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Abstract

Forensic analysis of manipulated pixels requires the
identification of various hidden and subtle features from im-
ages. Conventional image recognition models generally fail
at this task because they are biased and more attentive to-
wards the dominant local and spatial features. In this pa-
per, we propose a novel Gated Context Attention Network
(GCA-Net) that utilizes non-local attention in conjunction
with a gating mechanism in order to capture the finer im-
age discrepancies and better identify forged regions. The
proposed framework uses high dimensional embeddings to
filter and aggregate the relevant context from coarse fea-
ture maps at various stages of the decoding process. This
improves the network’s understanding of global differences
and reduces false-positive localizations. Our evaluation on
standard image forensic benchmarks shows that GCA-Net
can both compete against and improve over state-of-the-art
networks by an average of 4.7% AUC. Additional ablation
studies also demonstrate the method’s robustness against
attributions and resilience to false-positive predictions.

1. Introduction

Image manipulation is the act of altering an image’s con-
tent using different editing techniques. Examples of such
manipulation include, content removal [24], face-swapping
[22], attribute changing [39], etc. There are three primary
types of manual image forgery techniques [6] − splicing,
copy-move, and inpainting. The majority of these manip-
ulation scenarios consist of copying and pasting some pix-
els from a source image onto a target image, as shown in.
Fig. 1. Forensic algorithms play the important role of de-
termining whether an image is authentic or not. Further re-
search in developing better detection mechanisms is critical
in today’s age of social media, as any fake news can spread
rapidly and be used to foment panic and propaganda.

Numerous methods have been proposed over the years
for image forgery localization and detection (IFLD). In re-
cent years the use of deep CNN architectures capable of

Tampered ImageOriginal Image Prediction

Figure 1. The first and second columns contain examples of au-
thentic and manipulated images. The third column shows the out-
put generated by our proposed network, highlighting the manipu-
lated regions of the tampered images.

learning intrinsic features has gained popularity [2]. How-
ever, unlike traditional image classification, forgery detec-
tion involves identifying hidden manipulation traces from
the image rather than the apparent spatial content. Exist-
ing works that utilize a variety of sequential frameworks
[17, 40, 54] suffer from feature attenuation due to the sub-
tlety of the forgery artifacts. Although some methods try to
utilize feature hierarchies through recursive pooling [1,21],
they are mostly bound to local neighborhoods.

Majority of the existing manipulation localization net-
works [13,21,54] perform a pixel-level binary classification
of each individual pixel in order to generate the localiza-
tion map. Image-level classification is consequently done
depending on the percentage of identified pixels. This sim-
plification results in two notable drawbacks − i) Since these
methods view each pixel as a single data point, they fail to
utilize important region characteristics such as noisy bound-
aries and object artifacts that can help in discerning region
differences, ii) Despite authentic images not containing ma-
nipulation traces, methods that were trained using this pro-
cess exhibit erroneous predictions when trying to localize
untampered images; shown in Fig. 2.

In order to address the shortcomings of existing net-
works, we propose the Gated Context Attention Network
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Figure 2. Examples of false predictions from different networks.
The first column contains authentic images and the next two con-
tain results of the following networks − (a) Bappy et al. [1], (b)
Zhou et al. [58], (c,e) Wu et al. [54], (d) Wu et al. [52], (f) Wu et
al. [53]. We can see that the networks highlight a lot of erroneous
pixels for untampered images.

(GCA-Net), which is composed of an improved feature en-
coder and a densely connected attention decoder. Image
manipulation alters not only the visible content of an image
but also the underlying signal and noise characteristics. So,
in order to utilize these multi-modal features, we combine
EfficientNet [44] with an improved Error Level Analysis
(ELA) [49] module and other steganalysis layers to iden-
tify the compression and noise artifacts. However, since
every image contains some intrinsic noise patterns [13], in
order to localize the manipulations, we must correlate the
local noise difference to the global image fingerprint. Al-
though previous works [21, 54, 59] have attempted to use
these signal features, their inattention to the global similar-
ities resulted in generating noisy false positives.

