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Abstract

Seam carving is a popular technique for content aware
image retargeting. It can be used to deliberately manip-
ulate images, for example, change the GPS locations of a
building or displace/remove roads in a satellite image. This
paper proposes a novel approach for detecting and localiz-
ing seams in such images. While there are methods to detect
seam carving based manipulations, this is the first time that
robust localization and detection of seam carving forgery is
made possible. We also propose a seam localization score
(SLS) metric to evaluate the effectiveness of localization.
The proposed method is evaluated extensively on a large
collection of images from different sources, demonstrating a
high level of detection and localization performance across
these datasets. The code and datasets curated during this
work will be released to the public.

1. Introduction
Seam carving is a popular image manipulation technique

[1, 3, 48] that is effective for content aware image retarget-
ting. In seam carving, the input image is resized by remov-
ing or inserting “seams” which are defined as connected
pixel paths from top-to-bottom or left-to-right. These seams
are chosen by their optimality according to an energy func-
tion computed for each pixel. That is, the optimal seam
is the seam with the lowest energy along its path. Com-
monly used energy functions in seam carving are computed
by measuring the contrast of a pixel with its neighbors. Re-
moving an optimal seam has fewer artifacts in resized im-
ages than a randomly chosen seam, and protects image con-
tent that is highly textured. Seam carving can be extended
to remove entire objects from images by assigning the en-
ergy of object pixels to a low value such that the seams
forcibly pass through the object marked for removal. Since
seam carving leaves a large percentage of pixel values un-
tampered, it poses a challenge to image forgery detection.

(a) (b)

(c) (d)

Figure 1. (a). Pristine satellite image. (b). Seam carved im-
age with a few buildings removed overlaid with ground truth seam
mask, where red seams indicate the pixels where seams are re-
moved while green seams indicate the pixels where seams are in-
serted (red) seams. (c). Seam carved image after removing a few
objects (buildings). (d). Seam prediction mask generated by our
detector.

Seam carving is included as a feature in popular image
editing software such as GIMP [33] and Photoshop [56].
The ease of access to these programs along with increas-
ing availability of satellite image data from commercial
satellites presents a growing problem for organizations that
rely on accurate satellite data. Satellite images have been
manipulated to influence public opinion such as in the
Malaysia Airlines flight incident [29], nighttime flyovers
of India during the festivals [12], and fake spliced images
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of bridges [15]. Furthermore, satellite imagery is partic-
ularly susceptible to seam carving based image manipula-
tions. One reason is that in satellite imagery, objects of im-
portance generally occupy fewer pixels than conventional
images and consequently require fewer seams to remove,
reducing the potential for visual artifacts in seam carved
satellite images. In Figure 1 and Figure 2, we show an ex-
ample of object removal where we remove a set of build-
ings from the original image and restore the original im-
age dimensions. Moreover, objects can be “displaced” to
change their geographical coordinates (latitude, longitude)
using seam carving much more easily in satellite imagery
than typical images. Since satellite images are captured
from high altitudes, they often have large, smooth regions
that are ideal for seams to pass through, making them good
candidates for object displacement while preserving visual
image quality. In Figure 4 , we show an example of ob-
ject displacement accomplished by removing seams on one
side of the building and inserting on the other. Displac-
ing objects can be especially malicious in satellite imagery,
where a single pixel can correspond with as much as 60m2

of ground area. In applications such as military target ac-
quisition, this can be the difference between a successful
and unsuccessful mission.

While there are several works proposed to detect seam
carving based image forgery [14, 17, 24, 34, 41, 42, 44, 51,
59–62], to our knowledge, none of these methods have in-
vestigated localization of removed and inserted seams at the
pixel level, and their design is restricted to classification at
the image level, or classification and localization at a patch
level. We develop and evaluate our method on satellite im-
agery as a case study due to the potential ramifications of
seam carving based manipulations.

