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Abstract

Recent algorithms for image manipulation detection al-
most exclusively use deep network models. These ap-
proaches require either dense pixelwise groundtruth masks,
camera ids, or image metadata to train the networks.
On one hand, constructing a training set to represent the
countless tampering possibilities is impractical. On the
other hand, social media platforms or commercial applica-
tions are often constrained to remove camera ids as well
as metadata from images. A self-supervised algorithm
for training manipulation detection models without dense
groundtruth or camera/image metadata would be extremely
useful for many forensics applications. In this paper, we
propose a self-supervised approach for training splicing
detection/localization models from frequency transform of
images. To identify the spliced regions, our deep network
learns a representation to capture an image-specific signa-
ture by enforcing (image) self consistency. We experimen-
tally demonstrate that our proposed model can yield simi-
lar or better performances as compared to multiple existing
methods on standard datasets without relying on labels or
metadata.

1. Introduction

The history of image manipulation dates back almost as
early as the invention of photography itself [68]. Rapid ad-
vances in photographic devices and editing software in re-
cent years have empowered the general population to easily
alter an image. Photo tampering has crucial implications on
legal arbitration [59,64], journalism [27,52] (thereby public
opinion and politics), fashion [11], advertising [42], insur-
ance [9] industries among others. The impact of content
fabrication on social media platforms, which allow manip-
ulated content to be uploaded and disseminated extremely
fast, is even more critical [31, 69].

Researchers have been investigating digital forensics for
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almost two decades [23, 25, 62, 63]. One particular variant
of image tampering, image splicing, garnered significant at-
tention in the digital forensic community. In this mode of
image manipulation, parts of different images are spliced to-
gether, and subsequently edited manually (with e.g., GIMP,
Adobe Photoshop) or computationally [61]. In this paper,
we also address the problem of image splicing detection and
localization.

Many recent methods employ neural networks to detect
image splicing and predict a pixelwise mask of the spliced
region in an end-to-end fashion [3–5, 38, 43, 65, 72, 73, 80].
For training the detection/localization network, these al-
gorithms require pixelwise (dense) groundtruth masks of
spliced regions that are remarkably tedious and expensive
to annotate. More importantly, the feasibility of generating
a large enough representative dataset for fully supervised
manipulation learning is questionable since the space of
forgery operations is vast and extremely diverse (if not infi-
nite) [39,43]. It is therefore difficult to guarantee the robust-
ness of end-to-end approaches on real world data despite
their excellent performances on the public datasets [68].

A surrogate approach to circumvent the need for dense
pixelwise groundtruth is to identify the micro-level signa-
ture imprinted by device hardware [50, 51], image process-
ing software [54] or by the GAN based artificial genera-
tors [53]. In a spliced (or edited) image, it is rational to
expect the manipulated and pristine regions to possess dif-
ferent fingerprints. Several studies [12, 17, 18, 20, 54, 55]
proposed elegant methods to train a CNN to distinguish
between the different traces of authentic and forged areas.
These methods rely on camera/device IDs to train the CNN.

Huh et al. [39] pushed the envelope further in this di-
rection by learning the consistency between authentic and
forged regions under the supervision of image metadata.
In [39], a CNN is trained to match the latent space repre-
sentations for a pair of image blocks with the same EXIF
data and contrast those for patches with different meta-
data. However, social media platforms, image hosting ser-
vices and commercial applications are forced to strip the
metadata (EXIF) and camera id for various reasons [76].
An algorithm to learn the representation for forensics pur-
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poses without camera ID or metadata – perhaps in a self-
supervised fashion – would be extremely appealing for ap-
plications where these information are not available.

Self-supervised learning algorithms [13, 16, 30, 35, 77]
precipitated a breakthrough in representation learning with
minimal or no annotated examples. Self-supervision has
not yet gained widespread attention in forensics with the
notable exception of [39]. Huh et al. [39] also discuss train-
ing a siamese network to determine whether a pair of im-
age blocks were extracted from the same or different image
without using EXIF metadata. The reason for the inferior
performance of the ensuing model was surmised to be the
lack of a large training dataset. We believe the compelling
reason instead to be the propensity of CNN to learn im-
age characteristics (e.g., color histograms [39]) or semantic
content as opposed to device signature even with a large
dataset.

