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Abstract

Yield forecasting has been a central task in computa-
tional agriculture because of its impact on agricultural
management from the individual farmer to the government
level. With advances in remote sensing technology, compu-
tational processing power, and machine learning, the abil-
ity to forecast yield has improved substantially over the past
years. However, most previous work has been done lever-
aging low-resolution satellite imagery and forecasting yield
at the region, county, or occasionally farm-level. In this
work, we use high-resolution aerial imagery and output
from high-precision harvesters to predict in-field harvest
values for corn-raising farms in the US Midwest. By using
the harvester information, we are able to cast the problem of
yield-forecasting as a density estimation problem and pre-
dict a harvest rate, in bushels/acre, at every pixel in the field
image. This approach provides the farmer with a detailed
view of which areas of the farm may be performing poorly
so he can make the appropriate management decisions in
addition to providing an improved prediction of total yield.
We evaluate both traditional machine learning approaches
with hand-crafted features alongside deep learning meth-
ods. We demonstrate the superiority of our pixel-level ap-
proach based on an encoder-decoder framework which pro-
duces a 5.41% MAPE at the field-level.

1. Introduction

Although initially a slow adopter of machine learning
and computer vision, agriculture has become an important
domain for these approaches. Computer vision is now a key
element of agricultural systems to determine crop type [47],

count plants [16, 28], guide harvesting robots [22], identify
issues like crop stress and weeds [7, 10, 35, 39], and fore-
cast yield [3, 23, 52]. Adoption and extension of these ap-
proaches is critical due to the challenges facing global agri-
culture: the world’s population is predicted to reach 9.7bil-
lion by 2050 [34], water supply is expected to fall 40% short
of global needs by 2030 [32], and climate change produces
significant challenges and uncertainty [11].

Crop yield forecasting is a central task in precision agri-
culture because of its impact on food security, economics,
and scientific development. Numerous stakeholders are im-
pacted: farmers rely on accurate predictions to make in-
formed management decisions and take appropriate actions
[17]; commercial suppliers seek to understand how new
seed varieties will perform in different areas [46]; govern-
ments and international organizations depend on early and
accurate forecasts to anticipate disruptions in food security
or import/exports [11].

In this work, we leverage an encoder-decoder framework
to perform in-field prediction at the pixel-level and demon-
strate superior performance, 5.41% MAPE test performance
at the field level as seen in Figure 1. This approach not
only provides exceptional performance at the field-level, but
also enables the farmer to identify regions of his field which
are under-performing and may benefit from further inspec-
tion and treatment. To do this we collect high-resolution
(10cm/pixel) multi-spectral (RGB + NIR) imagery across
602 corn fields in the US-Midwest over 2 seasons (2020,
2021) and predict the final yield density at the pixel-level
from imagery collected at the mid-way point of the sea-
son. We first baseline these approaches against traditional
handcrafted approaches (which are still quite commonplace
in agricultural and remote sensing works), and a tile-level
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Figure 1. Our approach uses an encoder-decoder framework to directly predict the harvest density at the pixel-level from high-resolution
RGB+NIR imagery. We demonstrate that this approach is superior to other methods which make predictions at coarser scales such as the
tile-level.

CNN-based approach. Importantly, our dataset is unprece-
dented in size for field-level yield forecasting, our perfor-
mance reaches SOTA-levels, and to the best of our knowl-
edge, we are the first to demonstrate dense pixel-level yield
forecasting from remote sensing imagery.

2. Related Work
Many existing works on crop yield forecasting focus

on non-image based sources of information including soil,
weather, and seed-variety. These sources of information
may serve as inputs to mechanistic, i.e. simulation-based,
models which are based on decades of research from agron-
omy and crop science [12, 30, 42]. Unfortunately, these
methods often require complex data calibration to pro-
duce reasonable results and also suffer from huge compu-
tational overhead and lengthy run-times. Recently, many
have looked to machine learning to complement or replace
these approaches [48]. These include traditional machine
learning algorithms [2, 21, 37, 43] as well deep learning ap-
proaches [8, 9, 24, 36]. Importantly, stand-count estimation,
while a related task, is distinct from yield forecasting; to
accurately predict the yield of a corn field requires informa-
tion about the number of plants (i.e. stand-count) and the
yield per plant. Recently, Khaki et al. [23] used a DNN to
predict performance of corn hybrids throughout the United
States from a dataset containing detailed hybrid information
including genetic markers as well as environmental data
such as weather [46]. Barbosa et al. [3] relied on machine
data such as planting, spraying, and harvesting information,
without any imagery data, to predict within-field yields.

