This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Detecting Objects in Less Response Time
for Processing Multimedia Events in Smart Cities

Asra Aslam
Insight Centre for Data Analytics
NUI Galway, Ireland

asra.aslam@insight-centre.org

Abstract

Due to increase in multimedia traffic in smart cities, we
are facing the problem of processing unseen classes in real-
time. EXxisting neural-network based object detectors may
support this growing demand of multimedia data but have
the limitation of availability of trained classifiers for un-
seen concepts. This results in a long waiting time for users
who want to detect unseen classes. In this paper, we pro-
posed three approaches where we can utilize existing object
detection models and can train unseen classes within short
training time. QOur approaches are based on similarity of
unseen classes with seen classes, and availability (presence
or absence) of bounding boxes. Our results indicate that the
proposed framework can achieve accuracy between 95.14%
to 98.53% within response time of ~0.01 min to ~30 min
for seen and partially unseen classes. Moreover we achieve
state of the art results (68.78 mAP within 10 min) for unseen
classes that have only image-level labels for training and no
bounding boxes. Our qualitative results indicate that our
approaches can work well for any unseen class (not only
for conventional object detection datasets).

1. Introduction

Event-based multimedia approaches exhibit high perfor-
mance in the current scenario but are designed for spe-
cific domains (like traffic management, security, supervi-
sion activities, terrorist attacks, natural hazards [15,21, 30,

,53]) and hence can handle only familiar classes (have
bounded/limited vocabulary). The escalating growth of
multimedia data with large numbers of user subscriptions
poses multiple challenges for the processing of image-based
events in smart cities [2]. On the other hand, a large number
of unseen concepts are emerging and changing over time in
various domains in smart cities. Furthermore, the essential
requirement of multimedia applications is a real-time per-
formance [ 1,36], which needs to be fulfilled for its usability.

This highlights the need for minimization of response time
while maintaining accuracy from the user’s perspective for
new/unseen classes. However, the existing object detection
approaches including few shot models [26, 27, 35,41, 51]
takes long training time (days or large number of resources)
to train on new classes.

Consider the scenario of object detection for analyzing
image based events in smart cities (shown in Fig. 1). Sup-
pose a user subscribes for the detection of “Bus” on “Bus
Stand”. This type of query can be answered “Public Trans-
port Management” using a camera observing the bus stand
and producing images consisting of bus-status related infor-
mation. Similarly, if a user subscribes for the detection of
the empty parking spot (i.e. absence of car at parking spot),
we require another application for processing “Car Park-
ing Management” events. Moreover, if a user subscribes to
the concepts like “taxi” or “pedestrian”, then existing pub-
lic transport and car parking management systems will not
be able to respond to any new class even if they already
consist of similar classes like “car” and “person”. Thus, we
need a generalizable image event processing system that can
provide adaptation from seen to unseen concepts (like car
to taxi) and able to answer any completely unseen concept
(like a cat, dog, key, bicycle, etc.) of any domain. Existing
deep neural network based model can be very useful if they
can be trained in short time for unseen concepts.

In this paper we proposed three approaches that can be
used in different scenarios of training models for unseen
classes. We summarize the main contributions as follows:

* Hyperparameter tuning based approach for completely
new classes which requires training from scratch.

* Domain adaptation based approach for partially un-
seen classes where similar seen classifiers are avail-
able.

¢ (Classifier to Detector conversion based approach for
partially unseen classes which have some similarity
with seen classes but does not have bounding boxes.
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Figure 1. Generalizable Multimedia Event Processing for the Detection of Unseen Classes in Smart Cities.
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2. Related Work

Adaptive classifiers and Self-Tuning Existing adaptive
classifier based machine learning techniques [ 1, 13,49,58]
in this category are designed with the aim of evolution of
classifiers with drift in concept of multimedia streams. The
identification of concept drift in these dynamic approaches,
is mainly focused on processing of text data streams and
cannot accommodate multimedia data streams.

