-S13. The
first row shows the projection of inference results into the
front view image with true labels in the upper left corner,
and the second row shows the inference on top of the BEV
point cloud. From the 3rd to 5th row, we show the heatmap
of the 1st, 2nd, and 3rd block output feature map of the GFC
(e.g., 1st, 2nd, and 3rd Transformer block of Proj28-GFC-
T3). Output feature maps at different blocks are resized or
reshaped (i.e., in the same way to the function (4-1) in Fig.
11) and two heatmaps are sampled along the channels.

As shown in Fig. 17, Fig. 18, and Fig. 19, both the pro-
posed LLDN-GFC, Proj28-GFC-T3, and the LLDN with
the low computational alternative GFC, GFC-M3, demon-
strate three advantages described in Section 4.1 for curved

Figure 19. Comparison of the lane detection performance of
the proposed LLDN-GFC, Proj28-GFC-T3, to the Proj28-GFC-
M3 and other CNN-based LLDNs (Proj28-RNF-C13 and Proj28-
RNF-S13) for occluded lanes.

lanes, merging lanes, and other occluded lanes. The three
advantages are (1) better resolution as the network deepens,
(2) distinctive color difference between lane and non-lane
positions, and (3) predicting the shape of the lane even in
presence of occlusion.

E. LLDN vs Heuristic Method
In the heuristic Lidar lane detection techniques, we first

project pointcloud into a BEV image and apply thresholding
to remove low-intensity points [6]. The remaining points
are then clustered using, for example, DBSCAN [3] and
then fitted by the first order polynomial to create smooth
lane lines.

In the experiments, we observe multiple instances when
the heuristic technique is unreliable; First, when a strong
light illuminates a spot on the ground, as shown in Fig. 20
(b), it results in false positives (FPs). Second, when lane
marks are occluded, the heuristic Lidar lane detection can-

Figure 20. Comparison between the proposed LLDN-GFC
(Proj28-GFC-T3) (in (a) and (c)) and heuristic Lidar lane detec-
tion (in (b) and (d)). When a strong source of illumination appears
on the scene, (b) the heuristic method fails, but (a) the proposed
LLDN-GFC is not affected. When lane marks are occluded, (d)
the heuristic method cannot infer the lanes, but (c) the proposed
LLDN-GFC is able to infer the occluded lane lines.



not infer the presence of lane marks, leading to a high false
negatives (FNs), as shown in Fig. 20 (d). However, the
proposed LLDN-GFC can produce reliable lane detection
results for the two scenarios. As the LLDN-GFC learns
global context features of the scene, a bright illuminated
road spot or partial occlusion of lane lines hardly degrade
the lane detection performance.
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