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Abstract

Facial manipulation by deep fake has caused major se-
curity risks and raised severe societal concerns. As a
countermeasure, a number of deep fake detection methods
have been proposed recently. Most of them model deep
fake detection as a binary classification problem using a
backbone convolutional neural network (CNN) architecture
pretrained for the task. These CNN-based methods have
demonstrated very high efficacy in deep fake detection with
the Area under the Curve (AUC) as high as 0.99. However,
the performance of these methods degrades significantly
when evaluated across datasets. In this paper, we formu-
late deep fake detection as a hybrid combination of super-
vised and reinforcement learning (RL) to improve its cross-
dataset generalization performance. The proposed method
chooses the top-k augmentations for each test sample by an
RL agent in an image-specific manner. The classification
scores, obtained using CNN, of all the augmentations of
each test image are averaged together for final real or fake
classification. Through extensive experimental validation,
we demonstrate the superiority of our method over existing
published research in cross-dataset generalization of deep
fake detectors, thus obtaining state-of-the-art performance.

1. Introduction

Synthesized media, called deep fakes [7, 23, 31], con-
taining facial information generated by digital manipula-
tion techniques, have become a major political and so-
cietal threat [5]. This term “deep fake” signifies deep
adversarial models that generate fake content by swap-
ping a person’s face with the face of another person us-
ing deep fake generation techniques such as FaceSwap and
FaceShifter [16], [15]. The use of deep fakes to commit
fraud, falsify evidence [12], manipulate public debates, and
destabilize political processes has raised a top security con-
cern.
To mitigate the risk posed by deep fakes, the popu-
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lar deep fake detection methods include training convolu-
tional neural networks (CNNs) (such as ResNet-50 [11],
XceptionNet [6], and InceptionNet [28]) for detecting fa-
cial manipulations from real imagery. These CNNs are
trained to detect visual artifacts or blending boundary of
a forged image. The deep fake datasets such as Celeb-
DF [19], FaceForensics++ [26], DeeperForensics-1.0 [13]
and DFDC [9] have been assembled for research and devel-
opment in detecting deep fakes. These datasets can be cate-
gorized into different generations depending on the quality
and the amount of the real and fake data.

Most of the aforementioned CNN-based deep fake de-
tection methods obtain very high performance in the intra-
dataset evaluation (i.e., when the same dataset is used for
training and testing). However, they obtain poor general-
ization across datasets. For instance, XceptionNet for deep
fake detection obtained Area Under Curve (AUC) of 0.997
when trained and tested on FaceForensics++ dataset. How-
ever, the AUC score reduced to 0.482 when tested on Celeb-
DF in cross-dataset scenario [6]. The degradation in the
performance across datasets is due to domain shift i.e., the
data distribution change between the training and testing
set. This is due to change in the image quality of real videos
and deep fakes following the continuous advances in sensor
technology and the deep fake generation techniques.

The aim of this paper is to improve the cross-dataset gen-
eralization of the current CNN-based deep fake detectors.
To this front, a hybrid combination of the supervised and
deep reinforcement learning (RL) module is proposed. Re-
inforcement learning (RL) [4, 32] is a branch of machine
learning that studies how an intelligent agent should operate
in a given environment to maximize the concept of cumu-
lative reward. In a standard reinforcement learning model,
the agent receives an input, which is the current state of the
environment. The agent then chooses an action that changes
the current state and the value of the state transition is com-
municated to the agent through a scalar reinforcement sig-
nal called reward. Through systematic trial and error, the
agent learns a policy to choose actions that tend to maxi-
mize the cumulative reward.
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Figure 1. Illustration of the combination of supervised and deep reinforcement learning for training the RL agent for top-% test-time

augmentations selection based on the learned policy.

Our proposed approach can meticulously choose and ap-
ply top-k augmentations to the test samples via a learned
policy by an RL agent in an image-specific manner. The
scores of the augmented test samples are averaged together
for the final classification. Our experimental results demon-
strate the merit of test-time image-specific augmentations
in reducing the impact of domain shift in cross-dataset
performance evaluation of deep fake detectors. Experi-
mental investigation on FaceForensics++, Celeb-DF, and
DeeperForensics-1.0 show that our approach obtains state-
of-the-art performance in cross-dataset generalization of the
deep fake detectors over other published work.

