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Abstract

Generative models aiming to generate content from
noise have achieved high-fidelity synthesis for image data.
However, obtaining comparable performance in the field
of unconditional video generation still remains challeng-
ing. In this work, we propose a recurrent GAN architec-
ture to model the high-dimensional video data distribution.
Recurrent networks by design are able to generate com-
plex, long sequences in an autoregressive fashion. How-
ever, the standard LSTM unit for videos (ConvLSTM) is not
ideally suited for the task of unconditional video genera-
tion. Therefore, we propose a simple yet effective LSTM
variant called as TransConv LSTM (TC-LSTM) by mod-
ulating the conventional ConvLSTM to have a transpose
convolutional structure in input-to-state transitions. This
enables the network to model both spatial and temporal
relationships across layers simultaneously inside the TC-
LSTM unit. TC-LSTM unit acts as a building block of our
generator. Extensive quantitative and qualitative analysis
shows that RV-GAN outperforms state-of-the-art methods
by a significant margin on Moving MNIST, MUG, Weizmann
and UCF101 datasets. Additionally, owing to the recur-
rent structure, our method is able to generate high-quality
videos, up to 2 times longer (32 frames) than training videos
at inference time. Further analysis confirms that the pro-
posed architecture is generic and can be easily adapted to
other tasks like class-conditional video synthesis and text-
to-video synthesis.

1. Introduction
Video generation is a complex task as it requires to

model spatial as well as temporal dynamics simultaneously.
Video generation task provides a means for unsupervised
feature representation learning from the vast amount of un-
labeled data available on the internet. Study [41] shows an
improvement in the performance of downstream tasks like
action classification, by using the learned weights of the dis-
criminator.

Following the success of Convolutional GANs in im-
age generation literature, many of the recent works in un-
conditional video synthesis have proposed 3D-CNN GANs
[30,41,42]. These methods suffer from the following draw-
backs: at inference, 3D CNN models can generate reason-
able quality video sequences for a fixed length video on
which it has been trained. The number of generated frames
can be increased by increasing the time dimension of the
input noise, but this leads to deteriorated results (see figure
4). Thus, to faithfully generate longer videos, more convo-
lutional layers are required at the training time which leads
to an increase in the number of parameters.

A few other works [37, 39] modelled video synthesis as
a two-step process. In the first step, latent vectors corre-
sponding to each frame of the video are generated. In the
second step, each frame is generated by using a 2D con-
volutional image generator. Although the two-step process
reduces the complexity of the task, it lacks in the following:
(1) It struggles to maintain the same appearance throughout
the video, (2) spatio-temporal consistency is not modeled
properly as temporal relationship is learned only in latent
space and there is a lack of information transfer between
consecutive frames (see figures 3, 4).

Videos are a sequence of frames, where consecutive
frames will have high correlation. To exploit this inher-
ent property of videos, we propose to use recurrent GAN
namely, RV-GAN consisting of a recurrent generator with
stacked TC-LSTM layers and two CNN based discrimina-
tors. Because of this hybrid design, the generator enjoys
the sequential modelling capabilities of RNNs whereas dis-
criminators leverage CNN properties to achieve good clas-
sification performance. In other words, our model is able to
extract both local and global dynamics of the video. The
architecture of the generator is inspired by video predic-
tion models solving the task of future frame generation
[36, 44–47]. However, these networks are not designed to
work for unconditional video generation setting where the
generator learns a mapping between low-dimensional latent
space and high dimensional video space. Thus, we propose
an effective modification to Convolutional LSTM (ConvL-
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STM) [47] that facilitates the interaction between low di-
mensional features (from the previous layer) with high di-
mensional features (of previous time step) via transpose
convolution. This enables the vertical flow of low-level in-
formation from latent space input to RGB frame output.
This modified LSTM block is the core component of RV-
GAN and is referred to as TransConv LSTM (TC-LSTM).
To summarize, following are the key contributions of our
work:

1. We propose a recurrent GAN network, RV-GAN with
recurrent generator and Convolutional Image and Video
Discriminators. A novel TC-LSTM unit is used as the con-
stituent unit for unconditional video generation.

2. We showcase the generalization capability of the
proposed architecture on longer sequence generation (upto
32 frames) by training on shorter sequence. We further
demonstrate the application of our model on two condi-
tional video generation tasks, namely: class-conditional and
text-to-video synthesis.

