
Generative Probabilistic Novelty Detection with Isometric Adversarial
Autoencoders

Ranya Almohsen Matthew R. Keaton Donald A. Adjeroh Gianfranco Doretto
West Virginia University
Morgantown, WV 26506

{ralmohse, mrkeaton, daadjeroh, gidoretto}@mix.wvu.edu

Abstract

Learning the manifold of a complex distribution is a fun-
damental challenge for novelty or anomaly detection. We
introduce a revised learning and inference procedure that
takes into account a key underlying assumption made by the
framework of generative probabilistic novelty detection. The
traditional framework implies the ability to not only learn
the manifold of the generative distribution of inliers but
also to compute non-linear orthogonal projections onto this
manifold from the ambient space. We augment the original
training with priors that endow the model with this property,
and prove that inference becomes easier and computation-
ally more efficient. We show experimentally that the new
framework leads to improved and more stable results.

1. Introduction

The task of recognizing data samples to be inliers or out-
liers is often referred to as novelty or anomaly detection, and
is an important process in a number of fields related to re-
search, medicine, and industry [43]. In many cases, novelty
detection can be a crucial step (e.g., in open-set recogni-
tion [45]), and it is thus valuable finding and optimizing
approaches to this problem. Often, the task is framed as
one of learning an inlier distribution and determining the
likelihood of a new sample belonging to it. Thus, producing
a generalizing distribution model from a finite set of training
samples, and inferring likelihoods, become the central chal-
lenges to many approaches, especially in computer vision,
where data samples are high-dimensional.

In this work, we introduce a new method that stems
from addressing a few existing weaknesses of our previ-
ous approach known as Generative Probabilistic Novelty
Detection (GPND) [37]. We revise the derivation of the
novelty/anomaly test, where we highlight and make further
use of the central hypothesis of computing non-linear or-
thogonal projections from the ambient space, where outliers

come from, onto the manifold where inliers live. Doing
so leads to important computational improvements because
we prove that the need for computing costly Jacobians dur-
ing inference is completely removed. On the training side,
we show that this entails learning a parameterized inlier
manifold that is an isometry, while we also need to learn
a mapping that projects from the ambient space onto the
manifold and then inverts the isometry. We show that we can
implement our model with adversarial autoencoders where
we add specialized priors for learning such isometry and
pseudo-inverse maps. As a byproduct, this learning approach
lends to smoother manifolds, thus more likely to generalize
well, which is vital to the process of determining the inlier
distribution.

In the rest of the paper we review the related work in
Section 2. We revise the formulation of GPND in Section 3.
In Section 4 we complete the new formulation with learning
the isometry and the pseudo-inverse maps, and describe
the architecture, priors and losses to do so. In Section 5
we analyze in detail the performance of our new approach,
which we name Generative Probabilistic Novelty Detection
with Isometry (GPNDI).

2. Related Work

In this section, we summarize the literature for novelty
detection as well as other related topics including out-of-
distribution detection. Novelty detection methods can gen-
erally be split into three overarching groups: probabilistic,
density estimation, and reconstruction-based methods.

Traditional probabilistic methods [1, 8, 18, 59] estimate
the probability density function of normal data points by
inferring the model parameters. New data points with the
smallest likelihood are identified as outliers. A popular ap-
proach uses the Gaussian Mixture Model (GMM), which
fits a selected number of Gaussian distributions to a dataset
using the Expectation-Maximization (EM) algorithm [22].
GMM has been used in applications including the identifica-
tion of suspicious and possibly cancerous masses in mammo-
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grams [51]. Additionally, kernel-based probabilistic methods
learn the null space of training data and rely on distance mea-
sures to perform density estimation implicitly [2, 14, 27, 62].
Our approach relates to these approaches because it derives
a novelty test following the same likelihood principle.

Density estimation methods include a recent category of
approaches such as DifferNet [42], which adopts the normal-
izing flow [40] as a density estimation of the image features
extracted by convolutional neural networks. The anomaly
score is then computed based on the likelihoods of multiple
transformations per image. Other normalizing flow-based
methods include [11, 41, 61]. Each of them contains two
main components: the feature extraction module and the dis-
tribution estimation module. An advantage of these models
over other methods is that one can calculate the likelihood
of a point directly without any approximation while also
being able to sample from it reasonably efficiently. However,
evaluating each layer’s Jacobian and its determinant can be
very expensive and slow at test time, especially with high-
dimensional data [7, 15]. Another drawback of these meth-
ods is that they do not perform any dimensionality reduction
[33], which makes them less useful with high dimensional
data like images. Our approach relates to these approaches
but it overcomes both of these drawbacks by eliminating
the need for computing Jacobians during inference, and by
performing dimensionality reduction since the dimension of
the inlier manifold is much smaller than the dimension of
the ambient space.