In summary, the major contributions of this paper are
threefold as given below:

* We propose a hybrid combination of supervised and
reinforcement learning techniques that applies top-k
augmentations to the test samples in an image-specific
manner using a policy learned by an RL agent, for deep
fake classification.

* We demonstrate the merit of our approach in reducing
the impact of domain shift over random test-time data
augmentations in performance evaluation of deep fake
detectors across datasets.

» Extensive experiments demonstrate the efficacy of our
approach in improving the cross-dataset generaliza-
tion of deep fake detection over published work, thus
obtaining state-of-the-art performance in deep fake

detection across datasets over existing classification
baselines.

This paper is organized as follows: Section 2 discusses
the prior work on deep fake detection. Section 3 describes
our proposed method for training the RL agent and choos-
ing the top-k augmentations during the test-time for deep
fake classification. Datasets and experimental protocol are
discussed in section 4. Experimental results are discussed
in section 5. The ablation study for choosing the top-k aug-
mentations is detailed in section 6. Conclusion and future
work are discussed in section 7.

2. Prior Work on Deepfake Detection

In this section, we will discuss the existing countermea-
sure proposed for deep fake detection. Most of the existing
methods are CNN-based classification baselines trained for
deep fake detection [0, 1 1,22,25].

In [18], Liand Lyu used VGG16, ResNet50, ResNet101,
and ResNet152 based CNNs for the detection of the pres-
ence of artifacts from the facial regions and the surrounding
areas for deep fake detection. Afchar et al. [1] proposed
two different CNN architectures composed of only a few
layers in order to focus on the mesoscopic properties of
the images: (a) a CNN comprised of 4 convolutional lay-
ers followed by a fully-connected layer (Meso-4), and (b)
a modification of Meso-4 using a variant of the Inception
module named Mesolnception-4. Zhou et al. [35] proposed
a two-stream network for face manipulation detection. In
particular, the authors considered a fusion of a face classi-
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fication stream based on the CNN GoogleNet and a path
triplet stream that is trained using steganalysis features of
images patches. In [20], an exhaustive analysis of differ-
ent CNN-based deep fake detection methods by Rosslet et
al. suggested efficacy of XceptionNet when evaluated on
FaceForensics++.

Nguyen et al. [22] proposed a multi-task CNN to simul-
taneously detect the fake videos and locate the manipulated
regions using an autoencoder with a Y-shaped decoder for
information sharing between classification, segmentation,
and reconstruction tasks. In [25], biometric tailored loss
functions (such as Center, ArcFace, and A-Softmax) are
used for two-class CNN training for deep fake detection.
In [17], a face X-ray model has been proposed to detect
forgery by detecting the blending boundary of a forged im-
age using a two-class CNN model trained end-to-end.

Apart from the aforementioned CNN-based deep fake
detection methods, facial and behavioral biometrics (i.e., fa-
cial expression, head, and body movement) have been used
for deep fake detection [2, 3, 10, 25]. Study in [20] used
a two-branch representation extractor that combines infor-
mation from the color and the frequency domain using a
multi-scale Laplacian of Gaussian (LOG) operator. Very re-
cently in [34], a multi-attentional deep fake detection based
on multiple spatial attention heads along with feature aggre-
gation guided by the attention maps is proposed.

Readers are referred to published survey in [31], [
detailed information on deep fake detection methods.

] for

3. Proposed Method

In this section, we provide a detailed explanation of the
proposed method which works as follows: during the train-
ing stage, the deep CNN is trained on live and fake images
for deep fake classification. Using the hybrid combination
of supervised learning (i.e., the CNN output) and reinforce-
ment learning, RL agent is trained for optimum augmenta-
tions (action) selection in an image-specific manner.

Figure 1 illustrates the steps involved in training the RL
agent for optimum action selection. For each training sam-
ple, the CNN outputs the deep feature map (f,,) and the
associated loss (/1) which is the cross-entropy loss. This is
followed by the reinforcement learning module. A typical
RL technique is as follows: A RL agent receives reward r
from the environment along with the current state s. De-
pending on the inputs (r, s), the RL agent learns a policy to
select the right action a for the environment that maximizes
the cumulative reward and finally generates the Q-table con-
taining the maximum expected reward for each state, action
(s, a) pairs [14] [32].