3. Extensive experimentation on benchmark datasets,
both quantitatively and qualitatively along with the ablation
studies demonstrates the superiority of our model over the
state-of-the-art methods.

2. Related Work
Recently, the problem of video generation has attracted

significant attention by research community. The task is
challenging because it requires the network to generate re-
alistic videos. Thus, to perform well, one of the critical
requirements is to learn a good quality spatio-temporal rep-
resentation from the training data. Two of the popular learn-
ing strategies used in the literature are GANs [9] and VAEs
[25]. The complexity of the task varies based on the input
that is used to condition the generation process. The meth-
ods that use some form of conditioning as input, for eg. first
frame, few frames, etc are a bit easier to model than the one
trained merely on latent noise. In this paper, we focus on
the latter task, where no conditioning is provided as input
i.e. unconditional video generation.

Conditional Video Generation One of the ways to re-
duce the complexity of modelling the high-dimensional
video data is to provide additional information to the net-
work such as class labels, captions, optical flow, few frames
etc. This guides the network by revealing the spatial struc-
ture, content, and motion of the underlying video to be mod-
elled. Few well-explored conditional video generation tasks
are: Image to video generation [7,49], video-to-video trans-
lation [5,27] and future frame prediction [3,36,44–46]. The
conditioning input can also be from other domains like text,
audio etc. Some of these tasks are text-to-video genera-
tion [6,17,23], audio-to-video synthesis [12,19]. Although,
our network does not require such conditioning, it can be
generalized to these scenarios as illustrated in section 5.7.

Unconditional Video Generation refers to the genera-
tion of new video samples from training data distribution
using latent noise vectors. To reduce the complexity of
the task, several works try latent space decomposition into
different video attributes, for example foreground, back-
ground, motion, content, objects, etc. VGAN [41] proposes
a two-stream generator and a video discriminator for syn-
thesizing the moving foreground and static background of
the video separately. G3AN and G3AN++ [13, 42] aim to
disentangle content and motion and introduce multi-stream
convolutional architecture, where various branches are re-
sponsible for modelling spatial, spatio-temporal and tem-
poral features. V3GAN [22] decomposes a video into fore-
gound, background and motion using three branch convolu-
tional generator and proposes a feature level masking strat-
egy and shuffling loss to improve the decomposition. In-
MoDeGAN [43] assumes that the motion in a video can be
represented in orthogonal basis vectors. They try to control
video motion in latent space using a 3D Conv based gener-
ator and temporal pyramid discriminator.

Other direction of research is to utilize an image gen-
erator for generating each frame of the video. TGAN [30]
proposes a dual generator approach where the temporal gen-
erator synthesizes the latent vectors corresponding to each
frame of the video and an image generator maps these
vectors to frames. MoCoGAN [39] replaces the tempo-
ral generator with a GRU for modelling motion in latent
space. Similarly, [20, 37] attempt to generate higher reso-
lution videos ranging from 128x128 to 512x512 and longer
video generation ranging from 32 to 64 frames. In [34],
Skorokhodov et al. builds on top of styleGAN2 model, and
proposes a continuous time generator and a single hyper-
network based discriminator. In addition to these, [48] ex-
plore the use of transformer architecture for latent space,
although high computational cost of transformer models for
video data hinders the research in this direction. Limited
works are present for higher resolution and longer video
generation models due to unavailability of high-end GPU
machines. We could not compare our model with these
methods because of the high computational requirement for
training these on our datasets.

RNN-GAN frameworks have been applied in diverse do-
mains such as text [50], finance [33], sensors [2], music
[28], medical [8] etc. However, most of these networks
operate on same input and output size. Applying similar
architecture in unconditional video generation domain is
not straightforward due to the requirement of mapping low-
dimensional latent noise vector into the high-dimensional
video data. Our propose recurrent framework RV-GAN
solves the task with a simplistic change in the existing Con-
vLSTM framework.
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Figure 1. Baseline: Recurrent Generator with Transpose Convo-
lution or Upsampling layer integrated with ConvLSTM [47] unit.