Frequency transform is an alternative source of infor-
mation for tracing image manipulation. Frequency trans-
form (FT) largely discards the spatial and semantic details
but retains significant information to detect source or ma-
nipulation signature. Classical works on image manipula-
tion detection thoroughly investigated cues of image source
as well as any subsequent manipulation in frequency do-
main [6, 7, 22, 47–49, 57, 71]. Frank et al. [24] have lately
demonstrated impressive success in identifying source sig-
nature from FT of artificially manipulated images produced
by generative models, e.g., GAN [8, 40, 56]. GAN gener-
ated images have been shown to be relatively easier to de-
tect [70]. The study of [24] did not report its performance
on manually tampered images and requires camera id for
training (not self-supervised).

In this paper, we propose a self-supervised training
method to learn feature (latent) representation for im-
age forensics. Our approach learns the latent representa-
tions from the frequency transformation of image patches
(blocks). Given the FTs of two patches, we utilize a CNN
and contrastive loss – inspired by those proposed in Sim-
CLR [13] – to learn whether they originate from the same
or different images. In effect, our method aims to learn an
image specific signature from the frequency domain to iden-
tify traces of tampering. For inference, we apply a mean-
shift based clustering algorithm to group the authentic &
fake patches based on the cosine similarity of the learned
latent features.

Our experimental results suggest that the use of rep-
resentation learning to capture image trace in the fre-
quency domain is very effective for manipulation detec-
tion/localization. The representations learned in a self-
supervised fashion from FT of image blocks are shown
to achieve similar or better accuracy than EXIF-SC [39],
MantraNet [73] in a realistic environment. We also demon-
strate that features learned from RGB values by the same

architecture and training cannot achieve the same perfor-
mance.

In contrast to all aforementioned studies, our approach
learns only from the FT content of an image and does not re-
quire pixelwise masks, camera IDs, or EXIF metadata. The
simplicity of our model and the use of standard architec-
ture/hyperparameters make our results easily reproducible.
All these characteristics are highly desirable for large scale
training of robust models to build practical solutions.

2. Related work
Dense Splicing Prediction with CNN: One of the early
works on dense prediction for manipulation detection cou-
ples an LSTM with CNN to discover the tampering loca-
tion [3]. A number of studies have followed this particular
direction since then. MantraNet [73] exploits a localization
network operating on the features from initial convolutional
layers to identify manipulation. Wu et al. [73] also pro-
posed an interesting approach for artificially generating the
spliced images for training its model. Multiple studies built
upon this idea and adopted an adversarial strategy to train
the forgery detection CNN. Both Kniaz et al. [43] and Bi
et al. [5] incorporate a generator that seeks to deceive the
manipulation detector by conjuring more and more realis-
tic manipulations. The SPAN localization technique [38]
adopts ManTraNet features and applies a spatial attention
network. The RRU-Net model [4] employs a modified U-
Net for splicing detection instead.

All aforementioned algorithms require dense pixelwise
masks for their training. In addition to the intense and ex-
pensive effort to annotate, it has been argued that creating a
large representative dataset for supervised dense prediction
is extremely difficult due to the nearly unlimited ways to al-
ter an image [39, 43]. The synthetic tampered images con-
structed by applying random edits in [73] or generated in an
adversarial fashion [5, 43] would be biased, if not limited,
by the elementary operations or the source dataset used.
Splicing Detection from Device Fingerprint: There are
strong evidences that every device that captures an image
or every manual or automatic manipulation (GAN) editing
leaves its trace on the image [50, 51, 53, 54]. Cozzolino et
al. dubbed these signatures NoisePrint [20] and applied
a siamese network consisting of denoising CNN to learn
these noiseprints from the image using camera ids. Bondi
et al. [10] instead utilized the deep features of image patches
learned through camera identification task and applied a
clustering algorithm to separate authentic parts from ma-
nipulated regions. The forensic graph approach of [54, 55]
trains a CNN to explicitly distinguish between image blocks
from different devices. Under the assumption that spliced
patches possess a different fingerprint than the authentic re-
gion, this similarity function is utilized to locate manipula-
tion through clustering. The EXIF-SC algorithm [39] aims
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to learn representations of image patches such that the la-
tent features from images with the same EXIF metadata are
similar to each other and those from different EXIF meta-
data are different.

