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Abstract

While many have grown suspicious of viral images and
videos found online, there is a general sense that we can and
should trust that the person on the other end of our video-
conferencing call is who it purports to be. The real-time
creation of sophisticated deep fakes, however, is making it
more difficult to trust even live video calls. Detecting deep
fakes in real time introduces new challenges as compared
to off-line forensic analyses. We describe a technique for
detecting, in real-time, deep-fake videos transmitted over a
live video-conferencing application. This technique lever-
ages the fact that a video call typically places a user in front
of a light source (the computer display) which can be ma-
nipulated to induce a controlled change in the appearance
of the user’s face. Deviations of the expected change in ap-
pearance over time can be measured in real time and used
to verify the authenticity of a video-call participant.

1. Introduction
In early 2020, a United Arab Emirates’ bank was swin-

dled out of $35 million (USD). The bank teller was con-
vinced to transfer the funds after receiving a phone call from
the purported director of a company whom the bank man-
ager knew and with whom he had previously done business.
The voice on the other end of the phone instructed the bank
manager to transfer the funds as part of a corporate acqui-
sition. Because the request was consistent with previously
received emails describing the acquisition, and because the
purported director’s voice was familiar to him, the bank
manager transferred the funds. It was later revealed that the
voice was that of an AI-synthesized voice made to sound
like the director.

This was not the first time AI-synthesized content was
used to steal large sums of money. In 2019, a United
Kingdom based company suffered a similar fate when an
imposter used an AI-synthesized voice to steal $243,000
(USD) in a similar type of scam.

These two incidents are almost certainly the canaries in

Figure 1. A computer display acts as an area light source that can
be controlled in real time to induce an authenticating pattern on
the face of a video-call participant. This simple example shows
the impact of switching between viewing a dark (left) and bright
(right) browser window.

the coal mine. As AI-synthesized audio and video continue
to improve in quality and accessibility, it is reasonable to
predict that these technologies will continue to be used to
commit a range of small- to large-scale frauds, among other
potentially nefarious uses.

All forms of deep fakes pose potential threats from non-
consensual sexual imagery to fraud, and disinformation
campaigns. The creation of real-time deep fakes, however,
poses unique threats because of the general sense of trust
surrounding a live video or phone call, and the challenge of
detecting deep fakes in real time, as a call is unfolding.

Over the past two pandemic years, we have grown
accustomed to video calls replacing previously in-person
meetings and phone calls. Although not yet perfected,
deep fakes can be synthesized in real time and piped
through a virtual camera (e.g., github.com/alievk/
avatarify-python and github.com/iperov/
DeepFacelive), meaning that it will become increas-
ingly more difficult to distinguish a real person from an AI-
synthesized person at the other end of a video call.

One approach to detecting deep-fake video calls is to em-
ploy any of a plethora of passive deep-fake forensic tech-
niques (see Section 2). Most of these approaches, however,
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struggle to run in real time, and most struggle to achieve the
levels of accuracy that would be needed to be incorporated
into a video-conferencing application.

In contrast to passive forensic techniques, active foren-
sic techniques (a.k.a., control-capture [2, 25]) focus on au-
thenticating content at the point of recording. By extract-
ing a compact, digital signature at the point of recording
and packaging this signature alongside the recording, au-
dio, images, and videos can be efficiently and accurately
authenticated.

Motivated by the reliability of active forensic approaches
and the unique constrained environment afforded by a
video-conferencing call, we describe an active approach for
detecting real-time, deep-fake video calls. In particular, in-
stead of explicitly trying to distinguish an authentic video
from a deep-fake video, we authenticate videos by project-
ing a distinct illumination pattern onto the face of each call
participant. This pattern can be induced by a call partici-
pant displaying the temporally varying pattern on a shared
screen, or directly integrated into the video-call client. In
either case, no specialized imaging or lighting hardware is
required.