Reconstruction-based methods tend to utilize genera-
tive models like auto-encoders or generative adversarial net-
works [9] to encode and reconstruct the normal data. [12,56]
used deep learning-based autoencoders to learn the model
of normal behaviors and employed a reconstruction loss
to detect outliers. [53] used a GAN-based method, where
the generator is used to recover a latent representation with
gradient descent, by optimizing upon the reconstruction er-
ror, which was then used as a novelty score. [39] trained
GANs using optical flow images to learn a representation
of scenes in videos. [54] minimized the reconstruction er-
ror of an autoencoder to remove outliers from noisy data,
and by utilizing the gradient magnitude of the autoencoder
they make the reconstruction error more discriminative for
positive samples. In [44], a framework was proposed for
one-class classification and novelty detection. It consists of
two main modules learned in an adversarial fashion. The first
is a decoder-encoder convolutional neural network trained
to reconstruct inliers accurately, while the second is a one-
class classifier made with another network that produces the
novelty score.

Computing reconstruction error in image space is not
ideal, and in fact, the L2 norm works poorly with images.
[19] used as a novelty score not only the reconstruction error
in the image space, but also in hidden spaces. They pass

the reconstructed image to the encoder and observe activa-
tions of all the intermediate layers in the encoder and com-
pare those to activations induced by the original image. [46]
extended this approach by adding an adversarial loss that
matches the distribution of hidden activations for real and
reconstructed inliers. In [36] DCAE exclusively reconstructs
the in-class data by learning their latent representations to be
compact and collapse-free. DCAE utilizes its own internal
module that captures class semantics of the in-class data for
both effective training and inference. Our approach relates
to these because it learns a generative model of the data, but
during inference we use it to directly compute the likelihood
of datapoints, rather than a novelty or anomaly score.

Out-of-Distribution methods usually improve robust-
ness of existing classification or detection systems in order
to detect erroneous samples (i.e., from other problem do-
mains or datasets) that otherwise would be classified in-
correctly. A recent line of work has focused on detect-
ing out-of-distribution samples by analyzing the output en-
tropy of a prediction made by a pre-trained deep neural
network [6, 13, 17, 25, 28, 49, 50]. This is done by either
simply thresholding the maximum softmax score [13] or
by first applying perturbations to the input, scaled propor-
tionally to the gradients with respect to the input and then
combining the softmax score with temperature scaling, as
it is done in Out-of-distribution Image Detection in Neural
Networks (ODIN) [25]. While these approaches require la-
bels for the in-distribution data to train the classifier network,
our method does not use label information.

3. Generative Probabilistic Novelty Detection
Here we revise the derivation of the formulation of the

novelty/anomaly test initially introduced in [37] to empha-
size certain properties that were previously untapped, and
to keep the paper self-contained. Specifically, we assume
that training data points x1, . . . , xN , where xi ∈ Rm, are
sampled, possibly with noise ξi, from the model

xi = f(zi) + ξi i = 1, · · · , N , (1)

where zi is defined in a latent space Ω ⊂ Rn. The mapping
f : Ω → Rm defines M ≡ f(Ω), which is a parameterized
manifold of dimension n, with n < m. We also assume
that the Jacobi matrix of f is full rank at every point of the
manifold.