Models of [19, 58] have lately exhibited impressive per-
formance to erase or swap the device/source trace that could
deceive a manipulation detection mechanism. It would be
interesting to investigate whether a similar approach can
also succeed in erasing or swapping image fingerprints that
our detection method relies on.
Frequency Domain Analysis for Manipulation Detec-
tion: Early studies on manipulation detections [22, 71] ex-
amine the double quantization effect hidden among DCT
coefficients. Later studies explored hand-picked feature re-
sponses such as LBP [2,34,79] in conjunction with DCT to
identify splicing. [33] also experiment with Markov features
in DCT domain to expose tampering. Li et al. [47] propose
a blind forensics approach based on DWT and SVD to de-
tect duplicated regions as a sign of forgery.

Recent methods also involve the use of deep neural net-
works for predicting spliced regions. The CAT-Net ap-
proach [46] proposes to learn to predict localized regions
using images in RGB and DCT domains. A follow-up
study [45] trains a network to focus on JPEG compression
artifacts in the DCT domain for learning to localize spliced
regions.
Artificial Fakes and their Detections: There have been
numerous works on generating deep fakes through gener-
ative networks e.g., GANs [8, 40, 56]. A very insightful
work by Marra et al. [53] demonstrated that GAN also leave
their fingerprint on the artificially generated images. Yu et
al. [75] presented an algorithm to learn the GAN signature
using a CNN. A subsequent study reported remarkable suc-
cess in identifying source-specific artifacts in GAN gener-
ated images [24].

GAN generated images have been shown to be relatively
easier to detect [70]. While there is evidence that camera
trace-based manipulation detection methods can spot au-
tomatically generated fakes [53], the converse has not yet
been demonstrated. Although in this study, we have not ex-
perimented on GAN generated tampering, there is no con-
ceptual obstruction preventing it from working on them.
Self Supervised Learning: Self-supervised learning gen-
erally learns a latent feature representation under the guid-
ance from pretext tasks and contrastive losses. Examples
of the pretext tasks comprise the classification of images
transformed by data augmentation techniques, e.g., rota-
tion [28, 77], colorization [78]. Utilization of contrastive
loss and appropriate architecture paved the way to highly
useful representation learning [13, 16, 30, 35]. The benefit
of these representations have already been substantiated in
core vision tasks, e.g., classification, object detection, and
segmentation [14, 15, 74].

The works of [39,55] have already demonstrated the ben-
efit of representation learning for splicing detection. Learn-
ing these representations from self-supervision would be
hugely beneficial where device id or image metadata are
not available. Huh et al. [39] indeed mentions an approach
to learning latent features without using EXIF metadata.
A siamese network – operating in the RGB domain – is
trained to distinguish between the patches extracted from
the different images. This model was shown to be less ef-
fective for manipulation detection/localization and the lack
of sufficient and diverse training data needed for general-
ization was speculated to be the reason for its deficiency. In
this work, we show that the performance of CNNs utilizing
RGB information does not improve with the number and
diversity of the training set. But a relatively simple CNN
trained in a self-supervised manner from FT of images can
indeed match or exceed the detection performance of EXIF-
SC.

3. Self-supervised Signature Learning
The core concept behind our approach is to learn a la-

tent space where representations of patches from the same
image are closer to each other than those from different
images. We learn this latent representation with a CNN
through self-supervision from the FT of an image patch. In
essence, the CNN learns to capture an image-specific sig-
nature in feature representation that is exploited during the
inference for distinguishing the tampered regions from the
authentic ones. In the next few sections, we elaborate on
the input to our CNN, its training, and inference for splic-
ing detection.