Through large-scale simulations, we evaluate the relia-
bility of this approach under a range of imaging scenarios,
and validate this approach in a variety of real-world settings.
We begin by framing our technique within previous work.

2. Related Work
We provide an overview on the state of the art in creating

and detecting deep-fake videos, with an emphasis on real-
time deep fakes.

2.1. Creation

Since they splashed onto the scene in 2017 with full force
(an earlier incarnation dates to a decade earlier [9]), AI-
synthesized content – so-called deep fakes – have contin-
ued their rapid trajectory of increased sophistication, real-
ism [26], and accessibility. This includes images of fully
fabricated people [14, 15], audio recordings mimicking an-
other voice [29], and videos of people saying anything the
creator wants them to say [35].

Within this broad range of different types of AI-
synthesized content, so-called puppet-master deep fakes
(e.g., [13, 32]) are particularly intriguing for their power
to create a deep fake in real time from a single source im-
age. In particular, starting with a single image of a person
(the puppet), and a recorded or live video of another person
(the puppet master), a video of the puppet is synthesized to
mimic the expressions, mouth movement, and head move-
ments of the puppet master. The resulting synthesized video
can then be piped into a live video call through a virtual
camera. Although not yet perfected, this type of puppet-
master deep fake holds the potential to deceive someone

into believing they are talking with anyone that a fraudster
wants to impersonate [7]. In contrast, this same technology
holds the potential to significantly reduce the bandwidth
necessary for a video call [1].

As compared to a puppet-master deep fake, a face-swap
deep fake (github.com/deepfakes/faceswap,
github.com/shaoanlu/faceswap-GAN) replaces
the face – from eyebrows to chin and cheek to cheek – of the
impersonator with that of another. The viral deep-fake Tom
Cruise videos (www.tiktok.com/@deeptomcruise)
are a particularly compelling example of this type of deep
fake. While the creation of deep Tom Cruise is the result of
a talented impersonator and a highly-skilled, special-effects
artist, open-source software for creating real-time, face-
swap deep fakes are emerging on the scene. DeepFaceLive
(github.com/iperov/DeepFacelive), for exam-
ple, allows the creator to swap their face with a celebrity in
real time and, according to their documentation, also incor-
porates a color transfer that maps the creator’s environmen-
tal lighting onto the deep fake.

2.2. Detection

Forensic techniques for detecting deep fakes can be
broadly categorized into low- and high-level approaches.
Low-level techniques detect pixel-level, synthesis artifacts,
ranging from general artifacts [23, 36, 38–40], to warping
artifacts [21], and blending artifacts [19]. High-level tech-
niques focus on semantically meaningful features, includ-
ing inconsistencies in eye blinks [20], head-pose [37], phys-
iological signals [10], mouth shape and movement [5], and
distinct mannerisms [3, 6].

While some of these techniques might be applicable to
detecting real-time deep-fake videos, in our view, a class
of particularly promising approaches takes advantage of the
unique physical constraints of a live video call: call par-
ticipants are in front of a light source (the computer dis-
play) that can be actively adjusted in real time to induce
specific lighting patterns on a user’s face. The consistency
of a call participant’s appearance under this induced light-
ing can then be used to verify their liveness and physical
presence in front of the camera. We posit that this approach
will be effective because either the deep-fake video simply
fails to transfer the active illumination, or there is a tem-
poral delay in transferring the active illumination. We will
show that both of these scenarios are easily detected.