As machine learning approaches have advanced rapidly
over recent years, so too has remote sensing technology. In-
creased sensor resolution and channels beyond RGB have
become more common thanks to improved satellites and
collection via UAV and manned aircraft. However, much
of the work done previously on yield forecasting from
imagery is based on low-resolution remotely sensed data

with predictions at a regional level [8, 45], or from im-
agery embedded on ground-based robots [27,50]. Early ap-
proaches [5,20] extracted hand-crafted features, often based
on agriculturally-relevant vegetative indices like NDVI.
With the success of deep learning approaches, more recent
approaches have begun to apply neural networks for yield
forecasting tasks. Leveraging a combination of deep Gaus-
sian processes and long-short term memory, You et al. [52]
predicted soybean yield at the county-level in the United
States. While these analyses are important for anticipat-
ing issues surrounding food security, they are too coarse for
providing individual farmers with actionable insight into his
farm.

Within-field crop forecasting, specifically from remotely
sensed data, is largely absent from past efforts. Nevavuori
et al. [33] used imagery collected from UAVs combined
with a 6-layer CNN to predict crop yield of different types
across nine fields. While Barosa et al. [3] performed in-field
predictions, that work was based on application data (e.g.
planter and sprayer data) and did not use imagery. In both of
these works, the authors used within-field cross-validation
and other approaches to handle the very small number of
fields (7) in their dataset; as no fields were fully held-out in
the test set, it is unclear how such approaches would gen-
eralize to unseen fields as would be expected in real-world
scenarios.

3. Data

3.1. Image Acquisition

We collected imagery data using manned aircraft flown
over the Midwest US, primarily Illinois and Indiana, during
the 2020 and 2021 growing seasons (April through Septem-
ber). The region was flown 13 times over this period to
provide a longitudinal view of the crops’ health and pro-
gression; flights were conducted roughly every two weeks.
As the total area covered is quite expansive, covering over
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5million acres, data acquisition is a nearly continuous pro-
cess with different fields covered on different days for any
given collection cycle. For this analysis, we focus on 603
fields, 402 in 2020 and 201 in 2021, in which corn was
grown during that season and planter and harvester data was
available (see Sec. 3.2).

Each image consisted of four channels: red, green, blue,
and near-infrared captured at 10cm/pixel resolution. Or-
thorectification [4] and mosaicking were applied to the raw
images to generate full-field imagery for analysis [13]. No-
tably, these full-field images are quite large, upwards of
1GB in size and 10k× 10k pixels in dimension. These im-
ages were also georeferenced to allow for subsequent align-
ment to equipment data.

3.2. Equipment Data

Modern planting (seeding) and harvesting equipment en-
ables highly accurate tracking of seeding and harvesting
rates. This equipment records the instantaneous velocity of
the machine in addition to a seeding/harvesting rate at sec-
ond to milliseconds intervals. These GPS guidance enabled
tractors claim a positional accuracy range of 40cm to un-
der 2cm with a real-time kinematic (RTK) positioning sys-
tem [1]. We do not make any distinction as to the make and
model of the equipment used on a given field, i.e., we do
not make any explicit corrections for the specific precision
of a given piece of equipment.

The final data output of these machines is a vector geo-
data file. The geodata file comprises one row (sample)
per timestamp that includes the target rate and the applied
rate, effectively providing a vector map of rates across the
field. Speed is derived from the positional and timestamp
data and is used to convert the raw output to a density in
seeds/acre for the planter file and bushels/acre for the har-
vester. The vector map from the planter and harvest files
were converted to a raster map by burning the applied rate
value onto an empty raster grid to produce a file raster im-
age with 20cm/pixel resolution and blurring with 5×5 nor-
malized box filter. Because these are geofiles, they can be
easily synced with the geo-referenced imagery collected in
Sec. 3.1.

A boundary mask is constructed for each field to indicate
which portion of the image is under active management, i.e.
where planting has occurred and the grower expects to har-
vest crop. “Unmanaged” areas such as grassed waterways,
houses, roads, etc. are excluded from analysis. This file is
determined from the non-null areas generated by the harvest
and planter files and is subsequently inspected for quality
assurance.

All equipment data belongs to the farmers and has been
used with permission: we have ensured the anonymity of
the grower is protected by ensuring no figures, images or
results disclose the identity of the grower.

3.3. Dataset

The current analysis focuses on predicting the end-of-
season yield from imagery taken at or up to the middle of
the season. Forecasting at different times during the sea-
son is the focus of future work. The prediction flight p
was selected based on the Growing Degree Days (GDDs),
aka. Growing Degree Units (GDUs), of the field. GDDs
are used to estimate the growth and development of plants
as development will only occur if the temperature exceeds
some minimum development threshold, or base temperature
(TBASE) determined experimentally for each crop; for corn
TBASE is 50F [40]. The GDD value used in this work was
obtained from the DarkSky API [19] based on the location
of the field. For this work we select our prediction flight
p as the first flight during the Pollination phase which cor-
responds to a GDD between 1135 and 1660, roughly mid-
June through mid-July in these regions. Use of GDDs in-
stead of flight date better normalizes the data to ensure pre-
diction is made at roughly the same growth stage as fields
may be planted over a wide range of dates (often over multi-
ple months), and the plants’ development is dictated by the
local climate and seasonal weather conditions.