Our proposed GCA-Net uses a novel gated context at-
tention which performs two distinct computations. Firstly,
it aggregates multiple cross-layer feature embeddings and
applies a global context attention to identify differences be-
tween local and global representations. This improves the
network’s understanding of long-range dependencies be-
tween the various pixel regions. Secondly, the low-level
context features are filtered using an attention gate to elimi-
nate redundant spatial and object data. By propagating only
the necessary forensic features, we are able to minimize at-
tenuation and improve the identification of boundary arti-
facts. Furthermore, the dense network structure of Unet++
[60] facilitates information exchange between intermediate
layers, thus reducing feature loss and improving conver-
gence. This design also increases the network’s robustness
to post-processing attributions. Our evaluation on the pop-

ular CASIA [15], NIST [19], and IMD [33] benchmarks
show performances comparable to existing SOTA methods
under constrained resources. GCA-Net outperforms several
existing methods by 4%− 6%, successively generating bet-
ter localization and fewer false positives. To summarize the
contributions of our work:
• We propose GCA-Net consisting of a novel Gated Con-

text Attention module that enables efficient modelling
of long-range dependencies and improves global context
representation necessary for manipulation localization.

• We substantiate the impact of global context and non-
locality in detecting image forgeries, facilitating future
research in this field.

• We illustrate the effects of training strategies for reducing
false positives and improving image-level predictions.

• We show that our method outperforms the state-of-the-art
performance on standard datasets for image manipulation
detection and localization.

2. Related Works

Depending on the type of forgery, different clues and ar-
tifacts can be found in an image to determine whether it is
authentic or not. These include, compression noise [47],
PRNU sensor information [11, 12], camera model informa-
tion [7, 35], local noise features [13, 42], etc. Earlier foren-
sic methods used algorithms to detect these noise and signal
properties using carefully designed filters. Among them,
the SRM filters used in [59] have shown success in identi-
fying hidden noise patterns from images.

A number of neural networks have also been proposed
for both independent forgery detection [26, 31, 36, 45], and
localization [7, 32, 53]. Object detection networks using
RCNN, region proposal modules, and bounding box iden-
tification have shown to be effective for manipulation lo-
calization [4,50,59]. Consequently, segmentation networks
like Unet and DeepLab have also been used [5, 9]. Further-
more, the use of constrained layers have also shown effec-
tiveness in improving input representation and minimizing
the effects of dominant spatial features [3, 56]. ManTra-
Net [54] uses a simple VGG [41] network with a Z-pooling
method to localize anomalous features. This work was ex-
tended by SPAN [21] to further model the spatial correla-
tion via local self-attention blocks and hierarchical pyra-
mid propagation. However, both networks fail to utilize
the correlation of global context and multi-scale features.
In a recent work [27], PSCC-Net was proposed that tries
to address these problems using channel correlation. They
showed that multi-scales attention could be leveraged to im-
prove manipulation detection.

While self-attention was originally introduced for lan-
guage modeling [46], this seminal work has been proven
to improve long-range feature representation across a va-
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Figure 3. The architecture of GCA-Net. The input image first passes through feature suppression layers similar to [21, 54] that extracts
multi-modal compression and noise level features. These are then propagated through the EfficientNet encoder backbone consisting of five
stages X0,0 → X4,0. Each node of the dense decoder Xi,j contains the Gated Context Attention block that takes in the ith layer features
Fl = [Xi,0, .., Xi,j−1] shown using blue solid and dashed arrows, and the gating feature Fg from (i + 1)th layer shown using orange
arrows. Due to the bottom-up architecture of the decoder, the outputs from zeroth layer X0,1→4 are taken and using deep supervision [60]
the final localization map is generated. We use separate classification and localization losses for multi-task learning and optimization.