In the context of our application, the RL module is com-
posed of seven main components namely:

¢ Environment: The CNN model

¢ State (s):
model

Feature map (f,,) obtained from CNN

* Action (a): Data augmentations

* RL agent: RL agent takes state, reward as input and
generates state-action pairs

e Reward (r): Reward plays a key role in adjusting
agents policy Ilg(a, s)

* Policy (Ilg(a, s)): Useful for calculating Q-table

e (Q-table (Q(s,a)): It contains values for state-action
pairs

An action (a) is chosen from a bank of ten augmenta-
tions. The training image is then subjected to the action
permutation. The permuted image’s new feature map f,,
is then extracted from the CNN along with the associated
loss, l5. On comparing loss values [1,l5 of the selected im-
age before and after applying the action permutation, the
current state (feature map) and the reward (r) is obtained
using equation 1. As given in equation 1, if ls < [; the
current state will be f,, and the reward will be I, -I5. Other-
wise, if [5 > [ the current state will be f,,, and the reward
will be calculated as [1-l5.

/

ll - 127 Zf l2 < ll — Jm
reward(r) = (D
lo =1y, if la>li— fm

This process is repeated for each training sample and the
policy mg(a, s) is learned by the RL agent based on the state
(s) of the environment and the calculated reward (). The
final output of the RL agent is a Q-table, Q(s,a), which
contain cumulative reward for state-action pairs based on
the learned policy g (a, ).

During the testing stage, the feature map of the test sam-
ple obtained by the CNN is given as an input (current state
s) to the RL agent. The RL agent outputs the scores from
Q-table for each action (augmentation) based on the learned
policy. The top-k augmentations are applied to the test sam-
ple based on the scores obtained from the Q-table. The clas-
sification scores obtained from the trained CNN for each
k" augmentation of the test sample are averaged together
for the final real/fake classification.

In our experiments, we used 10 augmentations namely,
’Identity’, *AutoContrast’, ’Equalize’,” Rotate’, ’Solarize’,
’Color’, "Posterize’,” Contrast’, *Brightness’, ’Sharpness’,
ShearX’, ’ShearY’, ’TranslateX’, 'TranslateY’ as the ac-
tions (a) to be performed by the RL agent. We evaluated
Proximal Policy Optimization (PPO) [27] and Deep Q Net-
work (DQN) [21] based RL agents for learning the policy
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and choosing the right actions (a). These RL agents are

explained below.
3.1. Proximal Policy Optimization (PPQO)

In PPO algorithm [27], there is an actor and a critic
model as illustrated in Figure 2. The role of the actor corre-
sponds to the policy 7 and is used to choose the action for
the agent and update the policy network. The critic corre-
sponds to the value function (s, a) for an action value or
V() for a state value. PPO policy would be learned by cal-
culating an estimator of the policy gradient and using it with
a stochastic gradient descent algorithm for approximating
the function. The most widely used gradient estimator is
defined as:

g=E, [V@ log me (a|st) At:| )

where 7y is a stochastic policy and A, is the estimator of
the advantage function at timestep t. Here [, is the empir-
ical average over a finite batch of samples. The objective
function is determined with the help of this gradient esti-
mator and the aim of objective function is to maximize the
size of policy update. Finally, the updated policy is used
to predict the action (a) which is given as an input to the
model or environment. Among all the objective functions,
the best surrogate objective function is LE“!* () which ob-
tained highest average normalized score for the PPO algo-
rithm over other surrogate objectives. Therefore, we used
LEEIP () for this study given in [27].

3.2. Deep Q Network (DQN)

In Deep Q Network learning (DQN) [21], a neural net-
work is learned to approximate the Q-value function as seen
in Figure 3. The state (s) is given as an input and the out-
put is the Q-value of all potential actions (which are the set
of augmentations in this study). The optimal action-value
function obeys an important identity known as the Bellman
equation. A Deep Q-network [21] can be trained by mini-
mizing a sequence of loss functions L;(6;) that changes at
each iteration 7 and the objective function is defined as:

Li(0) = Buomp) [ - Qs,0:00)°] @)

where y; = Eg . {7‘ +ymaz, Qs a3 0:_1)]s, a} is
the target for iteration ¢ and p(s) is a probability distribution
over state s and actions a that is referred to as the behaviour
distribution. On differentiating the objective function, the
policy gradient 7y is obtained to learn a policy that uses the
optimal strategy to select the optimal action for maximizing
the reward. The final Q-table will be a function of Q* (s, a)
which is defined as:

Q" (5,0) = By [r +maz@*(s',a)s,a] )

The + is a hyperparameter which is a fixed value and r
is the reward that needs to be maximized. In this study, v is
set to 0.5 based on empirical evidence.
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Figure 2. Illustration of the Proximal Policy Optimization (PPO)
based RL agent. PPO is based on actor and critic models which
helps to generate a policy gradient and a Q-table for the environ-
ment. The actor and critic components are helpful to learn the
policy 7o (s¢) and generate the Q(s¢, at). An action ay is selected
for the environment by the PPO by time ¢.
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Figure 3. Illustration of the Deep Q Network (DQN) based RL
approach which uses a neural network to approximate the Q-value
function. The state (s) is given as an input, and the output is the
Q-value of all potential actions (a). In this study, state s is the

feature map and the set of actions (a) are the set of augmentations
(A9).

4. Dataset and Experimental Protocol

In all the experiments, we used state-of-the-art Face-
Forensics++ [26], Deeper Forensics-1.0 [13] and Celeb-
DF [19] datasets. These datasets are discussed as follows:

¢ FaceForensics++: FaceForensics++ [26] is an auto-
mated benchmark for facial manipulation detection. It
consists of several manipulated videos created using
two different generation techniques: Identity Swap-
ping (FaceSwap, FaceSwap-Kowalski, FaceShifter,

94



deep fakes) and Expression swapping (Face2Face
and NeuralTextures). We used the FaceForensics++
dataset’s ¢23 version for both training and testing,
which has a curated list of 70 videos for each of these
deep fake creation methods.

¢ Celeb-DF: The Celeb-DF [19] deep fake forensic
dataset include 590 genuine videos from 59 celebri-
ties as well as 5639 deep fake videos. Celeb-DF, in
contrast to other datasets, has essentially no splicing
borders, color mismatch, and inconsistencies in face
orientation, among other evident deep fake visual ar-
tifacts. The deep fake videos in Celeb-DF are created
using an encoder-decoder style model which results in
better visual quality.

¢ DeeperForensics-1.0: The DeeperForensics-1.0 [13]
is one of the largest deep fake dataset used for face
forgery detection. DF-1.0 consists of 60,000 videos
that have around 17.6 million frames with substantial
real-world perturbations. The dataset contains videos
of 100 consented actors with 35 different perturba-
tions. The real to fake videos ratio is 5:1 and the fake
videos are generated by an end-to-end face-swapping
framework.

Experimental Protocol: We evaluated four different
CNN architectures namely, ResNet-50 [ 1], InceptionNet-
v3 [28], EfficientNet v2-L [30] and XceptionNet [6] for
deep fake detection. These models were trained on Face-
Forensics++ c23 version which is a high quality (HQ) ver-
sion of FF++. The face images were detected and aligned
using MTCNN [33]. MTCNN utilizes a cascaded CNNs
based framework for joint face detection and alignment.
The images are then resized to 256 x 256 for both training
and evaluation.

For all the CNN models, we used a batch-normalization
layer followed by the last fully connected layer of size 1024
and the final output layer for deep fake classification. The
CNN models are trained using an Adam optimizer with an
initial learning rate of 0.001 and a weight decay of 1e6. The
models are trained on 4 RTX 5000Ti GPUs with a batch
size of 64. The same training set is used for training the RL
agents for learning the optimum policy using our proposed
model.

We used the sampling approach described in [26] to
choose 270 frames per video for training and 150 frames
per video for validation and testing the models. The
trained models are tested on FaceForensics++(HQ), Deeper
Forensics-1.0, and Celeb-DF datasets. The standard per-
formance metrics used for deep fake detection namely,
Area under the Curve (AUC), Partial Area under the
Curve (pAUC) at 10% False Positive Rate (FPR), and the
Equal Error Rate (EER) are computed at frame level for the
evaluation.

5. Results and Discussion

In this section, we discuss the CNN-based deep fake
classification baselines in the intra- and cross-dataset eval-
uation with and without random test-time augmentations in
subsection 5.1. Evaluation results of our proposed hybrid
model using PPO and DQN based RL agents in the intra-
and cross-dataset scenario are discussed in subsection 5.2.
In subsection 5.3, we compare the performance of the exist-
ing published results on deep fake detection across datasets
with our best results.