Images were downsampled using cubic resampling to
produce images with 20cm/pixel resolution for analysis.
These images were windowed into tiles of size 512×512
pixels with a stride of 512. Tiles containing < 10% data,
were discarded. To ensure an even distribution of data in
the train-validation-test sets, we applied stratified logic to
the splitting as follows: fields for each season were grouped
into five bins [100,150,200,225,250,300,350] based on their
average yield per acre. Fields were then split by season-
bin combination so that all tiles of a given field-season be-
longed to a single split (train, valid, test). This generates
splits Train (2020): 18,859; Train (2021): 6,965; Valid
(2020): 3,794; Valid (2021): 1,401; Test (2020): 3,652; and
Test (2021): 1,463. For the majority of the experiments,
splits for 2020 and 2021 were combined; Sec. 6.4 explores
the out-of-season effect where the model is trained only on
Train (2020) and performance is evaluated on Test (2021).

4. Hand-Crafted Models
As a baseline, we constructed a “tabular model”

which leverages handcrafted features using approaches
common to remote sensing and computational agricul-
ture(Sec. 4.1) and traditional machine learning regression
algorithms(Sec. 4.2).

4.1. Agronomic Feature Generation

Although deep learning approaches have proven to be
tremendously successful in numerous domains, including
remote sensing and computational agriculture, those two
domains still feature a significant amount of work leverag-
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ing traditional computer vision, hand-crafted features, and
non-deep learning approaches [14,29,49]; this due in part to
their relatively strong performance on many tasks. There-
fore, we compare approaches based on hand-crafted fea-
tures to deep learning approaches. However, as the focus
of this work is not on developing a model based on optimal
hand-crafted features, we give a high-level overview of the
process here and include additional details in the Supple-
mentary Material.

Briefly, we first calculate the normalized difference veg-
etation index (NDVI) and green normalized difference veg-
etation index (GNDVI) across the field [31]. Next, we ap-
ply image processing including erosion, blurring, threshold,
and connected components to identify anomalous regions
from these NDVI and GNDVI maps. The field is then rep-
resented as s = 4 non-mutually exclusive binary masks F s

corresponding to the presence of agronomic features (“Ag-
Feature”) related to i) high stress, ii) low biomass, iii)low
vigor, and iv)low (relative) growth; these are based on agro-
nomic relationships derived from crop science and written
in mutual collaboration with agronomists.

Figure 2. (A) The raw RGB+NIR is processed to generate different
agronomic indicators like NDVI shown in (B). From these indices
potentially problematic areas with different severity (red > cyan
> green) are identified through anomaly detection and threshold-
ing(C). With the aid of agronomists, features are constructed to
identify areas of low growth (D), low vigor (E), high stress (F),
and low biomass (none present in current example).

We run these feature-map creation steps for each flight
image I1 : Ip up through the prediction flight p. Each Ag-
Feature map is summed independently to generate a set of
s = 4 final Ag-Feature maps

Fs =

p∑
t=1

F s
t (1)

where an element of Fs is the number of times in the first
p-flights of the season in which the sth feature was present.

These feature maps are tiled in accordance with the asso-
ciated imagery (512 × 512) to enable per-tile feature con-
struction; we then compute the mean, median, and max over
each channel in Fs of that tile as features into the model.

Additionally, for each tile, we calculate features based
on the mean, standard deviation, mean absolute devia-
tion, standard deviation, and [5th, 25th, 50th, 75th, 95th]
percentiles of common agronomic indices (“Index Fea-
tures”) such as NDVI, NDWI, SAVI, EVI, and GRNDVI;
additional description of these indices is given in the Sup-
plemental Material. We also use the mean, standard devia-
tion, and skew of the red, green, blue, and NIR histograms
of that tile. In certain experiments, we also directly used
the latitude/longitude of the field and the exact GDD value
of the prediction flight as features. Finally, from the planter
file we extract the mean, standard deviation, and skew of
the seeding rate distribution in that tile.

4.2. Models

We evaluate the performance of three common ma-
chine learning algorithms: Lasso, Random Forest (RF), and
LightGBM regression. We explore different combinations
of feature sources in Sec. 6.1 as well as the use of a feature-
selection step based on minimum-redundancy-maximum-
relevance (mRMR) to identify uncorrelated variables. In
those models, all possible features are passed into the algo-
rithm, and only the top subset are passed into the learning
algorithm for training [41].

Models were fit to minimize the mean squared error
(MSE) between the actual yield and predicted yield for that
tile. That is, given the harvest map for a given tile which
has a value in bushels(bu)/acre for each pixel, we define our
loss as

MSEtile =
∑
i,j

Yij ◦Mi,j − Ŷtotal (2)

where Mij is the mask corresponding to the same area
whose elements are 1 if the area is managed and 0 other-
wise, and Ŷtotal is the single value total yield predicted by
the model.