3.1. DFT for Learning Signature

Let pkj denote the j-th patch from image Ik. We utilize
the information in the real valued part of the discrete Fourier
transform (DFT) of pkj as input to our CNN model.

fk
j (m,n) =

1√
UV

U−1∑
u=0

V−1∑
v=0

pkj (u, v) cos
{
2π

(mu

U
+
nv

V

)}
,

(1)
for m = 0, 1, . . . , U − 1, n = 0, 1, . . . , V − 1 where U, V
are the dimensions of pkj . The resulting fk

j contains the co-
efficients of different basis functions at each of its pixel lo-
cations (m,n). For the computation of the DFT, we utilize
the PyTorch [60] implementation of real valued fast Fourier
transform (RFFT) algorithm [67]. This implementation re-
moves the symmetric values of the power spectrum in real
valued inputs. It is typical for the high frequency coeffi-
cients to be much smaller than those of low frequencies.

3.2. Model Architecture and Training

Given the RFFT fk
j , j = 1, . . . , J of patches from im-

ages Ik, k = 1, . . . ,K, we wish to learn a representation or
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Figure 1. Proposed self-supervised training from RFFT of image patches. The pairs {p11, p12} and {p21, p22} are extracted from image I1

and I2 respectively. Green and brown colors were superimposed on their respective RFFTs {f1
1 , f

1
2 } and {f2

1 , f
2
2 } to distinguish between

the two images. Different shades of the same color were used to indicate different patches from the same image. The contrastive loss L is
calculated between representations learned by the backbone g and projector h. Best viewed in color.

encoding zkj by a CNN. The CNN consists of a backbone g
followed by a projector h. we wish to learn a representation
zkj = h(g(fk

j )) such that:

• similarity between zkj and zkj′ of two patches from the
same image k is high; and

• similarity between zkj and zk
′

j′ of patches extracted
from different images k and k′ is low.

We take advantage of the architecture and loss proposed
in Chen et al. [13] (SimCLR) to design and train our model.
However, we have modified the input, architecture, and loss
function to suit our need to learn image specific signatures
and to simplify the model. In particular, as opposed to dif-
ferent augmentation of the same image (e.g., resize, crop,
color distortion, etc.), our model takes the RFFT of patches
from the same or different images as input. The encoder
g and projector h consist of a ResNet-18 backbone and a
single linear layer respectively.

Each batch of examples in our training approach com-
prises B pairs of RFFT representations. Each of these pairs
consists of RFFTs {fk

j , f
k
j′} computed from patches of the

same image k. For any pair of representations {zkj , zk
′

j′ }, we
define the indicator vector ykk

′
= 1 if k = k′ and 0 other-

wise. The subsequent loss functions for pairs of encoding
are defined as follows to facilitate learning the desired sig-
nature.

ϕkk′

jj′ =
exp(sim(zkj , z

k′

j′ )/τ)∑B
κ=1 exp(sim(zkj , z

κ
j′)/τ)

(2)

L({fk
j , f

k
j′}, ykk

′
) = −

B∑
k,k′=1

ykk
′
log(ϕkk′

jj′ ) (3)

where sim(a, b) = aT b
∥a∥∥b∥ is the cosine similarity and τ is

the temperature weight. The loss function in Eqn 3 encour-
ages the representations zkj , z

k
j′ from the patches of the same

image k to be similar to each other and those from patches
of different images to be different. The overall architecture
and loss has also been depicted in Figure 1.

4. Image Splicing Detection and Localization

4.1. Patch Similarity to Response Map

After training, our model produces the latent represen-
tation zj from the RFFT fj of a patch pj

1. Our goal is to
compute a pixelwise response map R for image I such that
R(u, v) = 1 if R(u, v) is manipulated and R(u, v) = 0
otherwise. We follow the standard practice of dividing the
image [39, 54] of size H × W into overlapping patches
pj with a stride s. The patch consistency between all
pairs of patches {pj , pj′}, j, j′ = 1, . . .