Given a new data point x̄ ∈ Rm, we design a novelty test
to assert whether x̄ was sampled from model (1). We begin
by computing the non-linear orthogonal projection of x̄ onto
M, which we indicate as x̄∥ ∈ M, and that in latent space
is given by z̄, where x̄∥ = f(z̄), and

z̄ = argmin
z

∥x̄− f(z)∥ , (2)

in which ∥ · ∥ is the L2 norm. Assuming f to be smooth
enough, we perform a linearization around z̄, based on its
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Figure 1. Isometric manifold schematic representation. Improving on the efforts of GPND, (a), isometric autoencoders, (b), enforce an
angle and distance-preserving mapping from Rm to the low-dimensional manifold M ⊂ Rm and then onto the latent space Rn. Additionally,
the full mapping f(g(x)) is encouraged to be orthogonal to M, and therefore to the tangent space T . Constraining the learned manifold in
this manner generally lends to a smoother mapping and more appropriate generalization of the training data.

first-order Taylor expansion

f(z) = f(z̄) + Jf (z̄)(z − z̄) +O(∥z − z̄∥2) , (3)

where Jf (z̄) is the Jacobi matrix computed at z̄. We note
that T = span(Jf (z̄)) represents the tangent space of M
at x̄∥ that is spanned by the n independent column vectors
of Jf (z̄), see Figure 1(b). Also, we have T = span(U∥),
where Jf (z̄) = U∥SV ⊤ is the singular value decomposition
(SVD) of the Jacobi matrix. The matrix U∥ has rank n, and if
we define U⊥ such that U = [U∥U⊥] is a unitary matrix, we
can represent the data point x̄ with respect to the coordinates
that are parallel to the tangent space T , and to its orthogonal
complement T ⊥. This is done by computing

w̄ = U⊤x̄ =

[
U∥⊤x̄

U⊥⊤
x̄

]
=

[
w̄∥

w̄⊥

]
, (4)

where the rotated coordinates w̄ are decomposed into w̄∥,
which are parallel to T , and w̄⊥ which are orthogonal to T .

We now indicate with pX(x) the probability density func-
tion describing the random variable X , from which training
data points have been drawn. Also, pW (w) is the probability
density function of the random variable W representing X
after the change of coordinates (4). The two distributions
are identical modulo the coordinate change. However, we
make the assumption that the coordinates W ∥, which are
parallel to T , and the coordinates W⊥, which are orthogo-
nal to T , are statistically independent. This means that in a

neighborhood of x̄∥, the following holds

pX(x) = pW (w) = pW (w∥, w⊥) = pW∥(w∥)pW⊥(w⊥) .
(5)

This is motivated by the fact that in (1) the noise ξ is assumed
to predominantly deviate the point x away from the manifold
M in a direction orthogonal to T . This means that W⊥ is
primarily responsible for the noise effects, and since noise
and drawing from the manifold are statistically independent,
so are W ∥ and W⊥.

From (5), given a new data point x̄, we propose to perform
novelty detection by executing the following test

pX(x̄) = pW∥(w̄∥)pW⊥(w̄⊥) =

{
≥ γ =⇒ Inlier
< γ =⇒ Outlier

(6)
where γ is a suitable threshold.

3.1. Data distribution learning and inference

The novelty detector (6) requires the computation of
pW∥(w∥) and pW⊥(w⊥). Here we provide a revised ver-
sion from [37], of the description of how these distribu-
tions can be learned from data, and used for inference, with
some differences that exploit the fact that it is possible to
compute precise geometric projections from the ambient
space Rn onto M, via (2). We note that w∥ can be writ-
ten as w∥ = U∥⊤x = U∥⊤(x − x∥) + U∥⊤x∥ = U∥⊤x∥,
where U∥⊤(x− x∥) = 0, because x − x∥ is orthogonal to
the tangent space T . Therefore, w∥ and z are related as
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w∥ = U∥⊤f(z). Let us now indicate with Z the random
variable representing the latent space, and with pZ(z) its
probability distribution. By using the linearization (3), and
the fact that V is a unitary matrix, it is easy to realize that
pZ(z) and the distribution pW∥(w∥), around the neighbor-
hood of f(z), are related as follows

pW∥(w∥) = |detS−1| pZ(z) . (7)

Note that pZ(z) is independent from the linearization and it
can be learned offline. Specifically, from the training data
{xi}, we compute their orthogonal projections in the latent
space {zi} according to (2), and we fit to them a generalized
Gaussian distribution to represent pZ(z) with a parametric
model.

In order to compute pW⊥(w⊥), we approximate it with
its average over the hypersphere Sm−n−1 of radius ∥w⊥∥,
giving rise to

pW⊥(w⊥) ≈
Γ
(
m−n

2

)
2π

m−n
2 ∥w⊥∥m−n−1

p∥W⊥∥(∥w⊥∥) , (8)

where Γ(·) represents the gamma function. This is motivated
by the fact that noise of a given intensity will be equally
present in every direction.