All models were constructed using sklearn. Optimal hy-
perparameter values for each were found using the Scikit-
Optimize package and are given in Supplementary Material.

5. CNN-Based Models for Tile and Pixel-Level
Prediction

5.1. Input Representation

Each 512 × 512 tile is a 4-channel image consisting of
the red, green, blue, and nir reflectance channels taken from
the prediction flight Ip. RGBN channels were scaled by di-
viding by 215; this brings the naturally int16 values into the
range 0-2, with the majority of the mass occurring in the
range 0-1 because of the sensor’s characteristics. We also
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explored the impact of using the Ag-Feature maps (Sec. 4.1)
as additional input channels. Note that while only the pre-
diction flight image is used, the Ag-Feature maps include
some history about the field as they capture whether the
field has ever experienced that feature; as each channel is
the sum of occurrence through the pth flight, this amount is
divided by 10 to ensure the total was below 1. For one ex-
periment we used the planter seeding rate map as an input;
all values were divided by 50,000 to bring the resulting val-
ues near 1. The impact of NDVI and other indices was also
explored; these by their nature are constrained to be in the
range [-1,1].

5.2. Tile-level CNN

We first directly compare a deep-learning based ap-
proach to the hand-crafted tabular models of Sec. 6.1 by
performing tile-level prediction. For each tile, we used only
the four-channel RGBN image as the input to the model,
and the total yield of the tile was predicted. We explored
the impact of different architectures including VGG16 [44],
ResNet-34,50 [15], RegnetY-040 [51], and Densenet-161
[18]. As done for the tabular models, we use MSE between
the actual yield and predicted yield for that tile as given in
Eq. (2).

5.3. Pixel-level CNN

Given the natural high-resolution of both the input (i.e.
imagery) and target (i.e. harvester file), we next sought to
perform pixel-level prediction to forecast the harvest at each
point in the field directly. This approach recasts the prob-
lem of forecasting yield as a density-estimation task. That
is, given an image Xij , we predict the harvest density Yij
in units/pixel. We can then calculate the total yield over a
given region (e.g. tile, field, or other arbitrary region) as

TotalPredictedY ield =
∑
i,j

Ŷij ◦Mij (3)

where Mij is the mask corresponding to the same area
whose elements are 1 if the area is managed and 0 other-
wise.

We explored U-Net and FNP architectures with VGG16,
ResNet-34, ResNet-50, RegnetY-040, and DenseNet-161
encoders. The loss was defined as the MSE between the ac-
tual yield density (in bushels/pixel) and the predicted yield
density at each pixel in the tile.

MSEpixel =
∑
i,j

‖(Yij − Ŷij) ◦Mij‖22 (4)

5.4. Training

Encoders were initialized using Imagenet weights for the
RGB channels. Weights in the first layer for the NIR chan-
nel and any additional input channels were initialized ran-

domly. Horizontal and vertical flipping, transposition, and
random rotation were used as augmentation during training.

Adam optimization with a learning rate of 1e-4 and
weight decay of 1e-5 was used to minimize the loss. A
multi-step learning rate scheduler with a multiplicative fac-
tor of γ = 0.1 to reduce the learning rate between the 5th

and 15th epochs was used to control learning rate decay. The
loss was defined as the MSE between the actual yield rate
(i.e. bushels/acre) and predicted yield rate for each pixel in
the tile. Models were trained with a batch size of 16 for 100
epochs with early stopping terminating with a patience of
10 epochs.

All CNN-based models were constructed in PyTorch for
architecture construction and the Albumentations package
[6] for augmentation. Models were trained on a machine
with a single NVIDIA TitanRTX and Intel i9-9940X pro-
cessor.

5.5. Metric Calculations

For the hand-crafted models of Sec. 6.1 and tile-level
CNN of Sec. 5.2, the output of the model is the total yield
of that tile. Field-level metrics are obtained by performing
an aggregate over all the tiles of the field according to

AverageF ieldV alue =
Σ(TileV alue ∗ TileArea)

Σ(TileArea)
(5)

where the tile area corresponds only to those areas in the
tile which were planted (i.e. ignores intentionally unman-
aged areas). Mean squared error (MSE), mean absolute er-
ror (MAE), and mean absolute percent error (MAPE) are
then calculated on these totals.

For the pixel models of Sec. 5.3, the output of the model
is in bushels/pixel where each pixel is 20cm2 in area. Con-
verting to bushels/acre at either the tile or field-level is
achieved through simple dimensional analysis.

6. Experiments and Results
6.1. Tile-Level Regression

Both the Tabular and CNN-based models are used to per-
form tile-level regression. A sample result from the CNN
model with ResNet-34 architecture is shown in Figure 3.
The output of the model is total bushels for each tile; this is
converted to bushels/acre for easy comparison across meth-
ods according to Sec. 5.5. We see that in addition to captur-
ing the area of extremely low predicted yield on the far left,
the model captures variations across the field.