⌊
H
s

⌋ ⌊
W
s

⌋
, j ̸=

j′ are computed with cosine similarity sim(zj , z
′
j). The

patch consistencies are aggregated to form the image level
consistency, which we utilize as response Rk, by mean-
shift based clustering and bilinear upsampling as proposed
in [39]. Using cosine similarity as opposed to a dedicated
network as used in [39, 54] significantly reduces the infer-
ence time when we consider the number of pairs of patches⌊
H
s

⌋ ⌊
W
s

⌋
×

⌊
H
s

⌋ ⌊
W
s

⌋
to be compared.

4.2. Detection & Localization from Response Map

Given the response image R, we devise two approaches
to detect whether an image has been manipulated. The first,
dubbed as SpAvg, averages R spatially and detects an image
to be tampered with by thresholding mean(R). In the sec-
ond approach, PctArea, a binary mask is created by thresh-
olding R > δb. We then transform the resultant binary mask
to the fraction of pixels that are masked to get the detection
score, that is, ρb =

∑
R>δb
HW . For localization, a binary mask

1Dropping superscript k to remove clutter and confusion.
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is created by thresholding R > δl to delineate the spliced
area.

In accordance with common practice [39], the values of
response map R are inverted by 1 − R before detection if
mean(R) > 0.5, indicating the area of the spliced region
is larger than that of authentic region. This is based on the
assumption that spliced region should be smaller than the
pristine part of the image.

5. Experiments & Results

5.1. Implementation Details

We use a ResNet-18 [36] as the backbone g and project
to a 256 dimensional representation through a single layer
h. The input fk

j to ResNet-18 is computed from image
patch pkj by the PyTorch implementation of RFFT. For the
self-supervised contrastive training, each batch consists of
256 pairs of RFFT coefficients, and temperature τ is set
to 0.9. The model is optimized using ADAM [41] with
α = 0.9, β = 0.99. The learning rate was decayed from
0.001 to 1e− 5 via cosine annealing after an initial warmup
period.

In all experiments, the size of image crops pj is 128 ×
128. During inference, the patches are cropped with a stride
of 64 pixels (i.e., 50% patch overlap).

5.2. Datasets

Training set: Images from 5 public datasets have been
used to train our model: Dresden [29] (16961 images),
Vision [66] (34427 images), Socrates [26] (8742 images),
FODB [32] (23106 images), Kaggle [1] (2750 images).
Although these datasets were collected for camera/device
identification purposes, we do not use the camera ids in any
part of our training. From these datasets, we gathered 85984
images captured by different devices with diverse appear-
ances, and scenes from various locations around the world.
From each of these images, 100 patches were cropped ar-
bitrarily to create the training set. During training, we ran-
domly select 256 images and then select 2 patches from the
100 pre-cropped patches of the same image to generate a
batch of training pairs.
Test set: Our algorithm was tested on the popu-
lar Columbia [37] (363 images, 180 spliced), Car-
valho/DSO [21] (200 images, 100 spliced) and Realis-
tic Tampering (RT)/Korus [44] (440 images, 220 spliced)
datasets that provide the groundtruth masks for splicing op-
eration. One can observe from inspecting the datasets that
manipulations in Carvalho/DSO are more deceiving than
the spliced images in Columbia. RT provides a multivalued
mask for each image, with different values corresponding to
the spliced images and the subsequent alterations. We mark
all nonzero values as manipulated regions.

5.3. Evaluation

Our evaluation setting attempts to emulate the scenario
of a real-life application as closely as possible. To achieve
this and, to promote reproducibility, we try to use standard
evaluation measures (and their public implementations) and
keep the configuration/parameters fixed as much as possi-
ble.

In practical applications, a forensic solution will use a
fixed value for thresholds used for recognizing and localiz-
ing tampered image regions. It is not reasonable to assume,
and we are not aware of, a method to select image specific
thresholds for real world forensic applications. However,
although not ideal, it is not impractical to allow δb and δl
to be different for detection and localization respectively,
because these two procedures will perhaps be executed se-
quentially. The detection performances of our method as
baselines are computed with fixed δb for all images and the
localization performances are calculated with a fixed δl for
all spliced images.

For splicing detection, we report the average precision
(AP) for the binary task of classifying whether an image
is tampered or authentic. This value is computed from the
outputs of two detection techniques, SpAvg and PctArea,
against the binary ground truth label using a standard AP
implementation (from scikit-learn).