5.1. Cross-dataset Generalization of CNN-based
Deepfake Detectors

Table 1 shows the performance of the CNN-based
deep fake detectors trained on FaceForensics++ and tested
on FaceForensics++, DeeperForensics-1.0 and Celeb-DF.
These performances are reported with and without test time
augmentations. For test-time augmentations, three random
augmentations are applied to each test sample and the clas-
sification scores are averaged for deep fake detection.

The top performance results are highlighted in bold
across various evaluation datasets. Mostly, Efficient v2-L
obtained the best results with an AUC of 0.991 and EER
of 0.024 when trained and evaluated on FaceForensics++
(intra-dataset). On average, AUC, pAUC, and EER of
0.960, 0.927, and 0.093, respectively, were obtained across
the models in intra-dataset evaluation without test-time aug-
mentations.

Across datasets, the performance of all the models
dropped significantly. On average, AUC, pAUC, and EER
of 0.905, 0.844, and 0.175 were obtained across the mod-
els when trained on FaceForensics++ and evaluated on
DeeperForensics-1.0. On the Celeb-DF dataset, on aver-
age, AUC, pAUC, and EER of 0.633, 0.60, and 0.406, re-
spectively, were obtained across the models when trained
on FaceForensics++ and evaluated on Celeb-DF.

Mostly, the EfficientNet V2-L backbone obtained the
best performance in the intra- and cross-dataset. The per-
formance drop of the models across datasets is significant
for Celeb-DF over DeeperForensics-1.0. The reason being
deep fake videos in Celeb-DF are created using an encoder-
decoder style model which results in better visual quality.
Whereas, the videos created in DeeperForensics-1.0 uses
deep fake generation techniques similar to FaceForenics++.

For most of the models, random test-time augmentations
reduced their performance in intra- and cross-dataset eval-
uation. This suggests the need for systematic selection of
test-time augmentations in an image-specific manner for an
enhanced performance.

5.2. Evaluation of Our Proposed Model

Table 2 shows the deep fake detection performance of
our proposed model for both PPO and DQN based RL
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Table 1. Evaluation of the existing CNN-based deep fake detection baselines trained on FaceForensics++ and tested on FaceForensics++,
DeeperForensics-1.0, and Celeb-DF. In order to establish the merit of our approach of systematic selection of augmentations for test
samples by an RL agent, we also evaluated the current deep fake detectors with random test-time augmentations. The top performance

results are highlighted in bold.

Evaluation Datasets

Models Test time Augmentation | Training Dataset FaceForensics++ DeeperForensics-1.0 Celeb-DF

AUC | pAUC | EER | AUC | pAUC | EER | AUC | pAUC | EER

ResNet-50 - FF++ 0.945 | 0.908 | 0.125 | 0.885 | 0.843 | 0.208 | 0.625 | 0.584 | 0.405
XceptionNet - FF++ 0.985 | 0.969 | 0.037 | 0.940 | 0.825 | 0.127 | 0.651 | 0.629 | 0.383
EfficientNet V2-L - FF++ 0.991 | 0.979 | 0.024 | 0.938 | 0.882 | 0.142 | 0.658 | 0.635 | 0.379
InceptionNet - FF++ 0.922 | 0.852 | 0.187 | 0.859 | 0.826 | 0.225 | 0.598 | 0.552 | 0.459
ResNet-50 v FF++ 0.919 | 0.882 | 0.193 | 0.849 | 0.826 | 0.248 | 0.592 | 0.564 | 0.479
XceptionNet v FF++ 0.959 | 0.927 | 0.124 | 0.912 | 0.875 | 0.197 | 0.615 | 0.589 | 0.392
EfficientNet V2-L v FF++ 0.967 | 0.946 | 0.118 | 0.907 | 0.864 | 0.187 | 0.622 | 0.598 | 0.385
InceptionNet v FF++ 0.896 | 0.874 | 0.195 | 0.828 | 0.814 | 0.275 | 0.569 | 0.545 | 0.495

Table 2. Evaluation of our proposed model in intra and cross-dataset scenarios with PPO and DQN as RL Agents. The top-3 augmentations
are selection for each test sample. The classification scores from top-3 augmentations of a test sample are averaged for final deep fake

detection. The top performances are highlighted in bold.