3. Preliminaries

3.1. Convolutional LSTM

LSTM [16] is a stable and powerful RNN module that
has been proven to be successful for sequence modeling
problems [4, 11, 29, 38]. It is able to model long-term de-
pendencies by using cell state Ct that can accumulate in-
formation. The information in the cell-state is updated with
the help of self-parameterized controlling gates. An LSTM
consists of three gates, namely, input, output and forget
gates. On arrival of a new input, the previous cell state Ct−1

is updated depending upon which gate is activated. For
instance, the information in the input will be accumulated
if the input gate is activated. Similarly, the information in
Ct−1 can be forgotten if forget gate is activated. Finally, the
output gates control the fraction of information of the latest
cell state Ct that would be propagated to the final (hidden)
state Ht. LSTM were designed to work with 1D data.

Convolutional LSTM (ConvLSTM) [47] is a variation of
LSTM [16] that takes a 3D tensor as input, where two of
the dimensions corresponds to height and width of the input
data and third is the channel dimension. Thus, it can model
the spatio-temporal features simultaneously by preserving
the spatial information which would otherwise be lost in a
standard LSTM. ConvLSTM determines the future state of
a cell from the inputs and past states of its local neighbours,
by using a convolutional structure in both the input-to-state

and state-to-state transitions. In ConvLSTM, the input and
output size are kept same by applying padding before con-
volution operation. The key equations of ConvLSTM are as
follows:

gt = tanh (Wxg ⊛Xt +Whg ⊛Ht−1 + bg)

it = σ(Wxi ⊛Xt +Whi ⊛Ht−1 + bi)

ft = σ(Wxf ⊛Xt +Whf ⊛Ht−1 + bf )

Ct = ft ⊙ Ct−1 + it ⊙ gt

ot = σ(Wxo ⊛Xt +Who ⊛Ht−1 + bo)

Ht = ot ⊙ tanh (Ct)

(1)

Here, σ represents the Sigmoid operation, ⊛ represents
the convolution operation and ⊙ shows Hadamard prod-
uct. it, ft, ot, gt are the input, forget, output and input-
modulation gates respectively. {X1, ...., Xt}, {C1, ...., Ct},
{H1, ....,Ht} corresponds to the inputs, cell states and hid-
den states.

4. Proposed Method: RV-GAN
In this section, we first discuss two straightforward ex-

tensions of ConvLSTM networks for generative setting
where the network learns to map an input noise vector to
video. We then discuss the proposed RV-GAN architecture
in detail.

4.1. Baselines

A stacked LSTM recurrent generator for video synthesis
should satisfy following properties: (i) the spatial structure
in the hidden states should be preserved. (ii) The size of the
hidden states should increase as we move deeper across the
layers in the network. In other words, more spatial context
should be captured for higher resolution video synthesis.
Keeping these in mind, we propose two plausible baselines
using transpose convolution as illustrated in Figure 1. To
satisfy property (ii), we introduce Transpose convolution or
UpSampling block after each ConvLSTM layer.

However, we find that the model with upsampling layer
introduces training instability and leads to mode collapse.
On the other hand, the model with transpose convolutional
layer generates samples where the appearance of the per-
son gets distorted over time. This is because such a design
fails to encode the change in spatial features between LSTM
layers across time steps. To address above limitations, we
propose to integrate the transpose convolution operation in-
side the LSTM unit. This leads to incorporation of learnable
parameters of transpose convolution into the recurrent state
transition over time. We call this modified LSTM unit as
TransConv LSTM (TC-LSTM).

The overall architecture of our proposed RV-GAN model
is shown in Figure 2(a). It consists of a recurrent generator
and two convolutional discriminators, namely, image and
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Figure 2. RV-GAN (left): The generator consists of a stack of five TC-LSTM layer with a 2D convolution layer at the end. It takes a random
noise vector z as input to generate realistic video V̂ = {X̂1, X̂2, ..X̂T } where Xi is frame at ith time step in a video. Image Discriminator
DI accepts an image sampled from the video as input. Video Discriminator DV accepts a video as input. TC-LSTM Unit (right):
Diagrammatic representation of TC-LSTM. Ht−1, Ct−1, Ht, Ct are the hidden states and cell states at previous and current timestamps.
Xt is input to the TC-LSTM unit. Red arrows indicates the transpose convolution operation, black arrows represents convolution operation.

video. Let the training data consist of N video samples
where each video is represented as V = {X1, X2, ..., XT }.
Here Xi, 1 ≤ i ≤ T represents the ith frame of the in-
put video. Video generation problem can then be described
as generating the output video V = {X̂1, X̂2, .., X̂T } with
T frames from an input noise vector z, randomly sampled
from Normal distribution. The core of the recurrent genera-
tor architecture is the proposed TC-LSTM unit as discussed
next.