For splicing localization, the output binary masks are
compared with GT masks to compute true & falses
positive (TP & FP) and false negative (FN) pixels.
We adopt the standard Matthew’s coefficient MCC =

TP×TN√
(TP+TP )(TP−FN)(TN+FP )(TN+FN)

, F1 score and In-

tersection over Union (IoU) measure averaged over each
dataset to evaluate localization accuracy. The optimal detec-
tion and localization thresholds δb and δl are calculated em-
pirically for each dataset and method and are kept fixed for
all images in one dataset (δb may not necessarily be equal
to δl ). As a result, the values reported in the following
sections may vary from those in the past studies.

5.4. Results

We show the forgery detection and localization accura-
cies of our and baseline algorithms on the 3 test datasets
in Tables 1 and 2 respectively. The performance of the
proposed algorithm is compared against 3 baselines: 1)
EXIF-SC [39] algorithm for learning representation given
EXIF metadata, 2) forensic graph (FG) [54] algorithms that
learn device signatures from camera id, 3) pixelwise pre-
diction by MantraNet trained in a fully supervised man-
ner [73]. The detection and localization results of these
methods were computed from their publicly available im-
plementations and evaluated with the measures explained in
Section 5.3. Among the baselines, EXIF-SC performance
is more relevant than other methods because, like the pro-
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Table 1. Manipulation detection performance comparison on Columbia, DSO/Carvalho, RT/Korus datasets.

Alg Supervision
Det

Methd
Columbia

DSO/
Carvalho

RT/
Korus

δb AP δb AP δb AP

MantraNet [73] Dense GT
SpAvg 0.712 - 0.906 - 0.535

PctArea 0.005 0.835 0.5075 0.935 0.990 0.633
FG [54] Camera ID SpecG - 0.955 - 0.947 - 0.688

EXIF-SC [39]
EXIF

Metadata
SpAvg - 0.962 - 0.75 - 0.534

PctArea 0.185 0.945 0.47 0.784 0.46 0.545

Proposed Self consist.
SpAvg - 0.871 - 0.837 - 0.538

PctArea 0.25 0.918 0.285 0.946 0.291 0.537

Table 2. Forgery localization performance comparison on Columbia, DSO/Carvalho, RT/Korus

Method Supervision Columbia
DSO/

Carvalho
RT/

Korus
δl MCC F1 IOU δl MCC F1 IOU δl MCC F1 IoU

MantraNet [73] Dense GT
0.005 0.198 0.486 0.302 0.50 0.349 0.363 0.528 0.99 0.07 0.08 0.25
0.10 0.486 0.599 0.596 0.40 0.369 0.392 0.545 0.41 0.190 0.208 0.424

FG [54] Camera ID 0.30 0.860 0.884 - 0.25 0.744 0.760 - 0.20 0.265 0.274 -

EXIF-SC [39]
EXIF

Metadata
0.18 0.778 0.837 0.793 0.47 0.358 0.758 0.5 0.46 0.077 0.118 0.158
0.22 0.785 0.837 0.803 0.36 0.381 0.795 0.519 0.16 0.109 0.126 0.244

Ours Self consist.
0.25 0.481 0.524 0.572 0.285 0.514 0.532 0.594 0.29 0.05 0.1 0.114
0.18 0.71 0.786 0.738 0.2 0.65 0.67 0.7 0.12 0.154 0.152 0.3

Table 3. Inference time (sec/image) comparison.

Alg
Columbia
(sec/img)

DSO
(sec/img)

FG [54] detect 0.3 3.63
FG [54] localize 0.75 3.97
EXIF-SC [39] 81.59 99.15

ManTraNet [73] 0.707 3.729
Ours 0.35 8.05

posed approach, it does not utilize the device ids.
The detection accuracy is calculated by comparing the

binary groundtruth label of the image (authentic vs fake)
with the prediction generated by SpAvg and PctArea for
EXIF-SC, MantraNet, and the proposed method. For FG,
we use the output of the spectral gap technique with the
crop size of 128 × 128 and stride s = 64. The detection
performances of the baselines and proposed method are re-
ported in Table 1. We also mention the type of groundtruth
annotation needed for training the CNNs in each algorithm.