RL Methods Evaluation Datasets
Models PPO | DON Training Dataset FaceForensics++ DeeperForensics-1.0 Celeb-DF
AUC | pAUC | EER | AUC | pAUC | EER | AUC | pAUC | EER

ResNet-50 v - FF++ 0.948 | 0914 | 0.165 | 0.897 | 0.854 | 0.203 | 0.629 | 0.592 | 0.398
Xception Net v - FF++ 0.989 | 0.972 | 0.035 | 0.944 | 0912 | 0.125 | 0.657 | 0.625 | 0.376
Efficient Net V2-L | v - FF++ 0.994 | 0.983 | 0.022 | 0.952 | 0.922 | 0.119 | 0.669 | 0.647 | 0.362
Inception Net v - FF++ 0.935 | 0.886 | 0.148 | 0.869 | 0.847 | 0.218 | 0.608 | 0.576 | 0.424
ResNet-50 - v FF++ 0.937 | 0912 | 0.139 | 0.879 | 0.834 | 0.253 | 0.619 | 0.572 | 0.419
Xception Net - v FF++ 0.979 | 0.952 | 0.039 | 0.937 | 0.898 | 0.129 | 0.656 | 0.642 | 0.356
Efficient Net V2-L - v FF++ 0.982 | 0.965 | 0.039 | 0.948 | 0.917 | 0.122 | 0.647 | 0.628 | 0.385
Inception Net - v FF++ 0.927 | 0.899 | 0.184 | 0.854 | 0.822 | 0.229 | 0.592 | 0.549 | 0.495

agents. The top performance results are highlighted in bold
across various datasets. All the results are reported for top-3
augmentations applied to the test samples selected by an RL
agent before deep fake classification. The top-3 augmenta-
tions are selected based on empirical evidence.

As can be seen from the table, EfficientNet V2-L along
with PPO-based RL agent is consistently the best perform-
ing model when evaluated across different datasets. This
model with PPO obtained an AUC of 0.994 and an EER of
0.022 when trained and evaluated on FaceForensics++.

On average, AUC, pAUC, and EER of 0.966, 0.938,
and 0.092 were obtained across the models with PPO-based
RL agent in the intra-dataset evaluation. This suggests that
intra-dataset performance of the CNN-based deep fake de-
tectors remain intact when top-k augmentations are applied
to test samples by an RL agent using our proposed model.

Across datasets, EfficientNet v2-L with PPO-based RL
agent has obtained the highest AUC and the least EER
of 0.952 and 0.119, respectively, when evaluated on
DeeperForensics-1.0. When evaluated on Celeb-DF, Effi-

cientNet v2-L with PPO-based RL agent has obtained the
highest AUC and the least EER of 0.669 and 0.362, respec-
tively. On average, AUC, pAUC, and EER of 0.640, 0.610,
and 0.390 were obtained across the models with the PPO-
based RL agent when evaluated on Celeb-DF.

The PPO-based RL agent outperformed DQN for all
the models. The reason is as an on-policy algorithm, PPO
tackles the problem of sample efficiency by employing
surrogate objectives to keep the new policy from drifting
too much from the old policy [27]. This aids in learning the
optimal policy.

Comparison with the baseline CNNs in Table 1: In com-
parison to the baseline in Table 1, all the same CNN archi-
tectures along with an RL agent for optimum test-time aug-
mentations selection, obtained performance improvement
across datasets. On average, an increase in AUC of 0.021,
pAUC of 0.031, and a decrease in EER of 0.027 was ob-
tained across all the models using our proposed method on
the DeeperForensics-1.0 dataset. Similarly, when evaluated
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Table 3. Comparison with existing studies on cross dataset evalua-
tion of deep fake detection on Celeb-DF. The results from existing
methods are directly taken from [20]. AUC scores are used for
comparison.

Method FF++ | Celeb-DF
Mes04 [1] 0.847 0.548
FWA [18] 0.801 0.569
Xception-raw [19] 0.997 0.482
Xception-c23 [19] 0.997 0.653
Xception-c40 [19] 0.955 0.655
Mesolnception4 [ 1] 0.830 0.536
Two-stream [35] 0.701 0.538
Multi-task [22] 0.763 0.543
Capsule [19] 0.966 0.575
DSP-FWA [18] 0.930 0.646
Two Branch [20] 0.931 0.734
F3-Net [24] 0.981 0.651
EfficientNet-B4 [29] 0.997 0.642
Ours (EfficientNet-v2-L with PPO) | 0.994 0.669

on Celeb-DF, our proposed model obtained an increase in
AUC of 0.018, pAUC of 0.016, and a decrease in EER of
0.021 over the baseline CNNs in Table 1. Thus, demon-
strating the merit of our proposed approach in (a) reduc-
ing the impact of domain shift, and (b) transferability of
the learned policy towards cross-dataset generalization im-
provement over existing CNN-based baselines.