4.2. TransConv-LSTM (TC-LSTM)

A single unit of the proposed TC-LSTM is illustrated in
Figure 2 (right). It takes 3 inputs: Xt, the input noise vec-
tor or hidden state from previous TC-LSTM layer; Ht−1:
the hidden state from previous time step; and Ct−1: cell
state from previous time step. We use transpose convolu-
tion between input-to-state transitions in the input gate it,
input-modulation gate gt, forget gate ft and output gate ot.
Thus, the computation of upsampled feature maps rely on
two factors, cell states and hidden state of previous times-
tamp and input from previous layer. This design enhances
the modeling capability of short-term spatio-temporal dy-
namics of the network. The key equations of TC-LSTM
are given in equation 2, where ⊛T denotes the transpose
convolution, ⊛ denotes the convolution and ⊙ denotes the
Hadamard product.

Choice of kernel size, stride and padding in transpose
convolution operations decide the factor with which the in-
put will be scaled up spatially. Thus, the same 5 layer net-
work can be used for generating higher resolution video as
well. Hidden states (Ht) and cell states (Ct) of the TC-
LSTM are initialized to zero which corresponds to no past
memory.

gt = tanh (Wxg ⊛T Xt +Whg ⊛Ht−1 + bg)

it = σ(Wxi ⊛T Xt +Whi ⊛Ht−1 + bi)

ft = σ(Wxf ⊛T Xt +Whf ⊛Ht−1 + bf )

Ct = ft ⊙ Ct−1 + it ⊙ gt

ot = σ(Wxo ⊛T Xt +Who ⊛Ht−1 + bo)

Ht = ot ⊙ tanh (Ct)

(2)

4.3. Generator Architecture

Like a standard LSTM, TC-LSTM can also be used as a
building block for complex architectures. For the uncondi-
tional video generation task, we use the recurrent generator
architecture as illustrated in Figure 2. It consists of a stack
of five TC-LSTM layers. We use a kernel size of 4 with
a stride of 2 for input-to-state transition in TC-LSTM. The
last TC-LSTM layer outputs 64 channels. Thus, a 2D con-
volution layer is used to obtain the final frame with 3 chan-
nels (RGB). The input at each time step is the same noise
vector randomly sampled from the latent space.
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Figure 3. Comparison with SOTA methods on Moving MNIST, Weizmann, MUG and UCF101 (left to right) datasets with MoCoGAN
[39] (first row), G3AN [42] (second row), V3GAN [22] (third row) and our method (RV-GAN) (fourth row). More video sequences can be
found in supplementary material. Sample videos can be found here. Frames are chosen at regular intervals for the purpose of visualization.

4.4. Discriminator Architecture

Similar to MoCoGAN [39], we use two separate dis-
criminators, Image Discriminator DI and Video Discrim-
inator DV . DV has 5 convolutional 3D layers modelled as
conv(2+1)D block. It accepts the entire video as input. DI

has 5 convolutional 2D layers and accepts a randomly sam-
pled frame of the video as input. Image discriminator helps
to maintain the quality of the individual frames. Video dis-
criminator helps to improve the spatio-temporal consistency
of the generated output.

4.5. Loss Functions

We use adversarial loss [9] to train the proposed RV-
GAN network. Let the recurrent generator be denoted by
G. The generator tries to generate realistic videos so that it
can fool the discriminator whereas the discriminator tries to
distinguish the generated videos from real ones by classify-
ing them as fake or real. The loss functions for generator
and discriminators are defined as follows:

min
G

max
DI ,DV

LI(G,DI) + LV (G,DV )

where,

LI(G,DI) = Es(v)∼pdata
[log(DI(s(v)))]

+ Ez∼pz
[log(1−DI(s(G(z))))]

LV (G,DV ) = Ev∼pdata
[log(DV (v))]

+ Ez∼pz
[log(1−DV (G(z)))]

(3)

RV-GAN tries to optimize the above loss function with
respect to both DI and DV simultaneously. LI refers to
the loss associated with DI whereas LV refers to the loss
associated with DV . z is the random noise vector given
as input to G to generate the video G(z). v represents a
video from the training data distribution. s(X) with X ∈
{v,G(z)} is a function that randomly samples one of the
frames from real and generated video.