riety of domains. Several works have utilized variations
of attention for forgery detection [10, 14, 30]. Vision tasks
primarily use two types of attention mechanisms: channel-
attention [20] and spatial-attention [48]. Spatial attention
using non-local blocks, also termed dot-product attention,
can be considered a generic framework for non-linear cor-
relation. However, this method suffers from quadratic com-
plexities as the attention maps are computed for every pixel
pair. An improved context attention was introduced in [8]
that replaces the quadratic operation by simplifying the con-
text modeling framework. In our work, we use this global
context framework in conjunction with a gated attention
mechanism to explore discrepancies in spatial and feature
channels concurrently. Attention gating has previously been
used for various tasks including graph learning [57], lan-
guage processing [55], medical image segmentation [34],
etc. We introduce gating for forgery detection in order to re-
inforce and filter coarse-level features during the upscaling
and decoding phases. This leads to improvements in infor-
mation sharing by only propagating the necessary forensic
signals through the network.

3. Proposed Method

3.1. Overview

As illustrated in Fig. 3, GCA-Net is a multi-branch dense
encoder-decoder network. The model is comprised of three
parts: a feature encoder, a dense decoder, and two heads for
classification and localization. An input image first passes

through a series of content suppression layers that gener-
ate multi-domain semantic features. While standalone CNN
layers are capable of extracting features from images, they
are localized and biased towards the dominant spatial fea-
tures rather than the manipulation traces. So, in addition to
the constrained layers in [54], we use an Error Level Anal-
ysis (ELA) module to extract signal noise and compression
artifacts. The encoded backbone features and intermediate
layer outputs are used by the attention decoder to produce
the final localization map. Each decoder block is composed
of a GCA layer followed by a series of convolution layers
for feature accumulation and upscaling. Additionally, the
encoder features also pass through a fully connected layer
to generate an image-level probability score. The simul-
taneous classification and localization utilizes a multi-task
learning approach for better feature representation. This
plays a significant role in reducing false positives and im-
proving generalizability. Additional details regarding the
implementation of ELA, and the effect of each layer on the
network’s performance can be found in Suppl. A1.

3.2. Dense Feature Decoder

For the decoder branch, we use the dense Unet++ [60]
architecture that utilizes a multi-scale bottom-up architec-
ture for feature propagation. We denote the upper layers of
the decoder as coarse layers, and the lower layers as fine
based on the selectivity of their feature maps. The skip con-
nections between the layers allow the flow of multi-modal
semantic features, thus improving gradient flow and min-
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imizing feature loss. Moreover, since the decoder samples
the intermediate layers at multiple scales, it improves global
context representations.

Features from an input I ∈ R3×H×W are sampled
at five intermediate scales H/k × W/k, where k ∈
{2, 4, 8, 16, 32}. Each gray circle in Fig. 3 represents a
decoder node denoted Xi,j , where i indexes the sequential
down-sampling layers of the encoder and j indexes a de-
coder block along the skip pathway at the ith layer. The
output yi,j at any node is computed as,

yi,j = C (ϑ) (1)

ϑ = Θ
(
Ω
([

yi,k
]j−1

k=0

)
,U

(
yi+1,j−1

))
(2)

where C(·) is a series of convolution operations followed by
a ReLU activation, Θ(·) is the GCA layer, Ω(·) is a non-
local context block, U(·) denotes an up-sampling layer, and
[·] denotes the concatenation layer.

The bottom-up architecture ensures that at each node fea-
tures from all lower scales are accumulated. For instance,
X3,1 is reinforced by X4,0 and X3,0. Similarly, compu-
tation of the final node X0,4 aggregates features from all
previous layers and nodes X4,0 upto X0,3. Thus, each
node can determine which features are most relevant re-
inforced by the finer lower-level features and propagate it
to upper branches. In contrast to standard encoder-decoder
networks, this multi-scale fusion enables easier identifica-
tion of the essential attributes without relying on a single
previous output.