Computing (8) requires p∥W⊥∥(∥w⊥∥), which is the dis-
tribution of the norms of w⊥, and in principle, it could
easily be learned offline by histogramming the norms of
w⊥ = U⊥⊤

x, computed for each of the training data points
{xi}. On the other hand, the same distribution can be learned
even more easily, without the need for computing the Jacobi
matrix at each point, by observing the following. Since
x − x∥ is orthogonal to T , it means that x∥ is orthogo-
nal to T ⊥, i.e., U⊥⊤

x∥ = 0. Therefore, we have that
w⊥ = U⊥⊤

x = U⊥⊤
x−U⊥⊤

x∥ = U⊥⊤
(x− x∥). More-

over, by taking the squared norms, we can also write that

∥w⊥∥2 = ∥U⊥⊤
(x− x∥)∥2 + ∥U∥⊤(x− x∥)∥2

= ∥U⊤(x− x∥)∥2 = ∥x− x∥∥2 , (9)

where the last equality follows from U being unitary. If we
define x⊥ .

= x− x∥, this means that in (8), we can replace
∥w⊥∥ with ∥x⊥∥, and p∥W⊥∥(∥w⊥∥) with p∥X⊥∥(∥x⊥∥).
x⊥ does not require the Jacobi matrix to be computed, mak-
ing the learning and inference more efficient. Specifically,
p∥X⊥∥(∥x⊥∥) is learned from the training data {xi}, by
computing their orthogonal projections according to (2), and
histogramming the L2 norms between data and projectons.

4. Manifold learning
A major task in our approach is to learn the manifold M.

Here we derive the requirements, the network architectures,
and the set of losses needed to do the learning.

4.1. Model driven requirements

The manifold M is parameterized by the mapping f . Out
of all the possible choices we propose to learn an isometric
map. Imposing f to be an isometry is beneficial for multiple
reasons. First, we do not loose representational power as
long as m ≥ n+ 1 [34]. Second, it is easy to realize that if
two isometries can represent M, then they must be related by
a rigid transformation [10]. This reduces the search space for
the mapping f , and from a learning perspective, imposing
this restriction will act positively, as a regularizer by reducing
the hypotheses space.

On the other hand, the most important reason for f to be
an isometry is that the Jacobian Jf (z) will have orthonormal
columns. This means that

Jf (z)
⊤Jf (z) = I , (10)

where I is the identity matrix. Therefore, it follows that
|detS| = 1, where S is the matrix with the singular values
of the Jacobian, i.e., that (7) reduces to

pW∥(w∥) = pZ(z) , (11)

since |detS−1| = 1. This result has very important compu-
tational implications, because it means that to compute the
detection test (6) it will not be necessary to compute the Ja-
cobian Jf (z), which is by far the most time consuming step
in the original GPND [37], not to mention that it introduces
significant noise in evaluating the sample probability.

Finally, we note that this updated framework has some
parallels with very elegant recent work on novelty/anomaly
detection [32], which is based on computing probabilities
via normalizing flows [20]. While backed by a clear theo-
retical framework, these approaches require computing the
inverse Jacobian at every network layer, leading to major
computational drawbacks. The issue stems in part from the
fact that in computing the latent representation they do not
perform dimensionality reduction. On the other hand, this
updated GPND formulation not only does it learn a reduced
representation, it also eliminates the need to compute Jaco-
bians.

In order to compute the test (6), we need to have the
representation z, as required by (11). According to (2), this
can be done by first applying to x̄ an orthogonal projection
PM from the ambient space onto M, and then map the
projection to the representation space via f−1. This means
that besides the manifold representation f , we also need to
learn a function g, defined as

g(x)
.
= f−1 ◦ PM(x) . (12)

Figure 1 depicts this sequence of transformations. It can be
shown, as described in [10], that if f is an isometry, then g
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Figure 2. Architecture overview. Architecture of the network for manifold learning. It is based on training an Adversarial Autoenconder
(AAE) [29]. Similarly to [3, 44] it has an additional adversarial component to improve generative capabilities of decoded images and a better
manifold learning. The architecture layers of the AAE and of the discriminator Dx are specified on the right. All fake samples are generated
from an n-dimensional normal distribution N (0, 1). x∗ represents a projection of z∗ onto the learned manifold M.

is such that

Jg(f(z))Jg(f(z))
⊤ = I , (13)

Jg(f(z)) = Jf (z)
⊤ . (14)

Therefore, in order to compute (6) we need to learn two
functions f and g which behave according to (10), (13), and
(14). We stress the fact that satisfying all these requirements
is fundamental, because the revised GPND framework is
based on being able to compute (2), which also leads to the
simplification (9), with the complete elimination of the need
to compute Jacobians during testing.