For each model, MSE, MAE, and MAPE at the tile and
field levels and report results in Table 1. All models, both
the hand-crafted tabular models and CNN models, outper-
form the naive baseline by a significant margin. For all three
traditional-ML algorithms, the best model included all fea-
tures (raw image channels, agronomic indices, agronomic
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Figure 3. Sample result produced by the CNN-based tile-level
model. Note that the bushels/acre of a given tile is over the
“managed” area only; this is why the tiles containing the bright
green area at the center-right of the figure (which corresponds to a
grassed waterway), does not cause the prediction to be particularly
low in that area. In contrast, the effect of the stress near the upper
left of the image results in a below-average (purple) yield forecast
for that tile.

features, planter data, and lat/long) passed through the fea-
ture selection step. Additionally, we show results for the
best model versions using only features directly derivable
from imagery. Note the best models include the planter
data, which provides the number of seeds sewn in that tile,
and has a significant impact; this suggests incorporation of
this channel will be useful in future work. Results of addi-
tional experiments exploring the impact of different feature
combinations are included in the Supplementary Material.

Tile-Level: Test Field-Level: Test

MSE MAE MAPE MSE MAE MAPE

Naive Baseline 753.13 21.19 10.06 575.24 19.25 8.62

Lasso (best) 551.67 18.51 8.55 455.04 17.94 7.99
RF (best) 488.12 17.48 8.09 352.72 15.54 6.96
LGBM (best) 423.31 16.0 7.36 270.62 13.13 5.95
Lasso (image) 565.80 18.67 8.61 459.37 17.59 7.84
RF (image) 513.61 17.71 8.18 408.83 16.44 7.36
LGBM (image) 515.39 17.67 8.10 435.60 16.41 7.35
VGG16 511.46 17.78 7.96 378.28 15.45 6.85
ResNet-34 428.64 16.45 7.49 281.53 13.69 6.16
ResNet-50 389.24 15.58 7.06 251.57 12.99 5.78
RegnetY-040 388.48 15.75 7.12 251.39 13.08 5.82
Densenet-161 533.10 17.98 8.06 390.05 14.78 6.38

Table 1. Performance of Tile-Level Regression Models

All CNN-based tile-level models here use RGBN im-
agery only. Every CNN model out-performed every hand-
crafted model in Table 1 with the exception of the best-
LGBM model which used features from multiple sources
(e.g. planter, lat/long) in addition to imagery. The best CNN
architecture, ResNet-50, produced results with 1% MAPE
better than the best LGBM image-only model. While
the hand-crafted features performed (perhaps surprisingly)
well, the CNN still achieves better performance when pro-

vided equivalent input information (i.e. image only). How-
ever, the performance of the multi-source best hand-crafted
models suggest there is still significant opportunity for
incorporating this information into the CNN approaches,
which is the focus of future work.

6.2. Pixel-Level Regression

Our pixel-level regression approach directly predicts the
harvest map from the input imagery. We used two common
encoder-decoder frameworks, U-net [38] and Feature Pyra-
mid Network(FPN) [26] and explored a combination of ar-
chitectures and backbones as described in Sec. 5.3. Results
are shown in Table 2 and residual analysis is provided in the
Supplementary Material.

Every pixel-level model (Table 2) outperforms every
hand-crafted image-only model (Table 1 Middle) except
for FPN VGG16. Furthermore, every pixel-level U-Net
CNN model except RegnetY-040 matches or outperforms
its tile-level counterpart (Table 1 Bottom). Pixel-level FPN
Densenet-161 significantly outperforms all other models.
Since the same information is being extracted by the same
encoder, this suggests that the dense loss signal afforded to
the model by predicting the pixel-level harvest file directly
as a density map has tremendous benefit.

Tile-Level: Test Field-Level: Test

MSE MAE MAPE MSE MAE MAPE

U-Net VGG16 504.82 17.46 7.82 392.38 15.96 7.06
U-Net ResNet-34 395.24 15.61 7.03 274.49 13.26 5.91
U-Net ResNet-50 365.36 15.19 6.88 296.47 13.42 5.98
U-Net RegnetY-040 394.96 15.72 7.11 256.30 13.12 5.89
U-Net DenseNet-161 379.54 15.42 6.98 255.23 12.88 5.78

FPN VGG16 525.50 17.74 7.83 436.88 12.24 7.09
FPN ResNet-34 371.26 15.18 6.84 269.58 13.33 5.91
FPN ResNet-50 395.23 15.68 7.06 264.34 12.92 5.73
FPN RegnetY-040 421.49 16.38 6.62 261.72 13.04 5.80
FPN DenseNet-161 347.01 14.77 6.59 234.97 12.29 5.41

Table 2. Performance of Pixel-Level Regression Models

Sample output of the U-Net architecture with DenseNet-
161 model is shown in Fig. 4. This figure highlights two
“good” samples at the top and two “bad” samples at the bot-
tom. We see that even in the bad examples, the model does
a good job identifying struggling areas on the field. This
is not surprising as we saw that even the models based on
hand-crafted features derived from agronomic indices like
NDVI managed to identify these areas. However, this dense
pixel-level model does a significantly better job determining
the magnitude of the effect as seen by the overall tile and
field-level performance. Furthermore, we see that appear-
ance of fields can vary dramatically with healthy “green”
crops covering many different shades due to lighting con-
ditions as well as seed variety; the pixel-level model cap-
tures these variations without the significant burden of craft-
ing detailed hand-crafted features to address these different

2019



Figure 4. Field image, actual harvest map, predicted harvest density, and residuals from two “good” fields (top two rows) and two “bad”
examples (bottom two rows).

sources of variability.