3.3. Gated Context Attention (GCA)

Attention mechanisms are used to modulate learned fea-
tures according to their relative significance. The GCA op-
eration shown in Fig. 4 is divided into two primary stages:
1) Global Context Pooling and 2) Attention Gating.

Deep convolution stacks tend to obfuscate global pixel-
to-pixel relationships due to their nature of locality [48].
Non-local blocks solve this problem using attention weights
and aggregating information from other points to reinforce
the features of a query position. Global context model-
ing [8] is an improved attention framework for identify-
ing long range dependencies between feature maps. In the
first stage, we compute the global context from the concate-
nated features of the current level. For instance, to compute
the context of node X0,3, we aggregate [X0,0, X0,1, X0,2]
which is denoted as Fl or layer features. These are coarse
feature maps containing a greater amount of global informa-
tion than the subsequent finer layers. Because identification
of manipulation features is based on detecting changes be-
tween a group of pixels and their surroundings, using these
global contexts allows the model to recognize the differ-
ences between altered regions. We can rewrite Eq. (2) as,
ϑ = Θ(Ω (Fl) , Fg), where, Fl =

[
yi,k

]j−1

k=0
is the concate-

 Softmax 

Context 
Block 

Gating Signal

Attention Gate

Figure 4. The structure of Gated Context Attention block. The
blue line shows the flow concatenated features Fl of ith decoder
level and the orange line denotes the upsampled gating feature Fg

from (i+ 1)th level as referred in Fig. 3

nation of ith level features, and Fg = U
(
yi+1,j−1

)
is the

up-sampled feature of (i+ 1)th level.
The context block Ω has three steps − i) attention pool-

ing, ii) feature transform, and iii) feature fusion. For the
pooling step we take Fl ∈ RCl×H×W and pass it through a
1 × 1 convolution to reduce the channels to Cl × 1 × 1.
It groups the features of all positions via weighted aver-
aging to obtain the global context vector. This is similar
to the Global Average Pooling of Squeeze-Excitation (SE)
layer [20]. The pooled vector is then passed through a bot-
tleneck block with a factor r to capture the channel-wise
dependencies. This is the transform step. The reduction
and expansion is analogous to the excitation operation of
SE block. Finally, the fusion step aggregates the context
features to the features of each input position using a broad-
cast element-wise addition.

The second stage of GCA is the attention gating which is
used to filter the coarse level features. Attention Gates (AG)
identify salient image regions and prune feature responses
to retain only relevant activations. As a result, signals
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from irrelevant background regions and spatial contexts are
gradually suppressed. AGs generate a coefficient matrix,
Ag ∈ [0, 1], which is multiplied with the input to alter the
scale of the activations. Each AG learns to focus on a subset
of target structures reinforced by the downstream features.
The coarse maps of the encoder represent global relation-
ships, while the downstream layers identify finer discrimi-
nating features. Gating uses these finer embeddings to dis-
ambiguate irrelevant and noisy responses within the coarse
features. At each decoder node Xi,j , the gating feature Fg

is the upsampled feature propagated by the node Xi+1,j−1,
highlighted in orange. In order to obtain the gating co-
efficient via additive attention, we first transform the con-
text feature Ω (Fl) ∈ RCl×H×W and gating feature Fg ∈
RCg×H×W to an intermediate vector Fint ∈ RCint×H×W .
A non-linear transformation layer Wζ = ReLU(Conv(·))
is then used to resample this vector. This produces the fi-
nal attention matrix Ag = Wζ(Ω (Fl) ⊕ FG) ∈ R1×H×W .
Finally, the attention matrix is multiplied with the input fea-
ture stack Fl to generate ϑ ∈ RCl×H×W , the GCA output.
The resulting gated features are sent through a series of con-
volution and activation layers C(·) that perform the decod-
ing operation at the particular node. Additional spatial and
channel attention layers [37] can be added after this stage to
further modulate the learnt features.