4.2. Training losses

We plan to learn f and g with an autoencoder architecture,
since for data points on the manifold the reciprocity must be
satisfied, i.e., x = f(g(x)), but we require also (10), (13),
and (14) to be satisfied as well. To that end, we build on the
approach in [10, 16], and incorporate the following priors
to the original GPND framework [37]. The first prior is the
isometry loss Liso(f), which encourages (10), and is defined
as

Liso(f) = E
[
(∥Jf (z)u∥ − 1)2

]
(15)

where E[·] denotes expectation, and u is uniformly sampled
from the unit-sphere of dimension n− 1, i.e., Sn−1 = {u ∈
Rn | ∥ u ∥ = 1}.

The second prior is the pseudo-inverse loss Lpiso(g),
which encourages (13), and is defined as

Lpiso(g) = E
[
(∥u⊤Jg(x)∥ − 1)2

]
(16)

where, again, u is sampled from Sn−1. We combine these
priors in this notation

Liso_AE(f, g) = Liso(f) + Lpiso(g) (17)

For the implementation of the prior above we follow the
same strategy described in [10].

The backbone architecture mimics the adversarial autoen-
coder design in [37]. One adversarial component imposes
a prior distribution on the latent space, the output of the
encoder, that is matched with a normal distribution N (0, 1).
The second adversarial component matches the output dis-
tribution of the decoder with the distribution of real data,
representing the manifold M. Finally, a cross-entropy loss
is used to impose the reciprocity of the autoencoder, which
is also the loss responsible to for encouraging (14), as dis-
cussed in [10].

The network architecture is shown in Figure 2. The ad-
versarial losses are summarized as follows for the two adver-
sarial components:

Ladv−dz
(x, g,Dz) = E[log(Dz(N (0, 1)))]

+E[log(1−Dz(g(x)))] ,
(18)

Ladv−dx(x,Dx, f) = E[log(Dx(x))]

+E[log(1−Dx(f(N (0, 1))))] ,
(19)

Instead, Lerror is used to minimize the reconstruction error
for the input x that belongs to the known data distribution.

Lerror(x, g, f) = −Ez[log(p(f(g(x))|x))] , (20)
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For simplicity, we combine all the losses without discrimina-
tors in Lauto_error, so that

Lauto_error(x, g, f) = λisoLiso_AE(f, g) + Lerror (21)

Where λiso is a hyperparameter for balancing the losses.
Therefore, our objective function is going to be

L(x, g,Dz, Dx, f) =Ladv−dz
(x, g,Dz)+

Ladv−dx
(x,Dx, f)+

λLauto_error(x, g, f) , (22)

where λ is a hyper parameter that adjusts the trade off be-
tween the losses with and without discriminators. The au-
toencoder network is obtained by minimizing equation (22),
giving:

ĝ, f̂ = argmin
g,f

max
Dx,Dz

L(x, g,Dz, Dx, f) . (23)

We trained the proposed model by using stochastic gradi-
ent descent and doing alternative updates of each component
as follows

• Maximize Ladv−dx by updating weights of Dx;

• Minimize Ladv−dx
by updating weights of f ;

• Maximize Ladv−dz
by updating weights of Dz;

• Minimize Lauto_error and Ladv−dz
by updating

weights of g and f .

5. Experiments

In this section, we present the set of experiments that
have been conducted to demonstrate the effectiveness of our
method. The performance results are analyzed in detail and
are compared with state-of-the-art techniques where each of
the results were taken from the original papers. In all cases,
experiments are carried out identically to GPND [37].

For each experiment, datasets are randomly split into
training, validation, and testing sets. In this setting, we do
not reuse the same inliers for training and testing to make
our evaluation more realistic. We compare our results to a
few other approaches, namely [4, 44, 54] that do not follow
this protocol and instead use the same inliers for training and
testing.