6.3. Impact of Alternate Input Representation

Including additional channels based on agronomic in-
dices make the input representation overcomplete. Inclu-
sion of outlier feature channels, however, provides ad-
ditional information as they contains information about
whether that feature was present in previous flights through
the sum.

For this set of experiments, we focused on the U-Net
architecture with DenseNet-161 backbone. Any additional
features were simply added as additional input channels be-
yond the original RGBN. Results in Table 3 show the im-
pact of these additional channels. The overcomplete repre-
sentation with the addition of the NDWI and SAVI channels
did not improve performance; this suggests the network is
learning sufficiently expressive features that do not benefit
from explicit incorporation of hand-crafted features which
have been so prominent in remote sensing work.

In stark contrast to the results seen when adding the
planter file to the tabular model, inclusion of the planter
file here did not improve results. In this experiment, the

planter file was included only an additional input chan-
nel. However, incorporation into the network through late-
fusion techniques as in [3] may prove more effective; fusion
of additional channels is the focus of ongoing work.

Only the incorporation of the stress feature improved re-
sults; this is perhaps not surprising as it incorporates ad-
ditional information from previous flights and exploratory
analysis demonstrated the highest correlation between the
stress feature and yield among the outlier features. Incorpo-
rating all outlier features (including stress), however, caused
the performance to degrade slightly. Nevertheless, the per-
formance boost from the stress feature suggests that incor-
poration of earlier flights directly, could improve results
even further.

6.4. Year-Over-Year Domain Shift

Results presented thus far have been trained and eval-
uated on data combined from 2020 and 2021. However,
in reality, such a model would never have access to har-
vest results from the next season. To understand this ef-
fect, we trained a U-Net with DenseNet-161 encoder only
on the 2020 train set and evaluated performance both on
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Tile-Level:Test Field-Level:Test

UNet DenseNet-161 MSE MAE MAPE MSE MAE MAPE

RGBN 379.54 15.42 6.98 255.23 12.88 5.78
RGBN+NDWI+SAVI 389.64 15.50 7.04 263.61 13.09 5.89
RGBN+Planter 381.76 15.30 6.93 268.61 13.32 5.98
RGBN+Stress 356.21 14.90 6.72 234.89 12.06 5.40
RGBN+All Outliers 394.99 15.68 7.11 267.32 13.42 6.04

Table 3. Impact of additional feature channels

Tile-Level Field-Level
MSE MAE MAPE MSE MAE MAPE

2020 Val 503.47 16.71 6.67 305.08 12.62 5.99
2020 Test 370.19 15.10 6.75 218.33 11.98 5.41
2021 Val 611.21 20.28 9.19 384.09 16.74 7.52
2021 Test 718.17 21.61 9.88 601.52 20.37 8.71

Table 4. Out-of-Domain Analysis

the in-domain (2020) validation and test sets, as well as the
out-of-domain (2021) validation and test sets. Results in
Sec. 6.4 show that while the in-domain 2020 results remain
strong (even though the training data is less), the out of do-
main 2021 test and validation performance decreases sig-
nificantly. This is not surprising as there is known upward
annual data drift in corn harvest in the US [25]. Fortunately,
there are ways which this can be addressed that are explored
in the Discussion.

7. Discussion

This is the first work to explore yield-forecasting as a
density-estimation problem from remote sensing imagery
to enable in-field (i.e. pixel-level) yield prediction. Our
approach simultaneously produces improved results at the
field-level and also provides in-field predictions which
growers can use to identify struggling areas and make im-
portant management decisions.

Advances in remote sensing, computer vision, and smart
farming equipment are enabling remarkable opportunities
for precision agriculture. As these technologies continue
to improve, so too will our ability to forecast yield. While
the current work featured imagery collected from manned
aircraft, the approach is agnostic to data source. High-
resolution satellite technology is rapidly improving in both
quality and coverage area and could easily be used an im-
age source for this work; satellite in particular will become
important for extending the application of yield forecasting
globally, especially to developing countries which may ben-
efit from it the most.

In the current work we explored yield forecasting only
from a single point in time. Future work will explore the
use spatiotemporal modeling to incorporate the field’s pro-
gression throughout the season leveraging all collected im-
agery. Use of additional imagery is expected to not only

produce improved predictions at mid-season, but also to en-
able sound predictions earlier in the season. Incorporation
of other modalities such as soil, topography, and weather
are also expected to boost performance. Influence of re-
gional and annual trends will also be explored in future
work. Finally, extending this analysis to multiple crops is of
key interest and central to addressing issues around global
food security.

