Supplementary Appendix

Al. Content Suppression Modules

In order to improve detection of the subtle forensic fea-
tures and suppress the spatial content of the image, we
add additional modules to the encoder’s first layer that
extract noise level features. For this purpose, we intro-
duced four modules — i) the SRMConv [12] layer, ii) the
BayarConv [1] layer, iii) the classic convolution layer
termed as RGBConv, and iv) our proposed Error Level
Analysis (ELA) Module. Fig. 1 shows the output of ap-
plying SRM and ELA on a tampered image.
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Figure 1. Result of SRM filters and ELA on a tampered image.

ELA has previously been used for localizing compres-
sion artefacts from JPEG images [9]. It works by compar-
ing the pixel-wise difference between an image and its com-
pressed copy. If an image contains pixels from a different
source, then the pixels of the two sources would produce
different levels of compression noise. We propose to use
this ELA output as a feature for the encoder. We take an in-
put image and compress it with a reduced 90% compression
factor. Then we calculate the difference between the origi-
nal and the compressed image to generate the ELA output.
This output ELA image is then passed through a series of
convolution layers before applying activation to produce the
ELA feature map.

To evaluate the effect of these modules on the encoder,
we compare the detection accuracy on the CASIAv2 valida-
tion set in Table 1. We can see that the choice of the first
layer affects model performance to a large amount. The pro-
posed ELA module has a notable effect as it improves en-
coder accuracy by a factor of more than 3%. So, for our final
encoder, we select a combination of the four layers. The in-
put images pass through all of them simultaneously, then the
outputs are concatenated and sent to the backbone. This ad-
ditional compression and steganalysis feature helps the net-
work to detect the traces of the boundary regions. Moreover,
the encoder becomes more robust to post-processing oper-
ations as it learns to detect and correlate the multi-domain
artifacts with other spatial features.

1st Conv Layer ‘ #Filters, Kernel Size | Encoder Accuracy (%)

RGBConv 16, k=(3,3), p=1, x2 84.61
SRMConv 3, k=(5,5) 86.77
BayarConv 3, k=(5,5) 85.25
ELA Module 32,k=(3,3), p=1,x2 87.03
Combined 54, - 88.25

Table 1. Results of using additional feature extraction layers for
the Ist encoder layer with an EfficientNet-B4 backbone. The re-
sults compare only the encoder detection accuracy for an image-
level binary classification test on the CASIAv?2 validation set.

A2. Additional Ablation Experiments
A2.1 Block Positions

In Section 4.3 we had talked about the effects of placing
the GCA block in different positions within the network.
Fig. 2 shows these placement positions. The blue squares
represent the encoder layer, green circles are the decoder
nodes, and the red rectangles denote the GCA block.
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Figure 2. Different positions of placing the GCA block. Blue
squares are encoder layers, Green circles are decoder nodes, and
Red rectangles represent the GCA block.

A2.2 Backbone Choice

There are no dominant network architectures proven to
be useful for IFLD tasks. XceptionNet has been shown



Figure 3. Localization for the three authentic images previously shown in Fig. 2 of the paper. Since groundtruth masks for pristine images
are blank, they are not shown here. GCA-Net predicts almost blank masks for authentic images with minimum false positives.

Model ‘ #Params (M) ‘ Encoder Accuracy (%)
XceptionNet [2] 22.86 78.03
DenseNet-161 [5] 28.68 83.56
ResNeXt-50 [11] 30.42 82.29
SEResNeXt-50 [4] 27.56 85.81
EfficientNet-B4 [8] 19.34 87.65

Table 2. Baseline detection accuracy of different architectures for
image-level binary classification on CASIA validation set.

to perform well for DeepFake detection, and media forg-
eries [7]. DenseNet also showed promise in detecting cam-
era model features [6], which has relevant implications for
manipulation identification. We test multiple such back-
bone networks to test their efficacy for manipulation detec-
tion. We trained and tested these baseline models using the
CASIAvV2 [3] dataset. Since we are evaluating the encoder
performance only, we perform these tests as a classification
task without the decoder and compare the image-level de-
tection performance. From Table 2 we see that EfficientNet
performs the best. Additionally, it uses an inverse bottle-
neck convolution with channel attention making it the light-
est of all the networks with only 19.34 million parameters.

A3. Implementation Details

In order to tackle the challenge of low data and improve
generalizability, all images were augmented using Flipping,
Random Rotations, Optical and Grid Distortions, and Gaus-
sian Blur, each with a probability of 30% - 50%. We
trained the model with the encoder pre-loaded with Ima-
genet weights, using Adam optimizer with a learning rate
of 0.00001 and a weight decay of 0.00005. Learning rate
scheduling was done using Reduction on Plateau by a fac-
tor of 0.25. All models were trained for 60 epochs and with
Early-Stopping patience of 20 epochs. The model was im-
plemented using PyTorch. For the EfficinetNet backbone
we used the implementation from Timm models [10].

References

[1] B. Bayar and M. C. Stamm. Constrained convolutional neu-
ral networks: A new approach towards general purpose im-
age manipulation detection. /IEEE Transactions on Informa-
tion Forensics and Security, 2018. 1

Tampered Groundtruth ManTraNet GCA-Net

B

..

ManTraNet GCA-Net

Figure 4. Qualitative comparison of GCA-Net and ManTraNet for
various tampered and authentic images.



(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

(1]

[12]

Francois Chollet. Xception: Deep learning with depthwise
separable convolutions, 2017. 2

Jing Dong, Wei Wang, and Tieniu Tan. Casia image tamper-
ing detection evaluation database. pages 422426, 07 2013.
2

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks, 2019. 2

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works, 2018. 2

Abdul Muntakim Rafi, Uday Kamal, Rakibul Hoque, Abid
Abrar, Sowmitra Das, Robert Laganiere, and Md. Kamrul
Hasan. Application of densenet in camera model identifica-
tion and post-processing detection, 2019. 2

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias NieBner. Faceforen-
sics++: Learning to detect manipulated facial images, 2019.
2

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020. 2
N. B. A. Warif, M. Y. 1. Idris, A. W. A. Wahab, and R. Salleh.
An evaluation of error level analysis in image forensics. In
2015 5th IEEE International Conference on System Engi-
neering and Technology (ICSET), pages 23-28, 2015. 1
Ross Wightman.  Pytorch image models. https:
//github . com/ rwightman /pytorch- image —
models, 2019. 2

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks, 2017. 2

Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S.
Davis. Learning rich features for image manipulation de-
tection, 2018. 1


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