5. Experiments and Results

5.1. Datasets and Setup

We trained our model on four datasets as described be-
low.

Moving MNIST is a synthetic dataset of handwritten
digits consisting of 10,000 videos. Each video sequence
contains 2 digits moving independently across the frame.

Weizmann [10] action dataset consists of 93 videos of
9 people performing 10 different actions, such as running,
bending, jumping. The video frames have been flipped for
augmentation purposes.

UCF101 [35] dataset contains 13,320 real-world video
clips, categorized in 101 action classes. We rescale the
frames to 85x64 followed by center-cropping to 64x64 for
Weizmann and UCF101 datsets, similar to [30].

MUG [1] dataset contains 908 video sequences of 52
individuals performing facial expressions. We chose only
6 expressions- fear, anger, sadness, disgust, happiness and
surprise. Faces are cropped in each frame on the basis of
landmarks and then resized to 64x64.

For all our experiments, we randomly chose 16 frames
with step sizes 1 and 2. The input noise (z) dimension is set
to 128. The output videos contain 16 frames at a resolution
of 64x64. A batch size of 16 is used. The learning rate for
generator and discriminators is set to 10−4. The networks
are trained using Adam optimizer [24] with b1 = 0.5 and b2
= 0.999. Source code will be made public.

5.2. Evaluation metrics

We use Fréchet Inception Distance (FID) [15] as the
evaluation metric to measure the quality of the gener-
ated videos. FID metric is the squared Wasserstein dis-
tance between two multidimensional Normal distributions
(N (µ,Σ)). In the case of video data, the feature embed-
ding of generated and real video samples are calculated us-
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Method MMNIST WZM MUG UCF101
FID ↓ FID ↓ FID ↓ FID ↓ IS ↑

VGAN [41] - 158.1 160.7 115.1 2.94
TGAN [30] - 99.8 97.1 110.5 2.74
MoCoGAN [39] 44.1 92.2 87.1 104.1 3.06
G3AN [42] 16.1 86.0 67.1 86.7 3.62
V3GAN [22] 59.9 62.6 53.5 80.2 3.88
Baseline 31.3 63.0 MC 94.6 3.24
RV-GAN (Ours) 14.8 57.3 23.3 82.3 3.76

Table 1. Quantitative Comparison of our method with SOTA meth-
ods using FID (lower the better) on Moving-MNIST, Weizmann,
MUG and UCF101 datasets. MC represents the mode collapse.

ing pretrained 3D-CNN network [14] and then the distribu-
tions are calculated by fitting a multivariate Gaussian on the
feature embedding. The FID metric is then computed as :
FID = |µr − µg|2 + tr(Σr +Σg − 2(ΣrΣg)

1/2) where µr

and Σr correspond to the mean and covariance matrix of the
real distribution and similarly µg and Σg correspond to the
mean and covariance of the generated distribution. Lower
values of FID metric correspond to better quality of the gen-
erated videos.

We also report Fréchet Video Distance (FVD) [40]
metric to compare our method with the recently proposed
self-supervised video GAN [18]. FVD uses similar set-
tings as FID except for the 3D-CNN architecture. FVD
uses the I3D [4] model for embedding whereas FID uses the
Resnext101 [14] model pretrained on Kinetics dataset. [21].

For UCF101 dataset, we also report Inception score
(IS). [32]. IS is the KL divergence between class
conditional probability distribution (p(y|x)) and marginal
(p(y)) probability distribution which can be calculated as:
IS(G) = exp(Ex∼G(KL[p(y|x)||p(y)])). High values of
IS indicate better diversity and quality of the generated sam-
ples.