Auto-WEKA [46] is one of the most popular work to-
wards analyzing machine learning algorithms automatically
and setting appropriate hyperparameters in-order to en-
hance performance. Similarly hyperopt-sklearn is another
available software mainly includes random search and TPE
for the automatic selection [5]. Inspite of the fact that these
tools are automatic, most of them focuses only on accuracy
and generalization ability of classifiers, or on the computa-
tion cost consisting of testing time [19,48], while excluding
the training time of neural-network based models

Transfer learning based methods Many approaches [4,
] with supervised/unsupervised transfer learning have
been proposed for domain adaptation and mainly focused
on the generalization ability for increasing accuracy not the
overall response time. An event recognition in still images
by transferring objects and scene representations has been
proposed in [50], where the correlations of the concepts of
object, scene, and events have been investigated. The au-
thors proposed techniques to exploit the knowledge from
other networks, and also evaluated the model on multiple
event domains. Another domain adaptation approach based
on the Faster R-CNN object detection model has been pro-
posed [9] in order to reduce the domain discrepancy and
enhance the effectiveness for cross-domain object detection.
Such approaches are robust; however, in most cases, domain
shift represents different changes in view-points, weather
conditions, backgrounds, image quality, sketches, etc.

Weakly supervised learning Recently, weakly super-
vised learning [25,31,47,57] is emerging as a possible so-
Iution for large-scale unseen concepts. Such approaches
are designed for limited classes and cannot incorporate new
classes that have no pre-trained models. Weakly super-
vised learning [56] also formulated as a Multiple Instance
Learning (MIL) problem. Most of the existing approaches
[10,16,42,43] are evaluated on classes of Pascal VOC [12],
disregard the training time, and/or use Fast RCNN [14]
as base network. Similarly, large scale domain adaptation
based methods [17,44] are also introduced particularly for
the detection of objects and it is desirable to bring their abil-
ities to core of multimedia event processing.

3. Approaches for Unseen Class Object Detec-
tion

The problem of multimedia event processing is divided
into different scenarios shown in Fig. 2. Suppose a user
subscribes for a concept, if we find a classifier that can de-
tect subscribed concept, we call the concept “Seen” and rec-
ognize it with “Scenario 0”. In this case, we process the
subscriptions directly using the existing classifier, without
training any other model for the seen concept. However, if
we don’t find any classifier to process the unseen concept,
then we attempt to find “Any similar seen concept avail-
able?”. We use the names of seen classes and compute their
individual similarities with the subscribed unseen class. In
the worse case, if the concept is completely “unseen”, we
introduce “Scenario 1” for the handling of subscriptions that
are not related to any domain and resulted in low similar-
ity scores. On the occurrence of complete “unseen” con-
cept, we train the classifiers from scratch and optimize the
training by hyperparameter tuning to reduce the overall re-
sponse time of the multimedia event processing model. The
most likely scenario is to receive the concept which is “un-
seen” and have similarity with one or more “seen” concepts.
Thus, we can train classifiers for such unseen domains by
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Figure 2. Scenarios for Detecting Unseen Objects in Multimedia Event Processing of Smart Cities.

knowledge transfer from seen domains (Scenario 2). Our
final concern is the availability of bounding box annotations
to train classifiers for subscribed concepts (Scenario 3). In
this case, we use the classifier to detector conversion meth-
ods for the training of the detector for unseen classes.

3.1. Approach-I: Using Hyperparameters Tuning

Consider the scenario when the concept is completely
“unseen”, i.e., there is no similar seen concept-based clas-
sifier available in the multimedia event processing model
for the knowledge transfer. This specific problem associ-
ated with Scenario-1 is described in Fig. 3. For instance, a
user subscribes for mirror detection and existing multime-
dia event processing model can detect only bicycle, bus, cat,
traffic, person etc. In that case, we need to address the prob-
lem of classifier training for unseen concepts from scratch
in low response time.

In this Approach-I, we incorporated object detection
model with self hyperparameter tuning to train for unseen
concepts in the required response time. As the choice of hy-
perparameter values greatly affects the performance of re-
sulting classifiers, we leverage self-tuning of optimization
hyperparameters, including the configuration of learning-
rate, batch-size, and the number of epochs for minimizing
the training time while maintaining the promising accuracy.