Towards addressing the above challenges, we propose a
two stage, deep learning based seam carving detector with
two key advantages over existing methods. The first advan-
tage is the ability to localize the seams at pixel level resolu-
tion. This is invaluable in discovering the extent of potential
manipulations in satellite imagery. By considering the loca-
tion of seams, one may be able to discover not only that an
object may have been removed in an image, but where that
removed object used to be. The second advantage is gener-
alizability. Since image level classifiers are trained on orig-
inal satellite images, they are prone to become specialized
to the distribution of data they are trained on. We demon-
strate that our method is generalizable to not only training
dataset distribution but different seam carving techniques.
The main contributions of the paper are:

1. We propose a method for robust detection of seam
carving manipulations and accurate localization of seams
removed or inserted by seam carving in satellite imagery.

2. We develop the seam localization score (SLS), a spe-
cialized metric to better evaluate the localization perfor-

mance of seam carving detectors on specific seams.

3. We have created unique, large seam carving datasets
that we plan to release to the public 1.

The rest of this paper is organized as follows. In Sec-
tion 2 we review existing forensic approaches related to
our work. Section 3 details our proposed framework for
localized detection of seam carving forgeries. Section 4 de-
scribes the datasets that are curated to carry out our seam
carving forensic experiments. Metrics that are used to eval-
uate our models are described in Section 5. Experimental
setups and results are detailed in Section 6. Finally, we con-
clude the paper in Section 7 by reviewing the pros and cons
of our method and possible research areas that merit further
exploration.

2. Related Work
Several works have been proposed to detect digital im-

age manipulations (see [36, 54] for an overview). These
works include the detection of specific image manipulations
such as resampling [18, 46, 49], morphing [28, 45], copy-
move [31], splicing [5, 50], seam carving [22, 32], and
inpainting based object removal [57]. Several approaches
also exploit JPEG blocking artifacts to detect tampered re-
gions [16,35], while more recent efforts tend to exploit deep
learning based approaches [8, 11, 43, 44].

Most image forensics techniques that have been devel-
oped so far target consumer images [6, 9, 10, 21, 39], which
significantly differ in nature from satellite sensors (e.g. dif-
ferent compression schemes, color channels, orthorectifi-
cation based post processing and so on). Furthermore, it
has been observed that many of these techniques do not
perform well when naively applied to overhead images
[2, 7, 19, 40, 53, 58]. To address this issue, several foren-
sic techniques that work for satellite/overhead imagery have
recently been proposed [7, 26, 27, 58]. One method uses
handcrafted watermarks to detect manipulations in satel-
lite images [26]. Although this method is quite effective,
it cannot be utilized if the watermark is not inserted at the
time of image acquisition by a trustworthy source. An-
other technique leverages conditional GANs to detect and
localize splicing forgeries in satellite images by estimating a
forgery mask [58]. A second GAN based technique [27] en-
codes patches from an image into a low dimensional vector
space that are used as input into a support vector machine
(SVM) to detect the presence of forgeries at a patch level.
Finally, Sat-SVDD [7] is a kernel-based one-class classifi-
cation method that detects splicing forgery with the help of
support vector data description (SVDD). In comparison to
these methods, our paper explores the challenging case of
detection and localization of seam carving based manipula-
tions in satellite images.

1https://github.com/Mayachitra-Inc/SeeTheSeams
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(a) (b) (c) (d) (e)
Figure 2. (a). Original xView image (b). Original image overlaid with masks on objects to be removed (red) and protected (green). (c).
Seam carved image with objects removed and the dimension of the image is reduced by 77 columns in the seam removal process. (d).
Final image after reinserting 77 seams into (c) to match dimensions of original image (a). (e). Seam carved image overlaid with ground
truth seam mask of inserted (green) seams and removal (red) seams.

