
Appendix

Organization of the appendix

In Sec. A we present additional training and evaluation
details. In Sec. B, we provide further implementation details
for the attacks and defences both for OSCAR-Net and Black
et al. [6] models. In Sec. C, we show multiple additional
experiments such as accuracy of the retrieval with exact
nearest neighbour search, additional hash inversion visual-
izations, robustness of OSCAR-Net to unseen adversarial
perturbations, accuracy over classes and targeted attacks on
the heatmaps for ICN models.

A. Training and evaluation details

Training details. For the models trained according to the
approach of Black et al. [6], we use the learning rate 0.01,
SimCLR temperature 0.1, 3 steps of PGD for training using
step sizes {1/255, 2/255, 4/255} for ε∞ ∈ {2/255, 4/255, 8/255},
respectively.

For the OSCAR-Net [45] models, we use the default
hyperparameters except the learning rate which is set to
1e− 6 and SimCLR temperature of 0.8. For ARIA training,
we use 3 steps of PGD with the step size 0.5 ε∞.

For the image comparator models, we use the de-
fault training hyperparameters with 3 steps of PGD for
training using step sizes {1/255, 2/255, 4/255} for ε∞ ∈
{2/255, 4/255, 8/255}, respectively.

Evaluation details. For the attacks unseen during train-
ing, we use 200 iterations of PGD (we increase it from 50
iterations used throughout the paper to account for larger
perturbation radii) using the step size of ε∞ = 4/255 for
ℓ∞-perturbations and ε2 = 0.5 for ℓ2-perturbations.

For hash inversions, we use 1000 iterations of PGD with
the step size 4/255, and the approximation parameter β = 1.

Training time. Standard training of the Black et al. [6]
model on Behance1M takes 34.3 hours while ARIA train-
ing takes 72.8 hours (i.e., 2.3× factor slowdown) on two
NVIDIA V100 GPUs for 20 epochs.

Standard OSCAR-Net training on PSBattles takes 31.6
hours while ARIA training takes 65.1 hours (i.e., 2.1× factor
slowdown) on a single NVIDIA GeForce RTX 3090 GPU
for 10 epochs.

We note that for both models, ARIA uses 3 steps of PGD
for training but the slowdown factor is less than 4× which is
due to more effective GPU utilization for robust training.

Examples of non-editorial transformations. In Fig. 6
and Fig. 7, we show images with non-editorial changes from
PSBattles which we used for the “Editorial + non-editorial”
query sets for evaluation of the OSCAR-Net models and
models of Black et al. [6].

B. Further details on the attack and defence
scope on OSCAR-Net and Black et al. mod-
els

A model needs to be differentiable with respect to the in-
put image in order to perform an effective adversarial attack
(and defence) on it. In other words, our main prerequisite is
that we should be able to back-propagate the gradient of the
loss to the original input. Despite being complex attribution
models, we show that OSCAR-Net [45] and Black et al. [6]
both can meet this requirement.
OSCAR-Net consists of an object detection module (Mask-
RCNN [26]) to decompose an image into a set of objects,
followed by 3 sub-networks to learn the global image fea-
tures, object-level features (including object CNN visual,
shape and geometry features) as well as the relation fea-
tures between objects. These features are pooled via a fully-
connected graph transformer network to produce a compact
binary embedding. Note that OSCAR-Net does not aim to
learn object detection (the Mask-RCNN module weights are
not updated during training), and we do the same. Here we
focus on attacking and defending the multi-branch feature
extraction and aggregation which are learnable in OSCAR-
Net. Thus, we apply our perturbations to the full image after
the object detection step, i.e. we treat the output of the object
detector as constant. We note that there exists adversarial
attack and defence approaches on object detection [9] and
integrating those on OSCAR-Net could be a topic of future
work.
Black et al. consists of two distinct models that are trained
separately: an image retrieval model insensitive to both ed-
itorial and non-editorial changes, followed by an image
comparator (IC) model distinguishing editorial from non-
editorial transformations. Given a query, the image retrieval
model returns top-k candidate images which are brought to
the IC model to determine if there exists a ‘matched’ image
among the candidates and whether the query has editorial
or non-editorial changes. The IC model also outputs an
editorial heatmap if editorial change is predicted on a query-
candidate pair. The retrieval model has a simple ResNet-50
architecture and is trained with SimCLR loss [6], hence is
fully differentiable. The IC model is more complex with a
dewarping unit to align the query with the candidate image,
followed by a CNN-based feature extraction module to out-
put the editorial prediction and heatmap. Both sub-modules
are differentiable with respect to the input image pair and
we have demonstrated that adversarial attacks could be per-
formed on both prediction and heatmap in our main paper,
as well as an adversarially robust training method to defend
against such attacks.