Exploiting the computer display as an active light source
has previously been leveraged as an inexpensive light stage
in which, after recording a user’s appearance under a time-
varying illumination pattern, her face can be synthetically
re-lit under an arbitrary lighting environment [30]. This
type of active approach has also previously been explored
particularly for the purpose of thwarting playback or re-
broadcast attacks [4]. FaceRevelio [11], for example, uses
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Figure 2. Shown in the top panel is a visualization of the dynamic change in the hue of a uniform-colored area light source (simulating a
computer screen). Shown below are nine renderings of a 3-D model illuminated with a different light-source hue at nine distinct moments
in time. In this simulation, the face has a monochromatic reflectance and there is a 1:1 ratio of area- to ambient-light intensity (for the
purposes of visualization, the image saturation was boosted by 50%).

a smartphone screen to illuminate a user’s face from multi-
ple directions from which a 3D facial model is constructed.
Here the active illumination is a means to an end to con-
struct a 3D model with the goal of distinguishing a real per-
son from a 2D rebroadcast attack version.

LiveScreen [22], uses a device’s display to induce an
inconspicuous lighting pattern on a user’s face. The live-
ness detection system then tracks the weak facial appear-
ance changes with the goal of thwarting rebroadcast attacks.
Although this system, running on a laptop, achieves reason-
able detection accuracy (94.8%) with relatively low false
detection (1.6%), their focus on an inconspicuous lighting
pattern makes detection of the active illumination challeng-
ing, particularly in an otherwise well-illuminated environ-
ment.

Whereas these earlier and related works focus on re-
broadcast attacks, the work of Shang and Wu [31] focuses
specifically on detecting deep-fake videos. In this work,
the authors place a user in front of a 27-inch display which
flashes between white and black at 0.2 Hz. The detection
system then measures the correlation between this active il-
lumination pattern and the brightness of the facial appear-
ance.

Our system follows a similar structure to [31], but with
some important differences that make authentication of the
active illumination pattern more robust. Because all modern
webcams perform auto exposure, the type of high intensity
active illumination of [31] is likely to trigger the camera’s
auto exposure which in turn will confound the recorded fa-

cial appearance. To avoid this, we employ an active illumi-
nation consisting of an isoluminant change in hue. While
this avoids the camera’s auto exposure, it could trigger the
camera’s white balancing which would again confound the
recorded facial appearance. To avoid this, we operate in a
hue range that we empirically determined does not trigger
white balancing. We show that this choice of active illumi-
nation affords a particularly simple mechanism for separat-
ing the impact of the active illumination from the surround-
ing environmental lighting. We show the efficacy of our ap-
proach in large-scale simulations under a range of imaging
configurations, and in a range of different real-world con-
figurations. We also evaluate the robustness of our system
to expected adversarial attacks.

3. Methods
We describe the underlying methodology for generating

the active illumination, localizing, and measuring the pat-
tern of illumination on a face, and determining the consis-
tency between this measured and the expected illumination.

3.1. Active Illumination

An active illumination source is achieved by displaying
a fixed-size image on the same screen as the video call. As
shown in Figure 2, the hue, H(t), of a uniform-color image
is shifted over time, t – and can be synchronized with the
display frame-rate – as follows:

H(t) = 0.1307× cos(t/8), (1)
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where, t ∈ [0, 16], yielding a hue value in the range of
0.1307 (yellow-ish) to −0.1307 (magenta-ish). Because
hue is circular, a negative hue of −h is the same as 1 − h.
The light-source hue is modulated sinusoidally to avoid
abrupt and distracting changes. And, the hue is constrained
to the range of yellow to magenta because we found that
these hues, unlike the blues and greens, do not induce an
automatic white balancing found in some video conferenc-
ing.

With this change in hue over time, the value, V , and satu-
ration, S, of the light source are fixed at unit value, resulting
in an isoluminant change in color in which the brightness
does not change over time. For purposes of rendering, the
specified HSV is converted to RGB using a standard con-
version (Python’s colorsys.hsv to rgb).

3.2. Face Detection

A face is automatically localized in each video frame us-
ing Dlib [17], yielding both a bounding box and 68 key-
points delineating the facial features and facial outline. A
bounding ellipse – parameterized by a center, two scale fac-
tors along the major and minor axes, and an orientation –
is fitted to 4 facial keypoints on the bridge of the nose, the
base of the chin, and each cheek bone.