There have been several works proposed over the past
decade to reveal traces of seam carving in digital im-
ages [14, 17, 24, 34, 41, 42, 51, 59–62]. These include meth-
ods using steganalysis [51], hashing [17, 34], local binary
patterns (LBP) [60–62], and deep learning based meth-
ods [14, 41, 42, 59]. In [24], the authors propose a method
based on block artifacts to estimate the location of an object
removed using seam carving. However, this method mainly
focuses on finding a region in a seam carved image where an
object has been removed and does not produce localization
maps where seams have been removed/inserted. One deep
learning method proposes a Convolutional Neural Network
(CNN) based approach to perform image level classification
using local binary patterns [14]. Another CNN based ap-
proach uses a customized network that learns and uses more
effective features via joint optimization of feature extraction
and pattern classification [59]. These two proposed meth-
ods perform image level classification to detect the presence
of seam carving manipulation. One method that performs
localization at a patch level employs a CNN called LFNet
that is specifically designed to learn low-level features, cap-
turing local artifacts from seam carving based image resiz-
ing [41]. The authors in [41] improved their network design
with a new architecture, ILFNet [42]. The authors in [44]
proposes a two stage model where stage-1 performs patch
level localization and stage-2 performs image level classifi-
cation. The method proposed in this paper localizes seams
at a pixel level as opposed to the patch level strategies in
prior work and focuses on satellite imagery, which is more
resistant to seam carving artifacts than consumer images. In
contrast to these proposed methods, our approach both de-
tects images that are seam carved and also generates a seam
localization mask which highlights pixels on the manipu-
lated image where seams have been carved or inserted.

3. Proposed Approach
Here, we describe our approach for localized seam de-

tection. At its core, the problem can be formulated as bi-
nary classification, where we would ultimately like to pre-
dict whether the given image is seam carved or not. In order
to achieve this, we propose a two stage framework. In Sec-
tion 3.1, we develop localization models that flag regions of

the image that are seam carved. In Section 3.2, we perform
a final classification whether the image has been manipu-
lated by seam carving by fusing the outputs of stage 1.

3.1. Stage 1 - Localization of Seams

In order to obtain localized detection of seams in an im-
age we implement a fully convolutional network to learn
a mapping from satellite image to seam mask, where the
seam mask contains the locations of removed or inserted
seams as described in Section 4.1. U-Net has been exten-
sively used in image segmentation [47], and its architecture
is composed of a contracting path (encoder) followed by an
expanding path (decoder). Encoder maps the input image
to a feature vector, which will then be used by the decoder
to flag seam carved regions of the input image. The ba-
sic encoder-decoder model’s localization power is enhanced
in U-Net by applying skip connections between encoder
feature maps and decoder outputs. We chose Efficient-
NetB7 [52] as our baseline network since it performed the
best when compared to other standard networks (see Sec-
tion 6.1 for comparative experiments) EfficientNet is a base-
line network composed of sequential mobile inverted bot-
tleneck convolutions (MBConv) blocks that can be scaled
up to improve accuracy at the cost of increased compu-
tation. This generates a family of models from Efficient-
NetB0 to EfficientNetB7 with the EfficientNetB7 model be-
ing the most accurate, but also computationally the most
expensive. EfficientNetB7 also outperforms other encoder
architectures when used for pixelwise classification, such
as in [4]. For the decoder architecture, we use four sets of
transposed convolutional, batch norm, dropout, and ReLU
layers to upsample encoded features back to the size of in-
put image. In Figure 3, we show an overview of our pro-
posed method, where we see that the localization stage is
comprised of two pixelwise classifiers - one model trained
for seam removal detection and another model trained for
seam insertion detection, both using U-Net and Efficient-
NetB7. On a test image, these two models output predicted
seam localization masks flagging the regions where seams
have been removed and inserted.
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Figure 3. Overview of proposed two stage framework for localized seam carving detection.

3.2. Stage 2 - Classification
The pixelwise classifiers described above output two

seam prediction masks with the same dimensions as the in-
put image, one localizing removed seams and the other in-
serted seams. Both these masks are concatenated and fed as
input to a standard CNN (ResNet50 [25]) to perform vanilla
binary classification to identify if an image has been seam
carved or not.