In this case, our model evaluates the training time and com-
putes hyperparameters automatically based on prerequisite
response time. Here, we train models from scratch as we as-
sume no seen class-based classifiers are available, which is
not true in most cases. Thus, we incorporate transfer learn-
ing to further improve performance in the next scenario.

3.2. Approach-II: Using Domain Adaptation

The problem associated with Scenario-2 is described in
Fig. 4, where we need to reduce the response time for cases
where the intended classifier is not available but similar
classifiers are available. Suppose a user subscribes to the
detection of class “car”, unseen to the multimedia event pro-
cessing model. If a model already consists of related clas-
sifiers (like bus in the present case), we need to train classi-
fiers for such partial unseen concepts in a reduced response
time.

In Approach-II, on arrival of new concept, the proposed
model first identifies if any similar classifier is available,
or if there is any possibility for domain adaptation. Sec-
ond, it performs the training of classifiers on need for the
intended new subscription. More specifically for domain
adaptation, we are using fine-tuning and freezing of clas-
sifier layer based methods. In this approach, we use the
previously trained classifier to instantiate the network of
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another classifier required for a similar subscription con-
cept. We freeze the backbone (convolutional and pooling
layers) of the neural network and train only top dense fully
connected layers. As frozen backbone is not updated dur-
ing back-propagation and only fine-tuned layers are updated
and retrained during the training of classifier, this results in
less training time with reasonable accuracy. Presently we
are using the path vector operator as a WordNet relatedness
measure [32] for the computation of similarity among sub-
scriptions, which could be replaced in future with more ac-
curate measures using image-feature based domain-specific
ontologies depending on the utility of applications.

3.3. Approach-III: Using Classifier to Detector Con-
version

The last scenario (in Fig. 2) is also associated with the
partial unseen concept, but it removes the limitation of the
previous Scenario-2, where we need annotated bounding
boxes to train models. Presently, most of the object de-
tection datasets have limited vocabulary; thus, we cannot
provide bounding boxes for a large number of unseen con-
cepts.

Suppose a user subscribes for an unseen class “dog”
and we have only image-level labels available for training.
However, we have another seen class “cat” which is visu-
ally and/or semantically similar to dog class and we have
image-level as well as object level labels for it. Then we
can train cat classifier and cat detector using them. More-
over, we can train dog classifier using its available image-
level labels. Then using the last layer weights differences
between cat classifier and detector we can create dog detec-
tor, by adding that weight difference to the last layer of dog
detector. The demonstration of example is shown in Fig. 5.

We propose an “unseen class model”, which allows a
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Figure 5. Classifier to detector conversion for Unseen classes (like
dog) that has only image-level labels and no bounding boxes.

Table 1. Hyperparameter values for Adaptive Training

Hyperparameter for Batch| Learnin
difft}:/rinrtpTraining Time Model Size Rate ¢ #Epochs
Defaults YOLO 64 0.001 300
Hyperparameters for SSD 32 0.001 120
long training time RetinaNet| 1 le-5 50
Our Derived Hyper- YOLO 64 0.005315 2
parameters for short SSD 8 0.002612 2
response time (<15 min) | RetinaNet 1 0.000195 5
Our Derived Hyper- YOLO 64 0.007935 9
parameters for average SSD 4 0.003600 12
response time (<60 min) RetinaNet| 2 0.000224 9

user to construct detectors for unseen classes without the
need for detection data (no bounding boxes) within the short
training time. Our model is based on making use of exist-
ing object detection datasets of bounded vocabulary (con-
sists of seen concepts) to construct detectors for unseen con-
cepts (i.e., unbounded vocabulary) by using the differences
between a weak detector (trained on image classification
dataset) and a strong detector (trained on object detection
datasets).

In Approach-III, we train two separate detectors, one on
existing object level labels (of MCOCO, and OID dataset)
and another on image-level labels (using ImageNet dataset),
respectively. Then Approach-III follows the below steps:

1. Download images using only image-level labels on re-
quest of any unseen concept (like dog).

2. The object-level detector is then fine-tuned on col-
lected images of unseen concepts by labeling the most
semantically similar class (like cat) with the unseen
class name (like dog).