3.3. Source Separation

A person sitting in front of a computer display is illu-
minated by the surrounding environmental lighting and our
active illumination. Because we are only interested in the
impact of the active illumination, we next describe how to
separate the contributions of these two illumination sources.

A Lambertian surface with surface normal N⃗ and sur-
face reflectance αs, illuminated with a single distant point
light source with orientation L⃗ and color αl, will be im-
aged as Ik = αsαl(N⃗

T
k · L⃗), where the color Ik at pixel k

and αs and αl are each specified as a triple of RGB values.
Generally speaking, separating the contribution of the sur-
face reflectance and lighting is a difficult problem [18]. If,
however, either the reflectance or lighting terms are known,
the other quantity can be trivially estimated by dividing the
measured image by the known quantity.

In our case, we make the simplifying assumption that
the face – sans active illumination – is illuminated with a
non-directional white light. The addition of the active il-
lumination, modeled as an area light source with constant
color αa, yields the appearance model:

Ik = α̂sαa

∑
ω∈Ω

N⃗T
k · L⃗ω, (2)

where α̂s is a scaled – by the surrounding illumination –
version of the underlying facial reflectance αs, and where
the summation is performed over the area Ω of the active

light source. The summation term consists of a monochro-
matic multiplicative factor, and can therefore be ignored
because we will only measure the active illumination hue
which itself is invariant to an overall scale factor. To sepa-
rate the contribution of the scaled facial reflectance α̂s and
the active illumination αa, an estimate of α̂s is acquired by
measuring the average color of the face before the active il-
lumination sequence begins. Once illuminated by the active
illumination, the measured color Ik at facial pixel k is di-
vided by the measured quantity α̂s to yield the desired hue
of the active illumination αa.

3.4. Measurement

After extracting the face from a video frame, the RGB
value of each facial pixel is divided by the average fa-
cial RGB pixel value measured with no active illumination.
This, as described in the previous section, extracts the facial
reflectance (assumed to be constant across the face). Each
of these adjusted facial RGB pixel values is then converted
to HSV (using Python’s colorsys.rgb to hsv), and
the facial hues H are averaged to yield an estimate of the
hue of the active illumination.

For simplicity, we assume that the person of interest does
not have bangs covering their forehead, facial hair, or eye
glasses, each of which violate our assumption of a constant
facial reflectance function. A more sophisticated facial seg-
mentation could eventually be deployed that isolates the fa-
cial pixels with a constant reflectance.

Because hue, specified in the range [0, 1], is circular
(i.e., a hue value of 0 corresponds to the same color as a
hue value of 1), we must account for this circularity when
computing the mean hue across the face. The circular mean
hue, H̃(t), at time t, from n hue values, hi(t), correspond-
ing to pixel i in the detected face, is:

H̃(t) = 1
2π atan2

(
n∑

i=1

sin(2πhi(t)),
n∑

i=1

cos(2πhi(t))

)
. (3)

3.5. Comparison

The difference between the expected facial hue H(t),
Equation (1), and the measured facial hue H̃(t), Equa-
tion (3), can be quantified with the Pearson correlation co-
efficient, where a maximum correlation of 1 corresponds to
perfect correlation, and a value 0 corresponds to a lack of
correlation. As we saw above, however, the measured hue
is circular, so we perform this correlation on the unit cir-
cle [8].

Because the facial detection, hue computation, and circu-
lar correlation are each computationally efficient, at a stan-
dard video frame rate of 30 Hz, a short 30-frame illumina-
tion pattern can be validated with as little as a one-second
delay in the live video stream.
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(a)
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Figure 3. A representative sample of our simulated data set with varying: (a) skin tone; (b) head to camera distance (increasing from left
to right); (c) size of active light source (increasing from left to right); and (d) intensity of ambient light (increasing from left to right).