4. Experiments
4.1. Datasets

We follow the evaluation protocols in [54, 59] for train-
ing and validation. We train our model on four types of
data − splicing, copy-move, inpainting, and authentic im-
ages; collected from Dresden [18], MS COCO synthetic [1],
Defacto [29], and IMD-Real [33] datsets. For both pre-
trained and finetuned evaluation we use the four standard
datasets: CASIAv2 [15], NIST16 [19], COVERAGE [51]
and IMD-2020 [33], following the training/testing split de-
scribed in [27]. In total, we used ∼170k images for training,
with roughly equal class distribution. This amount is sig-
nificantly lower compared to existing SOTA methods like
SPAN [21], MantraNet [54], and PSCC-Net [27] that use
upwards of 500k∼1M images. We did not use a larger
dataset due to resource and accessibility constraints. The
majority of our computation was conducted on an Nvidia
1080 Ti GPU. However, despite the smaller train set, our
model outperforms these methods in multiple experiments.

4.2. Loss Function

The train data consists of input images I ∈ R3×H×W

and binary ground-truth masks M ∈ [0, 1]1×H×W . GCA-
Net was trained using a multi-task loss function combining
detection and localization losses. Most traditional meth-
ods [21, 27, 54] train the localization network using Binary

Cross-Entropy (BCE) loss (eq. 3). BCE works well for clas-
sification problems with lots of data and a balanced dataset
because it weighs all predictions equally.

LBCE = − 1

N

N∑
i=0

yi · log (ŷi) (3)

The loss function minimizes the distance between the pre-
dicted and ground truth value for all predictions. For ex-
ample, if a fake pixel is predicted with a probability of 0.7,
BCE will try to bring it closer to 1 in order to minimize
the loss. Thus, for unbalanced datasets, predictions become
skewed toward a particular class. Since we are working with
a small and unbalanced dataset, we opt to use a combination
of Dice [43], and Focal [25] loss. We compute the dice loss
using the following equation,

LDSC(P,G) = − log

(
2 · |P ∩G|+ ϵ

|P |+ |G|+ ϵ

)
(4)

For a prediction mask P and ground-truth G both having
dimensions 1 × H × W , the numerator calculates the in-
tersection of the regions, and the denominator measures the
union. Dice loss minimizes the distance between the pre-
dicted and true regions. Rather than calculating loss for
each individual pixel, it improves prediction for the entire
region. This is critical in lowering our false positive rate.
Since BCE tries to minimize loss for each pixel indepen-
dently, the network always produces incorrect predictions
for a certain number of pixels.

Even though Dice loss improves false positive and re-
gion overlaps, it falls short for small forged regions. This
is because as the regions become very small, |G| becomes
small. So if the model does not predict anything at all, i.e.,
if |P | → 0, then |P ∩G| → 0, and the total loss decreases.
Thus, dice loss alone is ineffective in these instances. To
overcome this problem, we combine Focal loss with Dice
loss. Focal loss is an improvement over BCE loss with an
additional temperature parameter to account for overconfi-
dent predictions. Focal loss is calculated as,

LFL (P ) = −αt (1− P )
γ
log (P ) (5)

The temperature γ controls the weighting of each predic-
tion. When γ > 0 is used, weak predictions are weighted
more heavily. So, the network focuses on improving a pre-
diction of 0.3 towards 1 rather than trying to improve a pre-
diction of 0.7. Since we are trying to correctly classify fake
pixels, a larger prediction P results in a smaller (1 − P )γ ,
thereby reducing the overall loss. So, the network will try
to classify weaker predictions more accurately. Combining
all of the above, our final loss function becomes,

L = wc · LCLS + wd · LDSC + wf · LFL (6)
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Loss Function AUC F1
LBCE 78.33 60.29
LDSC 84.12 64.41
LDSC + LFL 86.05 65.50
LDSC + LFL −Reduction [38] 86.81 67.25
LCLS + LDSC + LFL −Reduction 88.95 72.39

Table 1. Localization performance of GCA-Net under different
loss functions on CASIAv2 validation set.