We refer to [6, 45] for more details on the architecture
and training strategies of the two above approaches.

C. Additional experiments
Retrieval with exact nearest neighbour search for

Black et al. [6] models. First of all, we note that exact
nearest neighbour search reported in Table 5 is not practical
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Figure 6. Examples of non-editorial changes applied to the same image from PSBattles according to the query sets used to evaluate the
OSCAR-Net [45] and Black et al. [6] approaches.

Figure 7. Additional examples of non-editorial changes applied to the images from PSBattles.



Top-1 and top-100 recall for different query sets
Non-editorial distortions Editorial manipulations Editorial + non-editorial

No attack ℓ∞ adversarial No attack ℓ∞ adversarial No attack ℓ∞ adversarial
Existing models R@1 R@100 R@1 R@100 R@1 R@100 R@1 R@100 R@1 R@100 R@1 R@100
Standard supervised, ImageNet [47] 45.1 59.3 0.0 0.2 98.3 99.6 0.1 0.3 37.3 52.9 0.0 0.3
DeepAugment + AugMix supervised, ImageNet [32] 75.2 84.5 0.2 2.0 98.5 99.6 0.0 0.6 67.8 80.7 0.0 0.3
Robust supervised, ε∞ = 4/255, ImageNet [50] 57.3 66.1 30.3 44.0 97.4 99.2 79.7 92.4 51.2 62.0 22.4 38.0
Undefended contrastive, PSBattles [6] 86.2 96.7 0.0 0.0 87.7 95.5 0.0 0.0 70.0 89.5 0.0 0.0
Our new models
Undefended contrastive, Behance 99.2 99.9 4.8 25.3 94.4 97.6 0.9 9.8 91.9 96.8 2.6 16.1
ARIA contrastive + hashing, ε∞ = 4/255, Behance 96.8 98.7 83.8 89.3 92.1 96.7 85.2 93.8 87.1 94.5 69.2 82.7
ARIA contrastive + hashing, ε∞ = 8/255, Behance 93.5 96.5 84.1 90.8 91.4 96.0 87.0 93.9 82.8 91.1 69.7 82.4
ARIA contrastive, ε∞ = 2/255, Behance 99.5 100.0 87.7 90.7 96.1 98.6 91.6 96.9 94.8 98.1 78.6 87.3
ARIA contrastive, ε∞ = 4/255, Behance 99.4 99.9 90.5 92.7 96.1 98.4 93.4 97.3 94.7 97.9 83.3 90.4
ARIA contrastive, ε∞ = 8/255, Behance 98.6 99.7 94.5 95.4 95.5 98.3 93.2 97.1 92.8 97.2 82.9 90.9

Table 5. Standard and ℓ∞ adversarial (ε∞ = 8/255) top-1 and top-100 recall for different ResNet-50 models evaluated on PSBattles [28].
The database contains original images from PSBattles and 2M distractor images from Stock indexed using the exact nearest neighbour
search (unlike Table 1 in the main part that used the approximate IVF1024, PQ16 index). We use three query sets based on PSBattles: (1)
non-editorial distortions (ImageNet-C and affine) on original images, (2) editorial manipulations but no distortions, (3) editorial manipulations
with non-editorial distortions.

ℓ∞ adversarial, ϵ∞ = 16/255 ℓ∞ adversarial, ϵ∞ = 32/255 ℓ2 adversarial, ϵ2 = 5
Models imAP iR@1 FmAP FR@1 imAP iR@1 FmAP FR@1 imAP iR@1 FmAP FR@1

Undefended [45] 7.69 11.08 7.01 9.50 5.84 8.18 5.44 7.28 38.04 45.37 25.64 26.95
ARIA, ε∞ = 2/255 (ours) 22.64 29.93 16.00 17.05 17.09 23.07 13.01 14.58 54.30 61.55 27.21 24.11
ARIA, ε∞ = 4/255 (ours) 21.04 27.97 15.29 17.01 16.76 22.36 12.89 14.76 47.46 55.44 25.66 24.34
ARIA, ε∞ = 8/255 (ours) 41.85 49.56 23.22 21.54 40.43 47.09 22.78 21.06 42.14 51.52 23.31 21.91

Table 6. Performance metrics for attacks unseen during training for OSCAR-Net models, using queries from PSBattles. Evaluation is on a
query set of digitally manipulated images with no distortions.