3.6. Counter Measures

The effectiveness and robustness of our approach hinges
on the real-time (30 Hz) generation of an active illumination
pattern, and the assumption that the synthesis engine will ei-
ther not transfer the illumination onto the deep-fake face, or
will have a temporal delay in transferring the illumination.

If, as in our case, the active illumination is determinis-
tic, then an adversary could easily predict the illumination
pattern and add it to the generated deep-fake video without
a temporal delay. A simple way to avoid this adversarial
attack is to randomly interject blank frames in the tempo-
ral illumination sequence. An added benefit of this counter
measure is that the baseline reflectance can be reestimated
during these moments.

4. Results

We evaluate the efficacy of our technique on two data
sets. The first simulated data set allows us to evaluate our
technique across a broad range of assumptions and environ-
mental conditions, while the second real-world data set val-
idates our technique in realistic and variable environments.

4.1. Simulation

This data set is created using the physically-based ren-
derer Mitsuba [27]. The basic scene geometry consists of a
camera with a 90◦ field of view, a 3-D head with a Lamber-
tian reflectance and neutral skin-tone and with an ear-to-ear
distance of 6 in, placed 2 ft directly in front of the camera.
This scene is illuminated with a unit-value ambient light
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source and an area light of size 9 × 9 in with unit inten-
sity, placed alongside the camera. The area light simulates
the eventual implementation of displaying an image on the
computer display.

To evaluate our ability to measure the active illumina-
tion under a range of environmental conditions, we ren-
dered this basic scene geometry varying, one at a time,
the skin tone, Figure 3(a), a head to camera distance of
16, 20, 24, 30, 36 in, Figure 3(b), an illumination light size
of 5× 5, 7× 7, 9× 9, 11× 11, 13× 13 in, Figure 3(c), and
an ambient intensity of 0.0, 0.5, 1.0, 1.5, 2.0, Figure 3(d).

Across all of these imaging parameters, the average cor-
relation between the measured hue and the induced light hue
is 0.99 and a minimum correlation of 0.988. In simulation,
with our various assumptions satisfied, our proposed tech-
nique is highly robust to a broad range of imaging config-
urations. We next evaluate the robustness in different real-
world settings.

4.2. Real world

The real-world data set was recorded from 15 users with
a range of skin tones and in a range of different environ-
ments. Users were placed approximately 24 inches away
from the display and camera, with the active illumination
ranging in size from 13 × 13 to 3 × 3 in (in steps of 2 in).
The active illumination consisted of two cycles of the hue
pattern shown in Figure 2 (i.e. with a 30 Hz display refresh
rate synchronized with the camera, the entire active illumi-
nation pattern would only be visible for one second).

Shown in the top panel of Figure 4 is the correlation of
the measured facial hue and the active-illumination hue. At
the largest illumination size of 13 in, the average correlation
is 0.93. As the illumination reduces in size from 11 to 3 in,
the average correlation decreases from 0.92, to 0.85, 0.83,
0.68, and 0.33.

By way of comparison, we also measured the correlation
between the facial appearance in the absence of an illumi-
nation pattern – as might occur if the deep-fake synthesis
does not transfer the lighting environment of the imposter.
Across all 15 users, the average correlation in this baseline
conditions is 0.09 with a variance of 0.01, and a maximum
correlation of 0.34. By comparison, for a light source of
size greater than 5 × 5 in, the vast majority of correlations
are greater than 0.5.

4.3. Adversarial Attack

We saw in the previous section that if a deep-fake creator
fails to transfer the environmental lighting onto a deep-fake
video, then the resulting synthesized video will be easily
detected. If, on the other hand, the creator measures the
environmental lighting in real time and transfers this into
the deep-fake video, then detection may be more difficult.
Assuming that there will be some temporal delay from the

Figure 4. Shown in the upper panel is the correlation of the mea-
sured facial hue and the active-illumination hue from 15 different
users and six different light sizes. As expected, the correlation is
stronger for the larger light sources. Shown in the lower panel
is the same correlation if the measured hue was shifted by zero
(blue), one (red), two (yelllow), three (purple), or four (green)
frames. In each panel, the solid line corresponds to the average
correlation across all users.

moment when the environmental lighting is measured and
the frame-by-frame video synthesis, the effectiveness of our
defense depends on the impact of a temporal phase shift on
the hue correlation in the face. Shown in the bottom panel of
Figure 4 is the correlation of the measured facial hue and the
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active-illumination hue from our 15 users, where now there
is a temporal shift of 1 to 4 frames between the induced
active illumination and the measured facial hue.