We saw the effect of out-of-season domain shift on the
model’s performance in Sec. 6.4. This is not surprising as
weather and seed selection are two of the most influential
factors on a field’s performance and these can vary dra-
matically year-over-year. However, recent work using re-
mote sensing and decades of yield data at the county or re-
gional level have demonstrated strong results in forecasting
regional trends very early into an unseen season. Fusion of
these low-resolution temporal models, with the very high-
resolution models explored here would likely improve out-
of-domain performance significantly. Direct incorporation
of constraints imposed by known agronomic principals is
also an interesting area of exploration which could enable
greater generalization.

A significant benefit of our approach is in fact its
straightforwardness and simplicity. While the success of
deep learning approaches is not a surprise to the com-
puter vision community, it is important to reiterate here
because of the initially slow adoption of deep learning
within agriculture and remote sensing. Several of the hand-
crafted models performed surprisingly well; solid perfor-
mance from these types of approaches is a key reason they
continue to be commonplace in remote sensing and com-
putational agriculture. However, feature generation for the
handcrafted tabular model is a painstaking task which re-
quires numerous steps involving image processing, statis-
tics, and incorporation of agricultural domain knowledge;
parameters are largely picked based on expert evaluation
or knowledge from research in agronomy or crop science.
Exhaustively searching for the best combination of features
and image processing parameters is impossible and also
does not generalize to other tasks or scenarios. And while
individual steps of the processing can be articulated, certain
design choices or parameter values may appear arbitrary,
offering little to no clarity or actual interpretability to the
end consumer of the model’s output. Furthermore, small
changes to the sensors or image source may render the cur-
rent set of parameter choices invalid and the ability to gen-
eralize to different crops or soil types is severely limited. In
contrast, the deep learning approaches produce significantly
improved results and provide a clear path forward to adapta-
tion, generalization, and model improvement. We hope that
this and other work using deep learning for remote sensing
and precision agriculture continues to fuel adoption in these
domains.

2021



References
[1] John deere guidance systems. Technical report, John Deere,

2021. 3
[2] AT M Shakil Ahamed, Navid Tanzeem Mahmood, Nazmul

Hossain, Mohammad Tanzir Kabir, Kallal Das, Faridur Rah-
man, and Rashedur M Rahman. Applying data mining tech-
niques to predict annual yield of major crops and recommend
planting different crops in different districts in bangladesh.
In 2015 IEEE/ACIS 16th International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pages 1–6. IEEE,
2015. 2

[3] Alexandre Barbosa, Rodrigo Trevisan, Naira Hovakimyan,
and Nicolas F. Martin. Modeling yield response to crop man-
agement using convolutional neural networks. Computers
and Electronics in Agriculture, 170:105197, 2020. 1, 2, 7

[4] Oscar Rosario Belfiore and Claudio Parente. Orthorectifi-
cation and pan-sharpening of worldview-2 satellite imagery
to produce high resolution coloured ortho-photos. Modern
Applied Science, 9:122–130, 08 2015. 3

[5] Douglas K Bolton and Mark A Friedl. Forecasting crop yield
using remotely sensed vegetation indices and crop phenol-
ogy metrics. Agricultural and Forest Meteorology, 173:74–
84, 2013. 2

[6] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-
chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. 5

[7] Mang Tik Chiu, Xingqian Xu, Yunchao Wei, Zilong Huang,
Alexander G Schwing, Robert Brunner, Hrant Khacha-
trian, Hovnatan Karapetyan, Ivan Dozier, Greg Rose, et al.
Agriculture-vision: A large aerial image database for agri-
cultural pattern analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2828–2838, 2020. 1

[8] Anna Chlingaryan, Salah Sukkarieh, and Brett Whelan. Ma-
chine learning approaches for crop yield prediction and ni-
trogen status estimation in precision agriculture: A review.
Computers and electronics in agriculture, 151:61–69, 2018.
2

[9] Andrew Crane-Droesch. Machine learning methods for
crop yield prediction and climate change impact assess-
ment in agriculture. Environmental Research Letters,
13(11):114003, 2018. 2

[10] Saba Dadsetan, Gisele Rose, Naira Hovakimyan, and Jen-
nifer Hobbs. Detection and prediction of nutrient deficiency
stress using longitudinal aerial imagery. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(17):14729–
14738, May 2021. 1

[11] Felix Dodds and Jamie Bartram. The water, food, energy
and climate Nexus: Challenges and an agenda for action.
Routledge, 2016. 1

[12] Scott T Drummond, Kenneth A Sudduth, Anupam Joshi,
Stuart J Birrell, and Newell R Kitchen. Statistical and neural
methods for site–specific yield prediction. Transactions of
the ASAE, 46(1):5, 2003. 2

