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1. More Experimental Results Details
As shown in Table 1 and Table 2, we give more details on

PointMotionNet performance in the multisweep semantic
segmentation on SemanticKITTI [1] test set. Without bells
and whistles, our approach outperforms previous SOTA [6]
by over 3.3 % mIoU with 25 classes including 6 objects.

2. More Ablation Studies
To better explore the performance bound of our method,

and understand how different parameters would affect the
model performance, we designed several more experiments
over the choice of input frame number, number of proxy
points. The results are shown in Table 3.
Number of frames. Using more frames as input would
bring in richer information of the 3D scene regarding
both geometric features and motion dynamics, but also
more complexity to the learning process. We tested our
model’s performance on motion estimation by inputting
2-4 sequential frames, while other parameters are fixed. As
demonstrated by Table 3, our model could still work well
when taking 4 frames as input, and it actually achieves the
best performance under the fact that more computation is
involved. To achieve a better balance between efficiency
and accuracy, we consider 3 frames as our final setting for
our motion estimation task.
Number of proxy points. Proxy points interact with
all spatiotemporal neighbors at multiple scales in our
pyramid network, and their number will affect the model
performance. By decreasing the proxy points number from
15 to 3, we found that the accuracy drops consistently on
future motion vector regression, but we don’t necessarily
always need that much proxy points. Using 9 or 12 proxy
points could still work very well for those slow-moving
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points.

3. Point-STC Kernel
We leverage proxy point sets to better capture local

geometric features and make the training more stable and
effective. As originally introduced by [5], these proxy
points could act like anchors or grid to learn 3D features
in a convolutional way in 3D space. Ideally we want these
proxy points to be as far as possible from each other. So in
practice, we formulate it as an optimization problem where
the optimal points are bounded within a unit ball. Below is
a detailed description of the implementation. Following [5],
we first formulate it as:

argmax
�i,�j

X

i

X

j 6=i

(�i � �j)
2 (1)

|�i| < 1, |�j | < 1 (2)

�0 is fixed at the origin during the iterative process, we
further add the regularization item k�ik as an attractive
potential to avoid those proxy points diverging indefinitely
during optimization [5]. We randomly generate a hundred
seed sets of proxy points, and then use the analytical form of
the gradient to gradually optimize over all the points. The
maximum iteration is set to 10000, and we stop the itera-
tion when the gradient norm changes is smaller than 1e�5.
We select the set that converges best from all one hundred
seed sets. To match with the scale in each layer, and better
capture all neighborhoods, the proxy point sets are re-scaled
with respect to the neighborhood sampling radius by multi-
plying with 0.66ri, ri is the neighborhood sampling radius.
A random rotation is applied to the proxy points during the
initialization of each Point-STC layer. Visualizations of the
proxy points are shown in Figure 3.
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Ground Truth PointMotionNetMeteorNet

Figure 1. PointMotionNet (right) visually outperforms MeteorNet (middle) in motion state estimation on SemanticKITTI. For six fore-
ground classes, moving points are in green and static ones are in red; for the remaining background classes, points are in grey.

4. Implementation Details

4.1. Argoverse Motion Vector Dataset Creation

Since Argoverse dataset [2] doesn’t provide motion
vectors information, we generate motion vectors annota-
tions by leveraging the labels from Argoverse 3D Tracking
v1.1. We end with 6561 samples for training, and 2507
samples for validation. The preprocessing could be divided
into two steps:
Ego-motion compensation. Each original frame is taken
from its own local coordinate while the vehicle is moving
forward. After selecting a short video clip containing
several sequential scans, we set a frame as current frame,

and synchronize all other frames to current frame, together
with the original 3D bounding boxes. More specifically,
given the vehicle poses registered in global map, Mt of
current frame St

local, Mt+⌧ of another frame St+⌧
local, we

could compute the synchronized point cloud coordinates
St+⌧
synced = M�1

t+⌧MtS
t+⌧
local, here M is 4 ⇥ 4 homogeneous

transformation matrix, while S is padded with 1 to create
homogeneous coordinates. The same operation is applied to
the center and 6 corners of each 3D bounding box in frame
t+ ⌧ to get synchronized pose in current frame;
Motion vector assignment. Using the unique tracker
ids, we could associate poses between current frame and
synchronized future frames for each instance belonging to
current frame, and compute the relative 6D pose transfor-
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TangentConv [4] 34.1 20.7 84.9 2.0 18.2 21.1 18.5 1.6 0.0 0.0 83.9 38.3 64.0 15.3 85.8 49.1
DarkNet53 [1] 41.6 24.2 84.1 30.4 32.9 20.0 20.7 7.5 0.0 0.0 91.6 64.9 75.3 27.5 85.2 56.5
SpSeqnet [3] 43.1 25.5 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.6 73.9 27.1 91.2 66.8
KP-Conv [5] 51.2 40.5 93.7 44.9 47.2 42.5 38.6 21.6 0.0 0.0 86.5 58.4 70.5 26.7 90.8 64.5
Cylider3D [6] 51.5 31.4 93.8 67.6 63.3 41.2 37.6 12.9 0.1 0.1 90.4 66.3 74.9 32.1 92.4 65.8
PointMotionNet 54.8 39.2 93.8 59.3 59.9 44.2 38.1 13.7 23.1 23.4 91.7 65.5 76.1 24.2 90.1 63.5