Performance of our approach is evaluated using the F1

measure, area under the ROC (AUROC), false positive rate
(FPR) at 95% true positive rate (TPR), Detection Error at
95% TPR, and area under the precision-recall curve, calcu-
lated in terms of inliers (AUPR-In) and outliers (AUPR-Out).

Table 1. F1 scores on MNIST [23]. Inliers are taken to be im-
ages of one category, and outliers are randomly chosen from other
categories. All results are averages from a 5-fold cross validation.

% of outliers D(R(X)) [44] D(X) [44] LOF [4] DRAE [54] GPND [37] GPNDI (Ours)

10 0.97 0.93 0.92 0.95 0.983 0.984
20 0.92 0.90 0.83 0.91 0.971 0.976

30 0.92 0.87 0.72 0.88 0.961 0.968
40 0.91 0.84 0.65 0.82 0.950 0.960

50 0.88 0.82 0.55 0.73 0.939 0.953

Table 2. Results on Fashion-MNIST [55]. F1 scores where inliers
are taken to be images of one category, and outliers are randomly
chosen from other categories.

% of outliers 10 20 30 40 50

GPND [37] 0.968 0.945 0.917 0.891 0.864

GPNDI (Ours) 0.972 0.974 0.930 0.904 0.873

5.1. Datasets

We evaluate our method on MNIST, Fashion-MNIST,
Coil-100, CIFAR-10, and CIFAR-100.
MNIST [23] is composed of 70,000 28 × 28 handwritten
digits.
Fashion-MNIST [55] contains 70,000 28×28 grayscale im-
ages of fashion items. Like MNIST, there are 10 categories
each possessing 7,000 total samples.
Coil-100 [35] is comprised of 7,200 images. For each of
100 objects, pictures were taken 5 degrees apart from one
another, resulting in 72 images for each object.
CIFAR-10 and CIFAR-100 [21] each possess 60,000
32× 32 images with 10 and 100 classes, respectively. Both
datasets contain a variety of balanced classes ranging from
vehicles to animals, although no classes are shared between
them. Like GPND [37] and ODIN [25], we count inliers as
samples from either dataset, while images from two different
cropped and resized versions of both TinyImageNet [5] and
LSUN [48] are used individually as outliers. During valida-
tion, we use samples from iSUN [58] as outliers. We reuse
the currently available datasets provided by ODIN’s GitHub
project page.

5.2. Implementation details and complexity

Since our implementation was done based on the source
code of GPND, we follow most details with some differences
related to hyperparameter values. We learn the isometric
mapping by training g, and f while imposing the described
specifications. During testing we do not need to compute
any derivatives, such as the Jacobian matrix, which makes
our approach significantly more efficient. Training is done
with ADAM optimizer, we train the model for 100 epochs,
λiso was set to 0.01, using an NVIDIA TITAN RTX.

2008



Table 3. Results on Coil-100. Inliers are taken to be images of one, four, or seven randomly chosen categories, and outliers are randomly
chosen from other categories (at most one from each category).

OutRank [30, 31] CoP [38] REAPER [24] OutlierPursuit [57] LRR [26] DPCP [52] ℓ1 thresholding [47] R-graph [60] GPND [37] GPNDI (Ours)

Inliers: one category of images , Outliers: 50%

AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997 0.968 0.984
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990 0.979 0.894

Inliers: four category of images , Outliers: 25%

AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996 0.945 0.960
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970 0.960 0.953

Inliers: seven category of images , Outliers: 15%

AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996 0.919 0.950
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955 0.941 0.964

Table 4. CIFAR-10 (CIFAR-100) comparison with ODIN [25] and GPND [37]. ↑ indicates larger value is better, and ↓ indicates lower value
is better.