As displayed in Table 1, the proposed method achieves
similar or better AP values than EXIF-SC on DSO/Carvalho
and RT/Korus datasets but trails in Columbia dataset by
0.03. Our method exhibit better performance with PctArea
technique than SpAvg for forgery detection. The optimal
detection threshold δ∗b for our model resides within a small
range [0.25, 0.291], which implies consistency in output re-
sponse values on different test sets. FG [54] consistently
outperformed all methods in all datasets suggesting that
source ids contribute to performance improvement. As an-
ticipated earlier, MantraNet [73] was unable to generalize

well on all datasets. We believe this is due to the inability
for the artificially generated training set to encompass the
variations in forgeries that appear in real world.

It is worth mentioning here that, our proposed method
applies cosine similarity which is a simpler operation than
the MLPs used to compute patch similarity in EXIF-SC and
FG. The fact that our method attains close or superior per-
formances to those of EXIF-SC and FG with simpler patch
consistency function demonstrates the strength of the repre-
sentations learned by the proposed approach. This provides
strong evidence that self-supervised learning of representa-
tion from FT content is an effective strategy for confronting
image forgeries.

For localization, we generate the binary prediction mask
using two threshold values of δl. One of the output masks
was produced by setting δl = δ∗b where δ∗b is the best thresh-
old for manipulation detection (refer to Table 1). The other
prediction map was computed by searching δl over a range
(centered at δ∗b ) that yield the highest MCC score. The per-
formance of the proposed method for localization conforms
to that for detection – it achieves similar or higher accu-
racy than those of EXIF-SC, MantraNet at the best thresh-
old value (Table 2). Operating on two different threshold
values for detection and localization is not an impractical
decision to make as we discussed in Section 5.3.

Figure 2 displays qualitative results from the proposed
method and baselines. Our model performs as good as or
better than baselines in these images. One can notice a few
small false positive blobs on the output mask of our method
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Spliced Image Ground Truth MantraNet Forensic Graph EXIF-SC RGB Ours

Figure 2. Localization results on DSO/Carvalho (row 1 and 2) and RT/Korus (row 3 and 4) datasets. Our self-supervised approach performs
comparably, if not better than other methods. Best viewed in color.

Table 4. Manipulation detection performances of the RGB, Fusion model with same architecture and RFFT models with different archi-
tecture. All models were learned with self-supervision.

Model
Det

Methd
Columbia

DSO/
Carvalho

RT/
Korus

δb AP δb AP δb AP

RGB
SpAvg - 0.69 - 0.836 - 0.514

PctArea 0.0947 0.678 0.275 0.88 0.052 0.531

RGB-RFFT
SpAvg - 0.89 - 0.88 - 0.531

PctArea 0.20 0.935 0.20 0.955 0.247 0.537

ResNet50
SpAvg - 0.852 - 0.852 - 0.525

PctArea 0.24 0.96 0.24 0.907 0.18 0.531

SimCLR
SpAvg - 0.883 - 0.874 - 0.524

PctArea 0.12 0.94 0.12 0.89 0.12 0.53

on the top 2 images from DSO/Carvalho dataset. Our model
leads to an F1 accuracy lower than but IoU values higher
than those of EXIF-SC. This suggests our method produces
more false positive pixels than EXIF-SC on DSO/Carvalho
but the sizes of these false positive pixel blobs are small
and can be removed by subsequent post-processing based
on, e.g., size or number of regions.

5.5. Inference Speed

In Table 3, we report the average time to detect and
localize the spliced area in each image in Columbia and
DSO/Carvalho datasets. The inference speed was cal-
culated for all algorithms on the same machine with an
NVIDIA V100 GPU. We used the same image block size
128 × 128 and stride s = 64 for the proposed, FG and
EXIF-SC methods. Since FG uses different techniques for
detection (spectral gap) and localization (community detec-
tion), one must run both inference operations to generate
values reported in Tables 1 and 2.