5.3. Quantitative Evaluation

We compare our method with state-of-the-art methods
[22, 25, 30, 39, 41] and the proposed baseline in section
4.1 using FID metric. Quantitative comparison of the four
datasets is reported in Table 1. To compute the FID value,
we have generated 5000 samples using the trained model. It
can be seen that our method RV-GAN outperforms almost
all other methods except V3GAN on UCF101. This might
be because V3GAN generates background of the frame sep-
arately which is same throughout the video, which helps in
enhancement of the metric. The high IS values obtained
on UCF101 dataset implies that the generated samples are
diverse and realistic. Table 1 indicates that our model is
able to learn the spatio-temporal correlation well. RV-GAN
also outperforms the baseline, suggesting that inclusion of

Weizmann MUG UCF101
FVD↓ FVD↓ FVD↓

MoCoGAN [39] 194.34 102.2 869.41
G3AN [42] 117.69 89.73 687.67
SVGAN [18] 105.51 67.62 643.55
Ours 91.49 49.2 623.90

Table 2. Comparison of the performance of our method with
SOTA methods using FVD metric.

Architecture WZM MUG UCF101
FID ↓ FID ↓ FID ↓

3 - Layer 63.64 25.70 101.1
4 - Layer 61.08 24.78 88.7

5 - Layer (Ours) 57.32 23.31 82.3

Table 3. Ablation with Number of TC-LSTM Layers in generator.

transpose convolution inside the LSTM allows for improved
visual quality and temporal consistency. We note that for
Moving MNIST dataset, the FID values of V3GAN is the
highest. This is because, for such fine digits moving inde-
pendently in different directions, the network fails to learn
foreground-background decomposition. MoCoGAN per-
forms poorly on Moving MNIST. This suggests that the de-
composition of video or latent space need not always result
in reduced complexity of the task. Recently, self-supervised
video GAN (SVGAN) [18] uses FVD for evaluation, hence
we also compare our model with MoCoGAN, G3AN and
SVGAN in Table 2 using FVD metric. It can be seen that
our method consistently achieves the lowest FVD. This fur-
ther confirms that RV-GAN is able to learn training data
distribution.

5.4. Qualitative Results

We show a few samples of the generated videos on
moving MNIST, Weizmann, UCF101 and MUG datasets
for qualitative comparison with state-of-the-art methods in
Figure 3. The generated samples by MoCoGAN, G3AN,
V3GAN and RV-GAN are shown in the first, second, third
and fourth rows respectively. We observe that our model
is able to maintain temporal coherency for moving MNIST
data better than other methods. On Weizmann dataset, RV-
GAN is able to generate diverse videos. For instance, out
of 5000 generated samples, jumping jack action was rarely
found in the case of G3AN whereas our model generates
sufficient number of jack action videos. For the MUG
dataset, our model is able to generate realistic samples that
capture the expressions well and generate good facial fea-
tures. For UCF dataset, background is well modeled and the
results are better than those of other methods. As Weizmann
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Figure 4. Comparison with SOTA models for longer Sequence generation on Weizmann and MUG dataset: Each row represents a
video sequence generated by MoCoGAN (top), G3AN (middle) and Ours (bottom) respectively. Each of the model is trained on 16 frames
and is used to generate 32 frames at the time of inference. Alternate frames are chosen for the purpose of visualization.

dataset consists of less number of videos, we perform linear
interpolation similar to [31] to verify whether the network
is memorizing the dataset. Qualitative results for this are
available in supplementary material (SM). It can be seen
that there is a smooth transition in generated videos with
change in input noise. Thus, we can conclude that the net-
work is not memorizing the dataset.

5.5. Ablation Study

Ablation of Architecture: We perform two ablation
studies to assess the impact of each component of the pro-
posed RV-GAN. Since there are no recurrent GANs for the
task of unconditional video generation (to the best of our
knowledge), we build a simple and reasonable baseline as
specified in section 4.1. We use the same architecture as that
of ours, Figure 2, but replace each TC-LSTM with a com-
bination of ConvLSTM [47] and transpose convolutional
layer in the generator as shown in Figure 1. The discrim-
inator remains the same. This baseline emphasizes the need
and significance of the proposed TC-LSTM.

Apart from this baseline, we also use the upsampling
layer (using bilinear interpolation) after ConvLSTM layer,
but this configuration proved to be unstable leading to mode
collapse for all datasets. However, we did not come across
mode collapse for TC-LSTM which shows that our model is
stable. Results in Table 1 suggest that TC-LSTM have con-
tributed to the improvement in the quality of the generated
videos.