Outlier dataset FPR(95%TPR)↓ Detection↓ AUROC↑ AUPR in↑ AUPR out↑

CIFAR-10

ODIN-WRN-28-10 / ODIN-Dense-BC / GPND / GPNDI (Ours)

TinyImageNet (crop) 23.4/4.3/29.1/26.6 14.2/4.7/15.7/14.1 94.2/99.1/90.1/93.4 92.8/99.1/84.1/85.2 94.7/99.1/99.5/95.1
TinyImageNet (resize) 25.5/7.5/11.8/22.7 15.2/6.3/8.3/24.6 92.1/98.5/96.5/97.1 89.0/98.6/95.0/88.1 93.6/98.5/99.8/89.2
LSUN (crop) 21.8/8.7/89.1/61.1 13.4/6.9/47.0/22.6 95.9/98.2/35.8/96.0 95.8/98.5/39.1/81.6 95.5/97.8/83.7/85.3
LSUN (resize) 17.6/3.8/4.9/5.6 11.3/4.4/4.9/5.1 95.4/99.2/98.7/98.9 93.8/99.3/98.4/97.2 96.1/99.2/99.7/98.1

CIFAR-100

TinyImageNet (crop) 43.9/17.3/33.2/32.1 24.4/11.2/17.2/23.0 90.8/97.1/89.1/90.6 91.4/97.4/83.8/88.1 90.0/96.8/98.7/98.8
TinyImageNet (resize) 55.9/44.3/15.0 /26.4 30.4/24.6/9.5/23.9 84.0/90.7/ 95.9/96.1 82.8/91.4/94.6/89.2 84.4/90.1/99.4/86.4
LSUN (crop) 39.6/17.6/91.3/60.7 22.3/11.3/48.1/24.3 92.0/96.8/35.0/92.3 92.4/97.1 /38.8/81.6 91.6/96.5/79.4/82.1
LSUN (resize) 56.5/44.0/6.8/69.4 30.8/24.5/5.8/26.3 86.0/91.5/98.3/88.0 86.2/92.4/98.0/79.2 84.9/90.6/99.6/78.1

5.3. Results

MNIST dataset. For this set of tests, we create 5 random
data splits with a balanced number of samples per class.
We then evaluate on one split, using three of the remaining
four for training and the final split for validation. The value
of γ that produces the highest F1 score on the validation
set is then used during testing. Experiments are run using
each digit as an inlier while the remaining digit samples are
selected in order to generate outlier percentages between
10% to 50%. Results are shown in Table 1, and Figure 3.
They suggest that GPNDI performs significantly better than
GPND.
Fashion-MNIST dataset. We repeat the same protocol
that we have used for MNIST, but on Fashion-MNIST. Re-
sults are provided in Table 2. We compare our results with
GPND [37]. All results are averages from a 5-fold cross-
validation. Our proposed method exceeds GPND in all cases.
Coil-100 dataset. Similar to the datasets above, we create
five even splits for cross-validation, but instead use four for
training and one for testing. The optimal γ is thus found on
the training set. For each experiment, 1, 4, or 7 classes are
randomly chosen to be inliers while the remaining classes
are considered outliers and are included at some pre-selected
percentage.

Results on Coil-100 are shown in Table 3. This table
confirms that our method achieves a higher AUROC than

GPND [37] in all cases. Interestingly, our method yields
the highest F1 score when the number of inlier categories is
increased to seven, which shows that our method robustly
learns the inlier representation and does not deteriorate as the
number of inlier categories increase. We do not outperform
R-graph [60] as they use a pre-trained VGG network, and
we use an autoencoder with a very small architecture that
we train from scratch on a very limited number of samples,
which is on average only 70 per category.

CIFAR-10 (CIFAR-100) dataset. The available datasets
at the time of publication were both versions of TinyIma-
geNet and LSUN, as well as iSUN. For each experiment,
samples for iSUN were used as outliers during validation,
while for testing we use each of the remaining datasets as
outliers. We report these results in Table 4, the performance
of our method is compared with ODIN [25] and GPND [37].
In many cases, such as with CIFAR-10, LSUN (crop), and
CIFAR-100, LSUN (crop), GPNDI performs better than
GPND. We do not outperform ODIN but in some cases we
do, such as with AUPR out of CIFAR-100,TinyImageNet
(crop), and AUROC of CIFAR-100, and TinyImageNet (re-
size). This is still noticeable because ODIN requires label
information provided with the training samples and uses a
deep network with more than 100 layers (Dense-BC and
WRN), whereas in our settings GPNDI dose not have any
training label information and uses a very small auto-encoder
network.
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Table 5. MNIST comparison with baselines. All values are percentages. ↑ indicates larger value is better, and ↓ indicates lower value is
better.