Standard CNN architectures are used as opposed to cus-
tomized architectures in both the stages, to make the method
simple and straightforward. Since the standard CNN archi-
tectures lead us to state of the art detection performance,
having a specialized architecture for this problem seems un-
necessary. However, one could think of coming up with an
architecture that can minimize the computational complex-
ity, instead of using beefy networks like EfficientNetB7,
which is the future work for current methodology.
4. Datasets

In this section, we give a brief overview on the charac-
teristics of source datasets used, and how we generated our
forgery datasets. Three common satellite imagery datasets
(xView [30], xBD [23], and Orbview-3 [20]) have been used
to evaluate our method. The xView dataset contains 1, 127
images at varying high resolutions. Using these high res-
olution images, we generated a dataset of 53, 943 images
by randomly cropping 512 x 512 regions from the original
dataset. When dividing the images into a train-test-val split,
all 512 x 512 images from a given xView sample are as-
signed to the same split. For xView, we allocated 70% of
the images into training set, 15% into validation set, and
remaining 15% into test set. The xBD dataset contains
a total of 22, 098 pre-disaster and post-disaster RGB im-
ages of size 1024 x 1024, where we’ve preserved the orig-
inal dataset’s train-test-val split of 80:10:10 and randomly
cropped 512 x 512 regions as with the xView dataset. The
xBD dataset also contains ground truth building masks that

can be used in seam carving object removal. These build-
ing masks are quite small and make up an average of 0.37%
of all pixels in a particular training set image. On aver-
age, a building mask occupies 916 pixels2. Since the xBD
dataset contains satellite images at 0.3m per pixel, these
building objects correspond with around 82m2 of ground
area despite taking up a small number of pixels. In the
most extreme cases, a building mask can take as little as
0.9m2 up to 15, 943m2 of ground area. Finally, we curated
a third dataset consisting of 48, 000 Orbview-3 images by
randomly selecting non overlapping 512 x 512 regions. The
train-test-val split is again maintained to be 80:10:10. While
the xView and xBD datasets contain 8 bit RGB images (im-
age intensities are in range 0 to 255), the Orbview-3 dataset
has single channel 16 bit images. These three datasets pro-
vide variation in the geographical location of the images as
well as different levels of color depth.
4.1. Ground Truth Seam Masks

Ground truth seam masks for training pixelwise classi-
fiers are generated while seam carving original dataset im-
ages. As we remove seams from the original image, all
the preserved pixel locations that were adjacent to removed
seams are marked, indicating manipulation. As we insert
seams into the image, all the pixel locations of the inserted
seam are flagged. A visual example of a ground truth seam
mask is shown overlaid on the resulting seam carved image
in Figure 1b.
4.2. Pixelwise Classification Datasets

Datasets for pixelwise classification are generated by
seam carving pristine samples to remove the top 10% of
optimal seams and inserting seams to restore the original
image dimension. All of our models are trained on 512 x
512 images, cropped from top left of the seam carved im-
ages and saved as PNG files. Ground truth seam masks are
generated as described in Section 4.1 and similarly cropped.
For the remainder of the paper if unspecified, forward en-
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ergy is used to define the optimality of seams and examine
the generalization capabilities of our models across several
seam carving variants in Section 6.2.
4.3. Stage 2 Classification Datasets

Since we train models from each stage independently,
stage 2 datasets are easily generated once pixelwise classi-
fier training is complete. We obtain the prediction masks
from trained model inference on cropped seam carved and
original images to form a dataset of manipulated and pris-
tine samples required for the image level classification.
5. Evaluation Metrics

In this section, we briefly describe the evaluation met-
rics used to select and assess our models. Since we’re op-
erating in a binary classification setting at a pixel level in
the localization stage and at image level in the classification
stage, we use metrics based on confusion matrices. The
confusion matrix and the accuracy over the entire dataset
is computed from cumulative confusion matrices for every
sample. However, since seam carving based manipulations
tend to remove less than 10 percent of the pixels from source
datasets, pixelwise accuracy is an inadequate representation
of the performance of our models as a naive method pre-
dicting all negatives will achieve above 90% accuracy. To
address the inherent imbalance in our generated datasets,
we prioritize several more relevant confusion matrix derived
metrics like Precision, Recall, and F1-Score.