Table 1. PointMotionNet outperforms in multisweep semantic segmentation on SemanticKITTI test set. Note that S represents the static
foreground category, and M denotes the moving foreground category.
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TangentConv [4] 34.1 20.7 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 1.9 30.1 42.2
DarkNet53 [1] 41.6 24.2 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8
SpSeqnet [3] 43.1 25.5 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1
KP-Conv [5] 51.2 40.5 84.6 70.3 66.0 57.0 53.9 69.4 0.5 0.5 67.5 67.4 47.2
Cylider3D [6] 51.5 31.4 85.4 72.8 68.1 62.6 61.3 68.1 0.0 0.1 63.1 60.0 0.4
PointMotionNet 54.8 39.2 84.9 70.9 70.1 62.2 64.0 71.4 62.2 61.8 15.1 29.9 10.5

Table 2. PointMotionNet outperforms in multisweep semantic segmentation on SemanticKITTI test set. Note that S represents the static
foreground category, and M denotes the moving foreground category.

proxy points(k) # frames mIoUtotal " mIoUstatic " mIoUmoving " Static # Speed  5m/s # Speed > 5m/s #
15 3 0.985 0.994 0.976 0.001 0.416 0.445
15 2 0.980 0.992 0.969 0.001 0.453 0.568
15 4 0.982 0.996 0.969 0.001 0.341 0.422
12 3 0.984 0.994 0.975 0.002 0.395 0.489
9 3 0.982 0.992 0.971 0.002 0.406 0.559
6 3 0.981 0.992 0.970 0.002 0.461 0.543
3 3 0.964 0.985 0.942 0.003 0.588 0.847

Table 3. Additional Ablation Study of PointMotionNet on Argoverse Validation Set. We further test different number of proxy points k.

mation between them. Then for each bounding box in
current frame, we will first rotate it to align with xyz axis,
and the same transformation is applied to the whole point
cloud. So we could check the membership with the aid
of aligned axis to find all points that are inside the 3D
bounding box. Finally we apply the relative transforma-

tion to all points belonging to current bounding box, the
substraction between transformed coordinates and original
coordinates will result in the 3D motion vector annotations.
We apply the same process to all 5 future frames.



Argoverse SemanticKitti
Proxy points 15 15
Frame number 3 2
Parameters 26.7M 23.2M
Training 4.8 4.9
(sample/sec)

Inference 17.2 28.5
(sample/sec)

Avg pts/sample 15k 21.7k(during training)
Avg GPU mem./sample 10.0G 7.5G(during training)
Avg pts/sample 8.6k 8.3k(during inference)
Avg GPU mem./sample 3.0G 2.7G(during inference)

Table 4. Model sizes and running speed.

4.2. Model sizes and speed
We split a large-scale point cloud into multiple patches,

which are small-scale point clouds, and handle each patch
locally. During data loading stage, each patch may have
different number of points, we concatenate different patches
and use batch size 1 to avoid zero padding. We consistently
test our data loading and model inferring speed on Nvidia
V100 GPU, as shown in Table 4.

4.3. Architecture specs
As shown in Figure 4, we draw the detailed architecture

of PointMotionNet with specific layer dimensions. There
are 4 down-sampling and up-sampling stages. The pyramid
architecture enables spatiotemporal feature learning at
multiple scales. Note that most of the weights come
from the spatiotemporal feature encoder, while light-weight
modules are used in decoding stage, in this way we could
allow more effective usage of computation resources.

5. Additional Qualitatively Visualization on
Argoverse and SemanticKITTI

We report additional visualization results of our Point-
MotionNet on the Argoverse and SemanticKITTI in Figure
1 and Figure 5, respectively.

6. Limitations
A typical failure case of our prediction is that points

belonging to the same instance might not have the similar
predicted motion vectors, as shown in Figure 2. It’s possible

Figure 2. Failure case. Some motion vectors on the right car are
not well predicted, making the predictions on the same instance
not quite consistent.

to further leverage instance labels to ease this issue, and
make the predictions more consistent. In addition, Point-
MotionNet is a fully-supervised method, requiring large-
scale annotated data. One future direction is to explore
semi-supervised learning to ease the problem.



Figure 3. Distribution of proxy points in 3D space. The center small darker point denotes the origin, all those blue points are proxy
points.
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Figure 4. PointMotionNet architecture



Ground Truth PointMotionNet

Figure 5. PointMotionNet (right) vs Ground Truth (left) in point-based motion prediction on Argoverse. Green moving points are associated
with brown motion vectors and the static points are in red; the remaining points are background, marked in grey.
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