10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

F1↑ AUROC↑ FPR(95%TPR)↓

Ours 98.4 97.6 96.8 96.0 95.3 98.8 98.8 98.8 98.8 98.8 0.060 0.056 0.057 0.060 0.057
GPND 98.2 97.1 96.1 95.0 93.9 98.1 98.0 98.0 98.0 98.0 8.1 9.1 8.7 8.8 8.9
AE 84.8 79.6 79.5 77.6 75.6 93.4 93.8 93.4 92.9 92.8 24.3 24.6 24.7 23.9 23.7
P-VAE 97.6 95.8 94.2 92.4 90.5 95.2 95.7 95.6 95.8 95.9 18.8 18.0 17.4 17.3 17.0
P-AAE 97.3 95.5 94.0 92.0 90.2 95.2 95.6 95.3 95.2 95.3 20.7 19.3 19.0 18.9 18.6

Detection error↓ AUPR in↑ AUPR out↑

Ours 0.047 0.046 0.046 0.047 0.045 99.9 99.7 99.9 99.2 99.9 92.0 95.8 97.3 98.1 98.7
GPND 5.4 5.8 5.8 5.9 6.0 99.7 99.4 99.1 98.6 98.0 86.3 92.2 95.0 96.5 97.5
AE 11.4 11.4 11.6 12.0 12.2 98.9 97.8 95.8 93.2 90.0 78.0 86.0 89.7 92.0 94.0
P-VAE 9.8 9.7 9.7 9.7 9.5 99.3 98.7 97.8 96.7 95.6 81.7 89.2 92.5 94.6 96.3
P-AAE 9.4 9.3 9.5 9.8 9.8 99.2 98.6 97.4 96.0 94.3 79.3 87.7 91.5 93.7 95.4

Table 6. Ablation study that shows F1 scores for MNIST with vari-
ous choices of the proposed isometric auto-encoder components.

% of outliers 10 20 30 40 50

Without Liso_AE(f, g) 0.980 0.960 0.940 0.954 0.910

With Liso_AE(f, g) 0.984 0.976 0.968 0.960 0.953
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Figure 3. Results on MNIST [23] dataset.

5.4. Ablation

In this section we analyze the contribution of each added
part to the encoder that makes it isometric. We investigate
how the results change when we include the proposed iso-
metric auto-encoder loss components versus when they are
dropped. We repeat the experiment with MNIST as follow-
ing: without having Liso_AE(f, g), and with Liso_AE(f, g).
Table 6 shows the results of these two settings. The influ-
ence of the isometric constraints can be noticed, since the F1

scores decrease when they are not included.
Moreover, we compare our method, using the MNIST

dataset, with [37] and other baselines to better appreciate
the improvement provided by the architectural choices. The
baselines are: i) vanilla AE with thresholding of the re-
construction error and same pipeline (AE); ii) proposed

approach where the AAE is replaced by a VAE (P-VAE);
iii) proposed approach where the AAE is without the addi-
tional adversarial component induced by the discriminator
applied to the decoded image (P-AAE). Table 5 shows that
our method exceeds others in all metric measurements.

Other implementation details include the choice of hyper-
parameters. λiso is set to 0.01. The hyperparameters λ for
Lauto_error versus Ladv−dz

, when optimizing for Dz are
equal to 2.5. For MNIST, Fashion-MNIST, and COIL-100
the latent space size was chosen to give the highest F1 on
the validation set which is equal to 16. For CIFAR-10 and
CIFAR-100, the latent space size was set to 256. For CIFAR-
10 and CIFAR-100, the hyperparameter of λ is 10.0. We use
the Adam optimizer with learning rate of 0.0002 for MNIST,
0.00001 for Fashion-MNIST, 0.0003 for COIL-100, CIFAR-
10, and CIFAR-100, batch size is 128, and 100 epochs for
all datasets.

6. Conclusion
In this work we present GPNDI, an updated framework

to GPND [37], where we overcome several weaknesses. By
revising the theoretical formulation we motivate the need for
using an autoencoder that learns an isometry and a pseudo-
inverse map. Those, in turn, preserve the geometric structure
of the data, but more importantly, regularize the learning
and dramatically simplify the inference model by eliminat-
ing the need to compute Jacobians. Extensive experiments
demonstrate that the approach based on the proposed new
set of losses, learns the manifold of inliers effectively, while
reducing the dimensionality of the representation. Novelty
detections metrics consistently underscore the increased ef-
fectiveness of the revised approach.
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