LCLS = LBCE is the classification loss for the encoder’s
prediction. By combining classification loss, the network
can optimize both the encoder and decoder at the same time.
Each loss parameter can be adjusted independently. We use
ϵ = 10−7, γ = 2, wc = 1, wd = 1.10, and wf = 1.15
to train our final network. In Table 1 we report the results
of different configuration of loss functions on the CASIAv2
validation set. To quantify localization performance, we use
pixel-level AUC following previous works [27, 54, 59] and
Dice score i.e., pixel F1 score.

4.3. Ablation Study

We follow the ablation study in [8] to compare changes
of parameters and configuration of the network. The fol-
lowing experiments are done on the CASIAv2 validation
set, and we report the pixel-level AUC and F1 score.

Block Design: For the choice of long range context model-
ing we compare other existing frameworks - Non-local (NL)
block, Simplified Non-local (SNL) block, SE block, and the
Global Context block, placed before every decoder node.
Table 2(a) shows all context frameworks achieve better per-
formance over baseline. NL and SNL blocks are quite sim-
ilar, while GCA blocks with comparably fewer parameters
yield the best performance.

Bottleneck Design: The effects of each component in the
bottleneck section are shown in Table 2(b). w/o ratio uses
a single 1 × 1 convolution as a transform which has higher
parameters and achieves the best performance. Even though
r16+ReLU has fewer parameters they are harder to opti-
mize. Thus Layer Norm (LN) is used to ease optimization,
leading to performance similar to w/o ratio.

Bottleneck Ratio: The bottleneck is used to reduce redun-
dancy in parameters and provide a trade-off between pa-
rameter and performance. The bottleneck ratio r controls
the amount of feature compression. Table 2(c) shows that
the network’s performance improves consistently as the ra-
tio decreases. We use a bottleneck ratio r = 4 which has a
good balance of performance and parameters.

Block Positions: We determine whether the placement of
the GCA blocks have an effect on performance. Various
placement positions are illustrated in Suppl. A2. As seen in
Table 2(e), this effects performance only to a small degree.

(a) Block Design
AUC(%) F1

baseline (without GCA) 85.2 68.4
non-local 86.1 69.8
simplified non-local 86.9 70.5
global context 87.4 71.7
GCA 88.9 72.4

(b) Bottleneck Design

baseline (without GCA) 85.2 68.4
w/o ratio 88.9 72.5
r16 (ratio 16) 87.3 70.4
r16+ReLU 87.3 70.4
r16+LN+ReLU 88.3 72.6

(c) Bottleneck Ratio

baseline (without GCA) 85.2 68.4
ratio 4 88.8 72.8
ratio 8 88.5 72.8
ratio 16 88.3 72.6
ratio 32 87.9 71.7

(e) Block Positions

baseline (without GCA) 85.2 68.4
all decoder 88.3 72.6
only end nodes 87.1 70.5
only intermediates 87.8 71.9
only top nodes 86.3 69.4

Table 2. Ablation study of the GCA block for pixel-level localiza-
tion on the CASIAv2 validation set.

The best results are obtained by placing the attention block
before each node.
Additional ablation experiments regarding backbone
choice, and training specifics are provided in Suppl. A3.

5. Comparison and Evaluation
We compare GCA-Net against existing SOTA architec-

tures for both pre-trained and finetuned evaluation. The
pre-trained model was selected based on the best validation
score on the train set. We report existing values as men-
tioned in [27]. For finetuned evaluation we use unseen test
splits generated following the evaluation process in [59].