While useful, these three metrics are inherently biased
towards the positive class, and independent of the number of
true negatives. For seam carving localization, we would like
to not only incorporate how close the predicted seams are
to the true seams, but measure the efficacy of our model on
correctly identifying untampered regions. One metric that
satisfies this specification is the Matthews Correlation Co-
efficient (MCC), a balanced measure ranging between ±1
that can be used regardless of the degree of class imbalance
in a dataset due to its invariance to the choice of which class
is positive or negative [13]. Detectors are trained on 512 x
512 patches cropped from the top left of seam carved im-
ages, and it should be noted that in cases where cropping
resulted in all ground truth negatives for a particular sam-
ple, all metrics aside from pixelwise accuracy are set to 0 to
avoid division by zero errors.
5.1. Customizing Confusion Matrix Metrics

While these confusion matrix metrics are widely used to
evaluate binary classification performance, we make a slight
adjustment to the way we calculate confusion matrices (and
their derived metrics) for our specific use-case. Since seams
are only one-pixel wide and our confusion matrices are cal-
culated on a pixel-wise basis, they are extremely sensitive
to the spatial distribution of the prediction mask. For ex-
ample, take the seam insertion mask from Figure 4b. If we
shift all the seams one pixel to the right and compare the
shifted mask to the original, our confusion matrix metrics

(a) (b)

(c) (d)

Figure 4. (a). Pristine satellite image marked for “object dis-
placement”. (b). Seam carved image overlaid with ground truth
seam mask with removal seams marked in red and inserted seams
marked in green. (c). Seam carved image indicating “object dis-
placement” where an entire strip in the center of the image has
been displaced by a few pixels to the left. (d). Prediction mask
generated by our detector highlighting the areas where seams have
been removed and inserted.

break down and report poor results. Specifically, the re-
call between the original and shifted masks becomes 0.194
when the shifted version is in fact localizing the seams quite
well.

To properly represent the performance of our model’s
predictions, we modify the confusion matrix calculation
such that we assign a true positive if our prediction is within
a buffer of p pixels of a ground truth positive. This relax-
ation is similar to a metric used in evaluating road detec-
tors, especially in the context of aerial imagery [38,55]. It’s
worth noting that if we assign a true positive in this way,
we do not double count the ground truth positive used to
evaluate predicted negative pixels. If we predict negatively
and the ground truth at that location is positive but has been
used, we assign it as a true negative. We employ the strategy
described here with p = 1, and for the particular example
in this section the recall between the original and shifted
masks becomes 1.0, due the 1 pixel buffer described above.
To make this clear, we refer to these customized metrics as
MCC-1, F1 Score-1, Precision-1, and Recall-1 throughout
the remainder of this paper.
5.2. Seam Localization Score (SLS)

To fully capture the localization performance of our
models, we develop a metric based on the seams that are
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inserted or removed. By keeping track of the seams associ-
ated with manipulated pixels, we can evaluate how well our
model localizes each specific seam. For a particular vertical
seam s taken from an image of height h and width w, the
corresponding ground truth seam mask will associate h pix-
els with seam s. Then, we sum over each seam pixel from
1 : h, the absolute distance to the nearest predicted posi-
tive in each row. If we do not predict a positive pixel in a
particular row, the absolute distance is set to w. Finally, we
normalize by the number of rows h. We refer to this met-
ric the seam localization score (SLS). For an image with
N seams we compute an image level SLS by summing the
score for each seam, and dividing by N . The SLS for any
particular seam ranges from 0, perfect overlap, to w. When
the SLS for a particular seam is less than one, we can inter-
pret that on average, the seam was less than one pixel away
from its ground truth location.

6. Experimental Results
Here, we describe the experiments that are carried out to-

wards localized seam carving detection. First, we cover our
multistage approach towards localized detection of seam
carving, using pixelwise classifiers, and then present the
performance of localization models using the metrics de-
tailed in Section 5. Then, we demonstrate the generalizabil-
ity of our model across different training distributions and
seam carving algorithms.