3. At this stage, we compute the visual similarity of the
constructed unseen class detector (trained on classifi-
cation data) with seen classes of image-level detector,
combine it with semantic similarities, and select top-
k classes ranked on comprehensive similarities. Vi-
sual similarity is presently the difference between the
weights of the last layers of seen and unseen classes.

4. We transfer the knowledge of classifier-detector differ-
ences of top classes to the constructed unseen class de-
tector and adapt it into the stronger detector without
further training.
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Table 2. Comparison of performance of Approach-2 for short training time using default and derived hyperparameters

Hyperparameters* mAP on low Response Time (15min) | mAP on average Response Time (60min)

YOLO SSD RetinaNet YOLO SSD RetinaNet
Using Default Hyperparameters 0.00 0.06 0.13 0.09 0.00 0.20
Using Ours Hyperparameters for Approach-I 0.01 0.03 0.20 0.10 0.00 0.32

* Please see Table—1 for Hyperparameter Values.

5. Finally, we perform the detection using our trained net-
work communicate results.

In this approach all networks use YOLOv3 with Mo-
bileNetv3 backbone as our aim is to reduce response time
and these are fast models for detection and classification.

4. Experiments
4.1. Implementation Details

Here, we utilized Pascal VOC, Microsoft COCO, and
Open Images dataset (OID) for the construction of detec-
tors. Specifically for Approach I, number of training im-
ages for the subscriptions cat, dog, laptop, car, bus, bicycle,
and football classes are 1804, 2204, 5528, 2820, 847, 1108,
and 4339. If bounding box annotations of image consist of
any of the classes (cat, dog, laptop and so on), then added
it to testing events set. The number of testing events for the
same classes are 384, 538, 355, 1588, 256, 396, and 413
respectively. In Approach II, we added classes cricket ball,
laptop bus, and mango classes consist of 95, 5528, and 126
training images; and 15, 355, and 23 testing images respec-
tively.

In Approach III, object-level detector consist of 80
classes of Microsoft COCO [28] and 20 classes of OID [23];
while image-level detector consist of same 100 seen classes
of ISLVRC [37] dataset. We chose unseen classes in such a
way that the same classes should be present in OID (consist
of 600 classes). So that testing dataset of OID can be served
as groundtruth. For the training of 100 unseen classes, con-
stant learning rate of 10~* is used and evaluated on 0.5 ToU.

4.2. Comparison of performance before and after
adaptation for short response time

We performed our investigation on different object de-
tection models (YOLOv3 [34], SSD-300 [29], and Reti-
naNet [27]). Table 1 represents default hyperparameter val-
ues and our derived hyperparameter values for short training
time. We derived the values for low and average training
time by performing experiments on large number of trials
and using TPE search method [6], which needed to be min-
imized based on mean average precision (mAP).

It can be observed in Table 2 that in most of the case our
approach based hyperparameters gives us better mAP than
default hyperparameters of object detection models. Here
we took 15 min and 60 min as an example to represent less

and average training time respectively. Using Approach I,
we found that RetinaNet performs best on low and average
training time.

4.3. Comparison of performance for domain adap-
tation for short response-time

We evaluate transfer learning techniques on same mod-
els, to analyze which classifiers can perform well on apply-
ing what type of training (scratch, fine-tuning, and freez-
ing layers). The results of performance with response time
trade-off are shown in Fig. 6. Firstly, it represents the
trade-off on arrival of a completely new subscription, when
there is no possibility of domain adaptation, for the training
time of 120 min. In this case, all models are trained from
scratch without the use of any pre-trained model. We can
observe the performance of RetinaNet (Fig. 6c) is higher
than other object detection models and the SSD model (Fig.
6b) is very difficult to converge with training from scratch,
thus resulting in the worse performance, whereas the per-
formance of YOLOV3 (Fig. 6a) is also low. However, by
choosing training time (~30 min) using RetinaNet, we can
reach accuracy ~ 77.10% with precision ~ 0.21.