In Tables 3, 4 we compare GCA-Net to existing methods.
Both the pre-trained and fine-tuned comparisons demon-
strate that GCA-Net outperforms all other methods on the
CASIAv2 and IMD-2020 datasets and is comparable on the
NIST and COVERAGE datasets. On CASIA and IMD, we
see an improvement of 5.4% and 4.46% respectively over
PSCC-Net. GCA-Net achieves an AUC of 95.3 on NIST-
16, trailing behind PSCC-Net by only 4%. However, we
surpass every network on NIST-16 in terms of F1 score.
This is because of our fine-tuning the loss functions. Pixel-
level F1 score measures the region overlap of the prediction
and ground-truth. Since we optimized the network using
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Method CASIAv2 COVERAGE NIST16 IMD2020
MantraNet [54] 81.7 81.9 79.5 74.8
SPAN [21] 79.7 92.2 84.0 75.0
PSCC-Net [27] 82.9 84.7 85.5 80.6
GCA-Net 87.1 83.1 85.2 81.3

Table 3. Comparison of localization AUC against existing meth-
ods using their pre-trained models.

Methods CASIAv2 COVERAGE NIST16 IMD2020
ELA [23] 61.3 / 21.4 58.3 / 22.2 42.9 / 23.6 -
NOI [28] 61.2 / 26.3 58.7 / 26.9 48.7 / 28.5 58.6 / -
CFA1 [16] 52.2 / 20.7 48.5 / 19.0 50.1 / 17.4 48.7 / -
RGB-N [59] 79.5 / 40.8 81.7 / 43.7 93.7 / 72.2 -
SPAN [21] 83.8 / 38.2 93.7 / 55.8 83.6 / 29.0 75.0 / -
PSCC-Net [27] 87.5 / 55.4 94.1 / 72.3 99.6 / 81.9 80.6 / -
GCA-Net 92.2 / 71.2 87.4 / 69.5 95.3 / 84.5 86.4 / 42.6

Table 4. Evaluation against existing fine-tuned models for pixel-
level localization AUC/F1 score on unseen test splits.

Dice loss, its region identification is better than the existing
models. We rank third in COVERAGE, behind SPAN and
PSCC-Net. COVERAGE includes samples with very small
shifts of copied regions followed by contrast correction and
edge blurring. Our train data, which is composed entirely
of publicly available datasets, is free of such perturbations,
resulting in a difference in the train-test distribution. This
limitation can be overcome by training on synthetic copy-
move data supplemented with adversarial examples. Qual-
itative examples of localization are shown in Fig. 5. Ad-
ditional examples comparing localization for both authen-
tic and forged images against MantraNet is provided in the
supplementary.

5.1. Detection Performance

To analyze the image-level detection performance, we
compare pretrained GCA-Net to SOTA architectures using
the metrics reported in [27]. We use a detection dataset
containing 511 forged and 749 real images taken from
CASIAv2. As can be seen from Table 5, GCA-Net sig-
nificantly outperforms all other models. This is because it
was equipped with a dedicated classification head that was
trained particularly to recognize images with forged con-
tent. In comparison, existing approaches identify the image
class by counting the number of manipulated pixels discov-
ered in the localization result.

Method Image-Level F1 Score

MantraNet 56.69
SPAN 63.48
PSCC-Net 66.88
GCA-Net (pretrained) 85.51

Table 5. Comparison of image-level detection performance on
CASIAv2 detection set against other methods.

5.2. False Positive Evaluation

One of the primary contributions of our proposed method
is the reduction of false positives in localization. In order to
evaluate the degree of improvement against other networks,
we calculate FPR or False Positive Rate for both authentic
and manipulated images. FPR quantifies the proportion of
data in a sample that is incorrectly identified. In our case, a
false positive prediction occurs when a pixel that should be
authentic, i.e., 0, is classified as fake, i.e., 1. FPR measures
the fraction of incorrect predictions made against the entire
set of pixels in an image FPR = False Positive Pixels

Total Number of Pixels .
However, because the number of incorrect predictions is rel-
atively small in comparison to the total number of pixels in
an image, this value can become extremely small and diffi-
cult to interpret. Thus, we use the −log(FPR) as our eval-
uation metric. Increased values indicate better performance
and lower false positives.