Our proposed approach is at least an order of magni-

tude faster than EXIF-SC. This is due to the adoption of
a lighter backbone (ResNet-18) and the use of cosine simi-
larity for inference. A closer examination revealed that 90%
of the inference time of our method is spent on the mean-
shift clustering algorithm. One can utilize an efficient clus-
tering/agglomerative method or implementation to further
reduce the latency of the proposed technique.

5.6. Analysis & Ablations

5.6.1 RFFT vs RGB

For our first ablation experiment, we train two models: one
takes the RGB values of the image patches as input while
the other is a fusion model that operates on both the RGB
values and the RFFT values of the image patches. The RGB
model has the same architecture as described in Section 3.2.
In the fusion model, the RGB and RFFTs values are pro-
cessed by two different backbones and projections and then
are combined at the end to yield the final representation (late
fusion). Both models are trained with the same contrastive

28



Table 5. Forgery localization accuracy of fusion (RGB-RFFT) model.

Method Columbia
DSO/

Carvalho
RT/

Korus
δl MCC F1 IoU δl MCC F1 IoU δl MCC F1 IoU

RGB-RFFT
0.2 0.5 0.65 0.6 0.2 0.544 0.578 0.68 0.24 0.032 0.118 0.48

0.14 0.642 0.75 0.696 0.16 0.645 0.68 0.736 0.12 0.137 0.18 0.42

Figure 3. Left to right: a sample fake image, its GT mask, and consistency matrices from GT, cosine similarity from RGB model, and that
from RFFT model. The numbers on input image indicate patch indices. Yellow indicates high similarity, purple indicates low consistency
(green should be perceived as purple, was created as an artifact of downscaling). Best viewed in color.

loss (Eqn 3) and optimization technique.

The tampering detection results from the proposed RFFT
based model are compared in Table 4 with the RGB and
Fusion model. It is interesting to observe that the fusion
model, which combines information from RGB and RFFT,
achieves slight improvement over the proposed RFFT based
model. However, as Table 5 shows, the fusion model was
unable to achieve the same localization quality of the RFFT
model. The fusion model also increases the model size by
almost a factor of two with ≤ 2% improvement in detection
accuracy.

We also compare qualitatively the patch consistency ma-
trices produced by the cosine similarities from ResNet-18
trained on RGB and RFFT in Figure 3. The consistency
values from every image block to all other blocks are com-
puted from the groundtruth labels, cosine similarity from
RGB model, and the RFFT model respectively (yellow =
high similarity). It is evident from the consistency matrices
that, while the proposed RFFT can correctly distinguish the
manipulated patches from authentic ones, the RGB based
model is confused by appearance features. For example, the
RGB model appears to be separating the vegetation, water-
fall, and sky in the pristine part of the image in the top row
of Figure 3. As a result, the output from RGB based model
produces large false positive detections, see the column la-
beled RGB in Figure 2.

5.6.2 Model Variation

We have also tested out the model by replacing the back-
bone network to ResNet-50 instead of ResNet-18 and with
the exact model proposed in the SimCLR study [13]. The
detection performances of these models are presented in Ta-
ble 4. Although it may be possible to match the accuracy of
the proposed architecture with the further tuning of hyper-
parameters and training procedures, we speculate the im-
provement may not justify the costs ResNet-50 based mod-
els incur.

6. Conclusion
This paper presents an effective approach for training

a splicing detection/localization CNN in a self-supervised
fashion from FT of images. Given the FT, the model is de-
signed to learn an image fingerprint to be exploited to iden-
tify spliced regions extracted from different images. Our
experiments suggest that the proposed model learned un-
der self-supervision can achieve the accuracy and speed of
multiple standard algorithms on different benchmarks. Our
findings will not only facilitate model training in scenarios
where the camera and image metadata are not available but
also enable expanding the training set to learn a more robust
network. We hope our work will encourage further research
in similar directions toward robust and scalable manipula-
tion detection techniques.
Acknowledgement: We thank Aurobrata Ghosh for helpful discussions
and Ya-Fang Shih for sharing an earlier version of evaluation scripts.
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