Encoder
Architecture F1Score-1 MCC-1 SLS

MobileNetV2 0.779 0.776 5.95
ResNet50 0.631 0.651 17.93
ResNet101 0.603 0.628 23.73

EfficientNetB7 0.911 0.903 1.56

Table 1. Performance of seam removal detectors with various en-
coder architectures, trained and tested on xView.

Dataset MCC-1 F1Score-1
xView 0.956 0.959
xBD 0.938 0.935

OrbView-3 0.942 0.943

Table 2. Generalizability of a seam insertion pixelwise classifier
trained on xView, and tested on all three datasets.

Tested on
xView

Tested on
xBD

Tested on
Orbview-3

Trained on
xView 0.903 0.821 0.711

Trained on
xBD 0.722 0.894 0.708

Trained on
Orbview-3 0.721 0.726 0.889

Table 3. MCC-1 scores of EfficientNetB7 seam removal pixelwise
classifiers, trained and tested on different datasets.

6.1. Pixelwise Classification

To achieve more fine-grained localization of seams and
and incorporate the spatial relationships of input images, we
train a step-down, step-up fully convolutional neural net-
work based on U-Net as described in Section 3.1 to detect
removed and inserted seams at pixel-level resolution (Fig-
ure 1). We report stage 1 evaluation metrics from Section 5
using a variety of encoder architectures in Table 1 on our
xView test dataset, as generated in Section 4.2. The best
performing model used an EfficientNetB7 encoder architec-
ture, achieving a MCC-1 score of 0.903. We note that the
performance increase gained by using EfficientNet cannot
be solely due to the increase in model capacity. The sec-
ond best performing network was MobileNetV2, which has
the smallest number of trainable parameters among all net-
works tested. Our seam insertion detector of the same Effi-
cientNetB7 architecture, achieves a MCC-1 score of 0.956
on the xView test set. We also observe that although trained
on xView images, the seam insertion detector generalizes
well to xBD and Orbview-3 datasets with an MCC-1 of
0.938 and 0.942 respectively.

6.2. Generalizability of Pixelwise Classifiers
Here, we summarize several experiments demonstrating

the generalizability of pixelwise classifiers across datasets
and various seam carving techniques. Pixelwise classi-
fiers trained on our xView dataset work well on xBD and
Orbview-3 datasets and vice versa. Moreover, even though
pixelwise classifiers are trained with datasets forged using
forward energy, they are generalizable to different seam
carving techniques.

6.2.1 Generalizability Across Datasets
Table 2 shows that pixelwise classifiers for seam inser-
tion detection are generalizable across different datasets. A
seam insertion detector trained on xView has only minor
drops in performance on xBD and Orbview-3 test sets.

We also observe that while seam removal detectors are
not as generalizable as seam insertion detectors, they still
perform well on different datasets as shown in Table 3. Al-
though the decrease in MCC-1 scores for seam removal de-
tectors are larger when stress testing across datasets, we
note that the scores themselves are still quite good, and are
indicative of adequate performance for stage 2 classifica-
tion.

6.2.2 Generalizability Across Seam Carving Methods
We also tested the generalizability of our models across var-
ious seam carving methods. So far, all of our results have
been reported on datasets that have been generated using
forward energy seam carving. We report test evaluation
metrics on our xView dataset in Table 4, where we have
generated test sets using backward energy, frequency tuned
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Seam carving techniques Evaluation Metrics
Precision-1 Recall-1 F1Score-1 MCC-1

Backward Energy [3] 0.936 0.834 0.882 0.874
Forward Energy [48] 0.956 0.869 0.911 0.903

Frequency Tuned Saliency Map Method [1] 0.817 0.425 0.559 0.578
Seam Merging Method [37] 0.862 0.521 0.649 0.658

Table 4. Seam carving technique generalizability of the seam removal pixelwise classifier, trained on forward energy seam carved xView
images and tested on xView images seam carved using other techniques.