Average precision, no attack Average precision, ℓ∞ adversarial attack
Models All Non-editorial Edit. + non- Different All Non-editorial Edit. + non- Different

classes changes edit. changes images changes changes edit. changes images
Undefended ICN [6] 96.4% 98.2% 91.4% 99.6% 0.6% 0.0% 0.1% 1.6%
ARIA ICN, ε∞ = 2/255 96.4% 91.8% 97.7% 99.7% 65.0% 21.6% 84.9% 85.6%
ARIA ICN, ε∞ = 4/255 95.9% 91.6% 97.0% 99.3% 83.1% 67.6% 87.1% 93.9%
ARIA ICN, ε∞ = 8/255 95.5% 92.2% 95.5% 98.5% 90.7% 86.6% 88.7% 96.2%

Table 7. The average precision for the image comparator network (ICN) with/without adversarial perturbations of radius ε∞ = 8/255
over three different classes (depending on the query image that can be either the same image with non-editorial changes, the same image
with editorial and non-editorial changes, or a different image).

for databases that contain millions of images and we report
it so that we can analyze the performance drop which occurs
due to approximate image retrieval. Table 5 suggests that
overall the trends and rankings between different methods
are the same as in Table 1 from the main part of the paper. At
the same time, as expected, the absolute numbers are higher:
e.g., standard top-1 recall for the ARIA model trained with
ε∞ = 8/255 is 99.5% compared to 97.3% with the approxi-
mate indexing reported in the main part. Such performance
drop is uniform over different methods. We can also see that
ImageNet-trained models perform well on images with edi-
torial changes. However, we note that the ImageNet models
use the embedding dimension of 2048 which is much larger
the 256 used by our contrastively trained models and leads
to even slower search time.

Robustness of OSCAR-Net models to unseen adver-
sarial perturbations. Table 6 shows the robustness results
of OSCAR-Net for perturbations which were unseen during
training. These are ℓ2-bounded perturbations (ε2 = 5) and

ℓ∞-perturbations of a larger radius compared to those used
for training (ε∞ ∈ {16/255, 32/255}).

The robustness generalises very well to the larger ℓ∞-
perturbations: e.g. with perturbations of size ε∞ = 32/255
the FmAP score for the undefended model of Nguyen et al.
[45] is reduced to 5.44%, but for all our defended models it
is at least 12.89%. In the case of our best defended model
it is 22.78%. The ℓ2 perturbations with ε2 = 5 are not
very successful at attacking the OSCAR-Net model, so it
is not possible to draw conclusions about robustness in this
case. We think that for ℓ2 perturbations treating the object
detector’s output as constant can be suboptimal but we leave
better attacks tailored to the OSCAR-Net architecture to
future work.

Image comparator models: accuracy over classes. We
show the results in Table 7 where we report the average pre-
cision over three classes depending on the query image that
can be either the same image with non-editorial changes,
the same image with editorial and non-editorial changes, or



No attack ℓ∞ adversarial
Models IoU Targeted IoU
Undefended ICN [6] 58.1% 48.3%
ARIA ICN, ε∞ = 2/255 61.5% 10.0%
ARIA ICN, ε∞ = 4/255 59.3% 5.4%
ARIA ICN, ε∞ = 8/255 55.9% 3.9%

Table 8. The average intersection over union (IoU) between the
predicted and ground truth editorial heatmaps for the image com-
parator network (ICN) with/without targeted adversarial pertur-
bations of radius ε∞ = 8/255. Note that unlike other metrics, a
lower targeted IoU is better as it implies a smaller overlap of the
predicted heatmap with the wrong target heatmap.

a different image. We can see that the standard precision
is approximately uniform over different classes but the ad-
versarial precision can be non-uniform. For example, the
ARIA ICN model trained with ε∞ = 2/255 has only 21.6%
adversarial precision on the same images with non-editorial
changes. However, using a higher ε for ARIA fixes this
problem, e.g., for ε∞ = 8/255 we get 86.6% adversarial
precision.

Image comparator models: targeted attacks on
heatmaps. We show the results of targeted attacks on the
image comparator models in Table 8. For the attack, we
target a random cell of a 7× 7 heatmap by maximizing the
cosine loss. We note that unlike other metrics, a lower tar-
geted intersection over union (IoU) is better as it implies
a smaller overlap of the predicted heatmap with the wrong
target heatmap. We can observe that ARIA training suc-
cessfully reduces the success rate of the attack in terms of
IoU from 48.3% (undefended ICN) down to 3.9% (ARIA
training with ε∞ = 8/255).

Hash inversion visualizations. Additional hash inver-
sions for randomly chosen images from PSBattles can be
found in Fig. 8. We can observe that in many cases hash
inversions for the robust model (trained with ε∞ = 4/255) re-
cover the shapes of original images. This is in contrast with
the high-frequency noise which is observed for the standard
model.
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Figure 8. Additional visualizations of the hash inversions ϕ−1
≈ (x) for twelve original images x (left) for a standard model (middle) and

ARIA model with ε∞ = 4/255 (right), both trained on Behance1M.