The performance of RetinaNet and SSD are better than
YOLOVS3 in initial 30 min of training for both cases of fine-
tuning (Fig. 6d, 6e, and 6f) and freezing (Fig. 6g, 6h, and
61) layers. However there is a sudden rise in performance of
YOLOV3 in the first few minutes signifies its higher slope
in terms of short time training as compared to other object
detection models. Trend lines are also shown with compar-
ison, just to give the clear demonstration of initial precision
that a particular object detection model can achieve at zero
response time, as well as the highest precision of a model in
a given response time. We can easily observe that all object
detection models with fine-tuning technique are performing
better as compared to the adaptation technique of freezing
layers for long training time (> 120 min). However for
short training time (< 30 min) YOLOv3 with freezing tech-
nique and RetinaNet with fine-tuning are performing best.

It is worth to mention that the testing time on our re-
sources for YOLOv3, SSD300, and RetinaNet are 0.009
sec, 0.05 sec, and 0.08 sec for one image.

Table 3 shows four examples of classes on domain trans-
fers with different similarity scores. It also presents Trans-
fer Loss, Accuracy, and Distribution Discrepancy metrics
computed for analyzing domain transfers (laptop to mango,
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Figure 6. Performance vs Response Time with and without Domain Adaptation

Table 3. Analysis of Domain Adaptation using Transfer Loss, Accuracy, and A-Distance

Classes with Semantic Transfer Loss Accuracy A-Distance
Domain Adaptation Similarity YOLO SSD RetinaNet YOLO SSD RetinaNet| YOLO | SSD | RetinaNet
Mango Detector from 0.08 0.00% | 1421% 1373% | 93.26% | 66.07% | 5631% | 108 | 1.12 1.70
Laptop Detector
Dog Detector from Cat 0.20 024% | -097% | -725% | 90.43% | 77.83% | 7427% | 0.76 | 1.59 | 159
Detector
Cricket_Ball Detector
from Foot_Ball 033 025% | 13.87% | 23.89% | 95.70% | 65.52% | 51.02% | 1.04 | 1.12 1.65
Detector
Bus Degggcruf)rr"m Car 0.50 296% | -3.51% 131% | 9533% | 71.66% | 63.73% | 101 | 135 1.68

Football to cricket ball, car to bus, and cat to dog). Transfer
loss indicates how well the transfer works on multiple do-
mains, and its lower values are recommended. In this case
the best transfer is achieved by RetinaNet on the transfer of
cat to dog class. However YOLOv3 achieve the best accu-
racy on all domain transfers. In-order to realize the varia-
tion of approximate distance (i.e. Distribution Discrepancy)
among different domains, we have trained few binary clas-
sifiers that can classify source-target pair of classes. Here
also YOLOV3 neural network closes the cross-domain gap
more effectively as distribution discrepancy (lower is bet-

ter) is lowest with it as compared to other object detection
models. The qualitative detection performance after apply-
ing Approach-II on unseen class “bus” on an event of bus
arrival and leaving of bus on bus stand is shown in Fig. 7.

Table 4 provides a comparison of average accuracy and
response time of proposed with existing models by consid-
ering their best performance. It can be observed that exist-
ing domain specific models are designed only for the detec-
tion of specific objects and answer such seen (known) sub-
scriptions in low response time, however they fail to process
any unseen (unknown) subscription of different domain.
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Figure 7. Example frames of detection of presence/absence of unseen class “bus” at bus stand using Approach 2.

Table 4. Comparison of Proposed with Existing Model(s)

Approach Performance

Example of Seen/Unseen Classes Response Time Accuracy

Vehicle Detection [45] (Seen) 0.001 min 97.30%

Existing Domain Firearm Detection [24] (Seen) 0.0001 min 94.00%

Specific Models Stolen Objects [38] (Seen) 0.0007 min 93.58%

Car Parking Vacancy [20] (Seen) 0.17 min 97.90%

Traffic Light, Key, Pedestrian, Ball etc. (Unseen) 00 0.00%

Car, Football, Cat, Laptop etc. (Seen) 0.01 min 98.53%

Approach-I 15 min (low) 79.00%

Proposed Approaches Bus, Dog, Mango, Approach-I 60 min (average) 84.28%

Cricket ball, Mirror etc. (Unseen) Approach-II 30 min 95.14%

Approach-IIT 10 min (no BBox) 42.86%

The proposed model can achieve accuracy of 95.14% even
when all concepts are unseen by taking an average response
time of ~30min. Also, the accuracy with Approach-I on
low and average response time are 79.00% and 84.28% re-
spectively. Moreover, with Approach-III we get 42.86% ac-
curacy but without bounding boxes, and with training time
of only 10 min (discussed in next section).