Dataset xView xBD xBD OR Orbview-3
Accuracy 99.29 99.08 99.73 98.46

Table 5. Test set accuracy(%) of stage 2 binary classifiers.

saliency maps, and seam merging variations of seam carv-
ing.In this table, the model has been trained on only for-
ward energy seam carving data, but we see good perfor-
mance across different seam carving techniques, with the
lowest performance on the dataset generated using saliency
map based seam carving. This is most likely due to how
different the seams from saliency map seam carving look
compared to the other techniques.
6.3. Stage 2 Classification

In stage 2, we generate a dataset of stage 1 predictions on
manipulated and pristine images to train a final binary clas-
sifier to check if the input image has been seam carved. We
use a stage 1 model trained on the xBD dataset as described
in 4.2. This stage 1 model is used to obtain predictions on
a combination of xBD datasets. The first xBD dataset that
we predict on is described in 4.2. We remove the 10% most
optimal seams, which are often distributed throughout the
image, and reinsert seams to restore the original image di-
mensions. The second xBD dataset we predict on incor-
porates the original dataset’s ground truth building masks
and uses seam carving to remove a building and reinsert
seams to restore the original image dimensions. We call this
dataset ”xBD OR”. Thus, our stage 2 model is trained on
a combination of stage 1 predictions on best seam removed
and object removed images. Finally, we generate best seam
removed test datasets of xView, xBD and Orbview-3 us-
ing individually trained pixelwise classifiers. For example,
the Orbview-3 test dataset for stage 2 is generated using an
Orbview-3 trained pixelwise classifier. Although the xView
and Orbview-3 test datasets are generated using different
pixelwise classifiers than the training dataset, our stage 2
model performs very well on both, achieving almost 99%
accuracy. This shows that the stage 2 final classification
model is robust to the pixelwise classification model used
to generate the input prediction masks.

6.4. Seam Carving Retargetting Ratios

In this section, we present results of two experiments
where we vary the number of seams removed and inserted
from the original xView dataset.

In Table 6, we provide MCC-1 and SLS scores for both
seam removal and insertion detectors as well as stage 2
binary classification accuracies on test datasets of vary-
ing seam carving retargetting ratios using a model that is
trained on 10% seam carved data. Test datasets are gener-
ated by seam carving 512x512 patches from xview test split
by different percentages. We can see from this table that
our seam carving detector is remarkably generalizable to
other seam carving retargetting ratios despite being trained
on only 10% seam carved data. In terms of an overall im-
age classification, our framework achieves over 99% accu-
racy at detecting seam carved images on all retargetting ra-
tios except 2%, where it achieves the lowest accuracy at
98.56%. In general, the SLS score of the seam removal de-
tector decreases the further away we move from 10% seam
carving, while the MCC-1 only decreases as we increase the
retargetting ratio. This showcases the usefulness of the SLS
metric as a seam carving localization metric. In the case of
2% seam carved data our seam removal detector achieves its
best MCC-1 score of 0.918 due to the large amount of non
manipulated pixels in the ground truth and predicted masks.
However, the SLS score of 2.05 shows that our model is not
as good at predicting seam locations as the MCC-1 score
might lead us to expect. In the seam insertion case, we
see good performance across the range of retargetting ra-
tios tested. The lowest MCC-1 score for seam insertion is
0.920 on 50% seam carved data, which is higher than the
best MCC-1 score for seam removal at 0.918 on 2% seam
carved data. The seam insertion SLS scores show that our
model is able to localize inserted seams within 1 pixel preci-
sion across all retargetting ratios. Although we show results
on a model that was trained using a 10% seam carving ratio
in this paper, the results were similar for models trained on
other percentages of seam carving too.