ManTraNet GCA-Net

CASIA
Authentic (A) 5.39 9.88
Tampered (T) 4.77 5.09
Combined (A+T) 4.95 5.97

IMD
Authentic (A) 4.57 6.10
Tampered (T) 4.43 5.65
Combined (A+T) 4.66 6.93

Authentic (CASIA + IMD) 4.94 8.83
Tampered (CASIA + IMD) 4.56 5.30

Table 6. Comparison of false positive, −log(FPR), for authentic
and manipulated images from CASIAv2 and IMD2020 test sets.
Higher values denote less false positives. The experiments were
done separately on authentic and tampered images, as well as a
combination of both from the two datasets.

To conduct the evaluation, we created a test set using 200
authentic and 100 tampered images taken independently
from both CASIAv2 and IMD2020 datasets. We used the
pretrained model for GCA-Net, and the publicly available
implementation for ManTraNet. As illustrated in Table 6,
GCA-Net consistently shows better performance. For au-
thentic images in both CASIA and IMD, GCA-Net’s score
is almost double that of the other methods. Moreover, due
to the logarithmic nature of the metric, fairly small differ-
ences denote significant real world improvement. Addi-
tional qualitative samples of authentic predictions are pro-
vided in the supplementary.

5.3. Robustness Analysis

We examine the performance of our proposed method
against various attacks/post-processing to further verify its
efficacy and robustness. For this purpose, we degrade im-
ages from the NIST16 test set using the distortion settings
in [27]. These include Gaussian Blur with kernel size k,
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Figure 5. Qualitative examples of manipulation localization with their respective groundtruths from multiple datasets.
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Figure 6. Comparison of model robustness against different post-
processing methods.

JPEG Compression with a quality factor q, and Additive
Gaussian Noise using standard deviation σ. The reported
metrics are calculated using the pretrained GCA-Net. In
Fig. 6, we can see that our model outperforms existing ap-
proaches against various post-processing attacks.

5.4. Limitations

In our experiments we found that GCA-Net might fail
when the manipulation region is very large compared to
authentic pixels. Fig. 7(a) contains a sample from NIST-
16 where the entire white region is manipulated. Although
GCA-Net could detect the discrepancy between the authen-
tic and forged regions, it is not confident about the predic-
tion. It highlighted the centre portion denoting that the re-
gion is different from the surrounding pixels. For a second
example, we tested our network similar to [54] to check for
manual assistance applicability. The initial image in Fig.
7(b) was of dimension 1024 × 1520 having a small forged
region. The network failed to locate the region when tested
with the entire image. After that, we cropped the image
around the forged location and again tested the cropped im-
age. This time the network was able to identify the manipu-
lated region. This indicates that GCA-Net could be used as
a computer-aided tool.

a.

b.

Figure 7. (a) Example of a failed prediction. The groundtruth (2nd
image) shows white pixels as forged and black as authentic. The
prediction (3rd image) identified discrepancies between the two
regions, but inverted the classes. (b) The left pair shows example
of a failed localization for a large resolution image. In the right
pair, for the same image when tested with a cropped portion, the
network successfully located the forged pixels.

6. Conclusion

In this paper, we introduced a novel Gated Context
Attention Network (GCA-Net) for detecting and localiz-
ing image forgeries. Our proposed network uses a gated
attention block to utilize the global context features to-
gether with the region attributes to localize manipulated
pixels. The proposed attention framework improves long-
range dependency modeling and reduces attenuation of the
hidden forensic features. This paper illustrated the prob-
lems surrounding existing methods and how they might be
addressed with better feature representation and training
strategies. As demonstrated by our results, GCA-Net out-
performs existing SOTA architectures on multiple bench-
mark datasets by upto 6% with significantly lower false pos-
itives. In the future, we will further improve the method in
handling large resolution images and work on reducing the
limitations. We will also explore the model’s viability in
detecting deep learning-based deepfake forgeries and other
semantic segmentation tasks.
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