Study the number of layers: We further test the effect
of the number of TC-LSTM layers using three variants as
shown in Table 3. The three-layer variant contains three

TC-LSTM layers with 512, 256 and 128 channels in hid-
den states, respectively. The four-layer variant has four TC-
LSTM layers with 512, 256, 128 and 64 channels in hid-
den states, respectively, with a kernel size of 4x4. It can be
seen from the Table 3 that our method consistently outper-
forms the present state-of-the-art methods even with a lesser
number of layers. This also proves that our model is stable
and maintains the quality of generated videos with a lower
number of parameters. As expected, the performance of the
network improves when more layers are used.

5.6. Longer Sequence Generation

One of the advantages of using a recurrent generator over
3D-CNN is that we can synthesize a longer sequence dur-
ing inference time. This is useful when we have limited
computational resources for training. Thus, we analyze the
performance of our method for the generation of longer
video sequences, both quantitatively in table 4 and qualita-
tively in figure 4. We used the model trained on sequences
of 16 frames to generate videos for 24 and 32 time steps.
We further compare it with MoCoGAN which uses the re-
current component to generate the motion noise vector and
G3AN [42] which is a fully convolutional GAN. In MoCo-
GAN and G3AN a consistent discontinuity pattern is ob-
served around 15th to 17th frame on Weizmann as well as
MUG datasets (see rows 1,3 and 2,4 in Figure 4). However,
we did not encounter such a pattern for our model. This
shows that using a recurrent network for modelling motion
only in latent space is not sufficient. More results for longer
videos are available in SM.
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5.7. Applications to Conditional Video Generation

We show that our recurrent model can easily be extended
to other conditional video generation tasks. In particular, we
trained a slightly modified version of RV-GAN for video
generation conditioned on class label (also referred to as
class conditional video generation) and text-to-video gener-
ation as described below. For both of these tasks, the exper-
iments are performed on Weizmann Action dataset.

Class Conditional Video Generation : The task is to
take a class label and random noise vector as input and gen-
erate a fake video which corresponds to the given class la-
bel. We concatenate one hot vector embedding of action la-
bel with input noise along the channel dimension and pass
it through the generator. To condition both image and video
discriminator, a repetition of one hot vector is concatenated
as the fourth channel (after 3 RGB channels) in each frame
of the video. The results can be visualized in Figure 5.

Text to Video Generation: Here, the conditioning fac-
tor for video generation is a caption (text). Since the text de-
scription of a video belongs to an entirely different modal-
ity, hence it is crucial to have sufficient number of data
mapping from text to video. Text gives marginal informa-
tion to create a video, which makes it a challenging prob-
lem. We chose to use an encoder-decoder model for this
task. Pre-trained skip-thought [26] embedding is used to
encode the caption and RV-GAN generator is used as a de-
coder. We choose five action categories of Weizmann ac-
tion dataset namely: running, walking, side-walking, skip-
ping and jumping because these classes have maximal mo-
tion along with an associated direction of movement. Some
of the generated examples are shown in Figure 6. We can

eli is skipping from left to right

eli is skipping from right to left

ido is jumping from left to right

ido is running from left to right

Figure 6. Text-to-video generation on Weizmann dataset. The
caption used as input is shown on top of the video sequence. We
observe that our model is able to learn the action and direction
information correctly (first and second row). It also able to learn
the appearance of the person corresponding to the input name.

Method WZM MUG
24 fr
FID ↓

32 fr
FID↓

24 fr
FID↓

32 fr
FID↓

G3AN [42] 97.89 118.84 39.64 39.62
MoCoGAN [39] 101.05 103.25 39.94 41.26
Ours 72.53 77.07 29.80 37.81

Table 4. Quantitative comparison with SOTA methods for longer
video generation at inference time. fr represents frame.

notice that the results are semantically correct but there is
scope of improvement in the quality of the video which is
hindered due to unavailability of the large size dataset.

6. Conclusion

In this work, we present a novel recurrent framework for
video synthesis. We extend ConvLSTM to build our novel
TC-LSTM. Ablation analysis confirms that TC-LSTM is a
stable LSTM unit for building complex generative architec-
tures for spatio-temporal data. By incorporating a hybrid
generator-discriminator architecture with adversarial learn-
ing, our framework is able to achieve results superior to the
state-of-the-art methods on benchmark datasets. We believe
that our work will open avenues for exploring even better re-
current architectures for the unconditional video generation
task.
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