[13] Feng Gao, Jeffrey G Masek, and Robert E Wolfe. Auto-
mated registration and orthorectification package for landsat
and landsat-like data processing. Journal of Applied Remote
Sensing, 3(1):033515, 2009. 3

[14] Liang Han, Guijun Yang, Huayang Dai, Bo Xu, Hao Yang,
Haikuan Feng, Zhenhai Li, and Xiaodong Yang. Model-
ing maize above-ground biomass based on machine learning
approaches using uav remote-sensing data. Plant methods,
15(1):1–19, 2019. 4

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[16] Jennifer Hobbs, Prajwal Prakash, Robert Paull, Harutyun
Hovhannisyan, Bernard Markowicz, and Greg Rose. Large-
scale counting and localization of pineapple inflorescence
through deep density-estimation. Frontiers in Plant Science,
11:2157, 2021. 1

[17] T Horie, M Yajima, and H Nakagawa. Yield forecasting.
Agricultural systems, 40(1-3):211–236, 1992. 1

[18] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Gir-
shick, Trevor Darrell, and Kurt Keutzer. Densenet: Im-
plementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869, 2014. 5

[19] Apple Inc. Dark sky api. 3
[20] David M Johnson. An assessment of pre-and within-season

remotely sensed variables for forecasting corn and soybean
yields in the united states. Remote Sensing of Environment,
141:116–128, 2014. 2

[21] Elisa Kamir, François Waldner, and Zvi Hochman. Estimat-
ing wheat yields in australia using climate records, satellite
image time series and machine learning methods. ISPRS
Journal of Photogrammetry and Remote Sensing, 160:124–
135, 2020. 2

[22] Keren Kapach, Ehud Barnea, Rotem Mairon, Yael Edan,
and Ohad Ben-Shahar. Computer vision for fruit harvesting
robots–state of the art and challenges ahead. International
Journal of Computational Vision and Robotics, 3(1-2):4–34,
2012. 1

[23] Saeed Khaki and Lizhi Wang. Crop yield prediction using
deep neural networks. Frontiers in plant science, 10:621,
2019. 1, 2

[24] Saeed Khaki, Lizhi Wang, and Sotirios V. Archontoulis. A
cnn-rnn framework for crop yield prediction. Frontiers in
Plant Science, 10, 2020. 2

[25] Christopher J Kucharik and Navin Ramankutty. Trends and
variability in us corn yields over the twentieth century. Earth
Interactions, 9(1):1–29, 2005. 8

[26] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 6

[27] Simon Madec, Xiuliang Jin, Hao Lu, Benoit De Solan,
Shouyang Liu, Florent Duyme, Emmanuelle Heritier, and
Frédéric Baret. Ear density estimation from high resolution
rgb imagery using deep learning technique. Agricultural and
Forest Meteorology, 264:225–234, 2019. 2

2022



[28] Lonesome Malambo, Sorin Popescu, Nian-Wei Ku, William
Rooney, Tan Zhou, and Samuel Moore. A deep learning se-
mantic segmentation-based approach for field-level sorghum
panicle counting. Remote Sensing, 11(24):2939, 2019. 1

[29] Aaron E Maxwell, Timothy A Warner, and Fang Fang. Im-
plementation of machine-learning classification in remote
sensing: An applied review. International Journal of Remote
Sensing, 39(9):2784–2817, 2018. 4

[30] Robert L McCown, Graeme L Hammer, John Norman Gre-
sham Hargreaves, Dean P Holzworth, and David M Free-
bairn. Apsim: a novel software system for model develop-
ment, model testing and simulation in agricultural systems
research. Agricultural systems, 50(3):255–271, 1996. 2

[31] SM Moges, WR Raun, RW Mullen, KW Freeman, GV John-
son, and JB Solie. Evaluation of green, red, and near infrared
bands for predicting winter wheat biomass, nitrogen uptake,
and final grain yield. Journal of plant nutrition, 27(8):1431–
1441, 2005. 4

[32] United Nations. World could face water availability shortfall
by 2030 if current trends continue, secretary-general warns
at meeting of high-level panel. 1

[33] Petteri Nevavuori, Nathaniel Narra, and Tarmo Lipping.
Crop yield prediction with deep convolutional neural
networks. Computers and electronics in agriculture,
163:104859, 2019. 2

[34] United Nations Department of Economic and Social Affairs.
1

[35] Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter
Ridd, Jake C Wood, Jamie Johns, Wesley Banks, Benjamin
Girgenti, Owen Kenny, James Whinney, et al. Deepweeds:
A multiclass weed species image dataset for deep learning.
Scientific reports, 9(1):1–12, 2019. 1

[36] T Venkat Narayana Rao and S Manasa. Artificial neural net-
works for soil quality and crop yield prediction using ma-
chine learning. International Journal on Future Revolu-
tion in Computer Science & Communication Engineering,
5(1):57–60, 2019. 2
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