5.3. Comparison with Published Results on Deep-
fake Detection Across Dataset

In Table 3, we compared the existing results published
in [20] for deepfake detectors trained on FaceForensics++
(FF++) high quality version and tested on FaceForen-
sics++(HQ) and Celeb-DF, with our best results obtained
using EfficientNet V2-L with PPO based RL agent (see Ta-
ble 2). Our proposed best model obtained equivalent perfor-
mance with most of the best-performing methods in intra-
dataset evaluation.

At the same time, our best model outperformed most
of the existing methods in cross-dataset evaluation on
CelebDF with an AUC of 0.669. Thus, obtaining state-
of-the-art performance. Recall that due to the difference
in the deepfake generation techniques between FaceForen-
sics++(HQ) and Celeb-DF dataset, the performance drop of
all the models in Table 3 is significant on cross-dataset eval-
uation.

Although, Two-branch [20] obtained better results with
an AUC of 0.734 over our model in cross-dataset evalua-
tion. This method combines representation from color and
frequency domain using multi-scale Laplacian of Gaussian
(LOG) operator for deep fake detection. Hence, it is not di-
rectly comparable to deep learning-based models. Further,

Table 4. Ablation study for choosing the optimum top-k£ augmen-
tations for test samples.

Augmentation Selection | FF++ | Celeb-DF
Top-1 0.986 0.665
Top-2 0.988 0.662
Top-3 0.994 0.669
Top-4 0.967 0.649
Top-5 0.929 0.605

(d) Top-3

(e) Top-4 (f) Top-5

Figure 4. The top-k augmentations with £ ranging from 1 to 5
selected by PPO-based RL agent for a fake image from the Face-
Forensics++ dataset. These augmentations are selected from the
scores obtained using Q-table generated by the RL agent. The
top-3 augmentations obtained better results for most of the mod-
els.

its intra-dataset performance is quite low with an AUC of
0.931 over our model with an AUC of 0.994 and other ex-
isting methods in Table 3.

6. Ablation Study: Top-/£ Augmentations Se-
lection

In this section, we did an ablation study to select the opti-
mum & augmentations from the list of augmentations based
on the (s, a) table that is generated by the RL agent. For
the purpose of this experiment, we used the best perform-
ing EfficientNet V2-L with PPO as an RL agent trained on
Faceforensics++.

Table 4 shows the performance of EfficientNet along
with PPO for top 1 to 5 augmentations. It can be seen
that optimum results of 0.994 AUC and 0.022 EER are ob-
tained for top-3 augmentations on FaceForensics++. Simi-
larly, the highest AUC of 0.669 and least EER of 0.362 is
obtained for top-3 augmentations when tested on Celeb-DF.
A similar trend was observed for the DeeperForensics-1.0
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testbed. Figure 4 shows the top-5 augmentations selected
by PPO-based RL agent for a sample fake image from the
FaceForensics++ dataset. In summary, top-3 augmentations
obtained the optimum results for deep fake detection using
our model.

7. Conclusion and Future Work

In this paper, we improve the cross-dataset generaliza-
tion of the CNN-based deep fake detectors. The pro-
posed model applies top-k augmentations to the test sam-
ples in an image-specific manner using a policy learned by
an RL agent to reduce the impact of domain shift across
datasets. Experimental results demonstrate the merit of
systematic selection of augmentations based on the quality
of each test image in cross dataset performance improve-
ment over random augmentations. The proposed model
could be used with any deep fake detection method based
on supervised learning. As a part of future work, experi-
mental evaluations will be extended with a larger number
of augmentations on different datasets. The proposed RL-
based method will be evaluated along with deep fake detec-
tion based on fine-grained classification [34] and biomet-
ric features [3, 10, 25], for cross-dataset performance im-
provement. Further, cross-comparison of our task-specific
RL-based test-time augmentation approach will be con-
ducted with automatic general-purpose data augmentation
pipelines [&].
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