4.4. Analysis of Performance for domain adaptation
without bounding boxes for short response
time

To retrieve the effective range of response-time in our
model, we train each category until the point testing accu-
racy starts to decrease (to avoid overfitting). We show a
few examples of unseen concepts in Figure 8. Please note
here we compute the total number of epochs for varying the
training time. We first train our model on weak level labels
(i.e., without bounding boxes) and then test on strong labels
(i.e., with bounding boxes). We observe that the maximum
mAP of each class could be achieved within 10 min of train-
ing. After that, the mAP decreases and remains constant.
We recommend 10 min of training to attain maximum mAP
43.07. It is worth noting that mAP at 0 min training time on
unseen classes is not zero due to the use of detectors trained
on object-level labels for initialization.

We present an analysis in Figure 10 of few unseen cate-
gories along with their respective degree of similarity with
seen categories (top-10 nearest neighbor). Here, we com-
pute comprehensive similarity scores using visual and se-
mantic similarity. It can be observed that unseen class de-
tectors performs well for most of the classes due to knowl-
edge transfer from seen class detectors.

We show few examples of our model detections for qual-
itative analysis in Fig. 9. Here unseen classes of Fig. 9 (a)
— (d) consist of OID dataset images where groundtruths are
shown in green color while our detections are shown in red
color. Fig. 9 (e) — (h) consists of additional unseen classes
which are present neither in any object detection nor in im-
age classification datasets to date. Due to this reason we
have only our detections (in red color) for these images.

Presently, existing few-shot object detection models are
showing great promise by providing competitive perfor-
mance with only few shots of annotated. Thus, we com-
pared our model performance with recent zero-shot, one-
shot, and few-shot detection approaches in Table 5. Due to
lack of space, in case of few shot object detection we show
here the performance of 10 shots of existing approaches
[8,22,26,41,51,52,54,55] which is best among all. It is
important to note that we use only image-level labels; thus,
our approach does not need any shot.

5. Conclusion

The problem of processing multimedia events that can
include a large number of seen/unseen concepts belonging
to the same or multiple domains are analyzed in this pa-
per. We proposed approaches for completely unseen con-
cepts, partially unseen concepts, and unseen concepts with-
out bounding boxes. Our approaches utilized hyperparam-
eter tuning, domain adaptation, and classifier to detector
conversion method to training unseen classes detectors in
short time. The proposed approach can achieve the accuracy
ranges from 95.14% to 98.53% within ~ 0.01 min to ~ 30
min. Moreover, we achieve mAP 68.78 in training time of
10 min on unseen classes of without bounding boxes. Qual-
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Figure 8. Examples of mAP with Response-Time, For each “Unseen” category, we use the top-10 weighted average nearest neighbor
“Seen” categories for adaptation. This shows that maximum mAP could be achieved within 10 min.
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Figure 9. Examples of detections of our model on “Unseen” categories shown in red color and groundtruth (taken from OID) in green.
Last four unseen classes images are downloaded online, so no groundtruth available to date.
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Figure 10. mAP of our model on 100 “Unseen” Categories
within 10 min of training. We use the top-10 nearest neighbor
“Seen”categories for each unseen category, with average similar-
ity scores shown on top.

itative results demonstrates that our approaches are suitable
for any unseen class. In future work, the model can be ex-
tended for unsupervised learning to reduce the need of la-
beled data for the processing of new subscriptions. The use
of image features based domain-specific ontologies for the
computation of similarity among domains could lead to the
enhancement in performance.
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