In Table 7, we show results of training on datasets of
different seam carving retargetting ratios. We include the
results on the 10% seam carved test set, and provide eval-
uation metrics on 20%, 30%, 40%, and 50% seam carved
test datasets. This table shows that our method is applicable
to other seam carving retargetting ratios and achieves simi-
lar results. The SLS score is around 1 for all values tested,
and the F1 Score-1 and MCC-1 scores are high. Notably,
the 20% seam carving dataset has the highest performance
while the 50% seam carved dataset has the worst.
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SR Detector SI DetectorSCR
(%)
(%)

MCC-1 SLS MCC-1 SLS
Stage2

Acc
(%)2 0.918 2.05 0.943 0.26 98.56

4 0.913 1.48 0.951 0.14 99.02
6 0.910 1.30 0.953 0.12 99.06
8 0.908 1.18 0.954 0.12 99.14

10 0.903 1.56 0.959 0.11 99.29
20 0.886 1.05 0.953 0.14 99.23
30 0.831 1.51 0.945 0.25 99.34
40 0.697 4.48 0.934 0.42 99.51
50 0.471 21.79 0.920 0.61 99.51

Table 6. Performance of Stage 1 and Stage 2 models, trained on
a 10% seam carved images from the xView dataset and evaluated
on xView test sets with varying numbers of removed and inserted
seams(also referred as Seam Carving Ratio (SCR)).

Seam Carving Ratio F1Score-1 MCC-1 SLS
10% 0.911 0.903 1.56
20% 0.986 0.893 0.838
30% 0.907 0.891 0.776
40% 0.901 0.883 0.892
50% 0.865 0.847 1.23

Table 7. Performance of Stage 1 models trained on xview
datasets generated by inserting and removing different percentage
of seams.

6.5. Performance on post processed images

We explored the performance of our models on the
dataset of images that are JPEG compressed after seam
carving. Retraining the models on post processed datasets
resulted in the similar image level detection, while the mod-
els that are not trained on post processed images has shown
drop in performance, as shown in Table 8. Same trend has
been observed when we replaced JPEG compression with
rotation as post processing step, as shown in Table 9.

JPEG Compression
Quality Factor

Model trained
without JPEG

Model trained
with JPEG

60 51.96 84.86
70 53.88 90.11
80 59.06 95.06
90 74.19 97.81

No Comp 99.26 99.18

Table 8. Stage-2 Test accuracy(%): Improvement in detection ac-
curacy when the model is trained on post processed images.

6.6. Comparison against Existing Approaches
We compare our method with two seam carving detec-

tion methods, that uses LBP [60] and ILFNet [42]. Al-
though these methods are not specifically designed for lo-
calized detection in satellite imagery, we compare our im-
age level stage 2 results with them as they are perform-
ing image level classification to detect seam carved images.
Comparative results are shown in Table 10, where all of the

Rotation
(Degrees)

Model trained
without rotated

images

Model trained
with rotated

images
45 52.11 91.26
60 56.63 96.78
75 63.14 97.66
90 99.26 99.11
0 99.26 99.11

Table 9. Stage-2 Test accuracy(%): Improvement in detection ac-
curacy when the model is trained on post processed images.

forensic techniques have been trained on the xView training
set generated as in Section 4.2. We observe that although
ILFNet achieves a comparable accuracy with the proposed
method on the xView test set, it’s generalizability perfor-
mance drops around 5% and 2% when testing on xBD and
Orbview-3 while our method drops less than 1%. Similarly,
a method that utilizes local binary pattern based feature ex-
traction combined with an SVM classifier performs reason-
ably well on the xView test set, but fails to generalize to
other datasets.

Forensic Technique xView xBD Orbview-3
LBP based detection [60] 91.72 82.71 78.41

ILFNet [42] 99.03 94.96 96.19
Proposed method 99.29 98.86 98.43

Table 10. Test accuracy(%): Comparison with other image level
classifiers, trained on xView, and tested on all datasets.

7. Conclusion
In this paper, we proposed a method to detect and lo-

calize seam carving based manipulations in satellite im-
ages. We use a two stage approach that first localizes re-
moved/inserted seams via pixelwise classification and then
performs a final classification if an image has been seam
carved. We enable localization of seams as well as a gener-
alizable framework across different datasets and seam carv-
ing techniques. Finally, we detailed the curation of three
unique, large seam carving satellite image datasets that will
be released to the public. Although the proposed method
is not specifically restricted to satellite imagery, we present
our findings on satellite images as a case study and leave
further evaluation on more conventional images with vary-
ing compression schemes and preprocessing to be explored
in future work.
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