For the four largest illumination sizes (13, 11, 9, and 7
in), the average correlation is 0.89 when the facial and illu-
mination hue are synchronized. By comparison, the average
correlation is 0.83 for a one-frame delay, 0.65 for a two-
frame delay, 0.37 for a three-frame delay, and 0.03 for a
four-frame delay. This rapid loss of correlation means that,
at an assumed frame rate of 30 frame/sec, a deep fake will
be detectable if there is a delay of more than 2/30-th of a
second in the synthesis, at which point the correlation slips
well below 0.5.

We verified that the deep fakes created by Avatar-
ify (github.com/alievk/avatarify-python) do
not incorporate the environmental lighting and are therefore
easily identifiable because in the presence of our active illu-
mination, their temporal facial hue is flatlined with a nearly
zero correlation.

5. Discussion
Although the creation of artifact-free, real-time deep

fakes are not yet upon us, it is reasonable to predict that they
soon will be. While standard passive forensic techniques
are at their best when they assume as little as possible about
the imaging hardware and environment, detection of a deep
fake, video-conference participant poses a unique opportu-
nity to exploit the typical imaging configuration in which
call participants are sitting in front of a computer display
(i.e., controllable light source).

By displaying a simple, dynamic, colored square on the
display and then measuring the temporal impact on the call
participant’s face, we have exploited just one aspect of this
unique imaging configuration. In particular, we have only
considered the impact of the lighting on the 2-D facial ap-
pearance. A more sophisticated 3-D estimation of light-
ing [16] would likely provide a richer appearance model
which would be even more difficult for a forger to circum-
vent. While we focused only on the face, the computer dis-
play also illuminates the neck, upper body, and surround-
ing background, from which similar measurements could
be made. These additional measurements would force the
forger to consider the entire 3-D scene, not just the face.
Similarly, because of the proximity of the call participant
to the display, and the high-resolution of most webcams, it
might be possible to make even more fine-grained measure-
ments of the color and shape of the display reflected in the
participant’s eyes [28]. This again would make circumven-
tion even more difficult.

Our proposed intervention could either be realized by a
call participant who simply shares her screen and displays
the temporally varying pattern, or, ideally, it could be di-
rectly integrated into the video-call client. Any real-time

system would need to ensure the camera frame rate and dis-
play refresh rate are synchronized or any delay be calibrated
and adjusted for.

We have assumed that the call participant’s face is not
obscured by, for example, bangs, facial hair, or glasses. In
order to be more broadly applicable, our approach would
benefit from automatically segmenting the face into regions
of uniform reflectance, from which the required hue mea-
surements can be made.

Beyond the visual, if the deep-fake synthesis includes a
synthetic voice, then an audio correlate to our active illumi-
nation pattern may be used to determine if the voice is being
directly recorded. However, while it may not be overly dis-
tracting to show a glowing square on the display for a short
period of time, an – even occasional – audible sound may
be prohibitively distracting. An active auditory signal can,
however, be played in the ultrasonic range, outside of the
range of the human auditory system [12].

Because of the reasonable trust we place on live video
calls, and the growing ubiquity of video calls in our per-
sonal and professional lives, we propose that techniques for
authenticating video (and audio) calls will only grow in im-
portance. This more narrow forensic application is, there-
fore, worthy of increased attention from the media-forensics
community.
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