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Figure 1. We propose a method that, given an input 3D scene (left), uses a learnt material similarity measure to automatically match scene
materials to similar materials from a dataset and produce multiple high-quality scene variations (three variants shown on the right).

Abstract

We present a method for augmenting photo-realistic 3D
scene assets by automatically recognizing, matching, and
swapping their materials. Our method proposes a material
matching pipeline for the efficient replacement of unknown
materials with perceptually similar PBR materials from a
database, enabling the quick creation of many variations of
a given 3D synthetic scene. At the heart of this method is a
novel material similarity feature that is learnt, in conjunc-
tion with optimal lighting conditions, by fine-tuning a deep
neural network on a material classification task using our
proposed dataset. Our evaluation demonstrates that light-
ing optimization improves CNN-based texture feature ex-
traction methods and better estimates material properties.
We conduct a series of experiments showing our method’s
ability to augment photo-realistic indoor scenes using both
standard and procedurally generated PBR materials.

1. Introduction

Synthetic data is key for training computer vision al-
gorithms that require very large labeled datasets of photo-
realistic image content. Unlike real-world data, synthetic
data can easily be annotated with detailed labels of content
such as semantics, geometry, appearance, pose and light-
ing, and can be used for supervised training tasks. Creating
these synthetic datasets, however, can be time-consuming

and requires a significant amount of manual input from hu-
man artists, or the adoption of cost-intensive generative ap-
proaches that struggle with adapting to unfamiliar types of
scenes or subject matter. Moreover, training deep networks
on this data so that they generalize well to test data requires
augmenting this synthetic data to generate as many plausi-
ble variations as possible [33].

This work aims to leverage, extend and improve exist-
ing synthetic 3D scene datasets by automatically replacing
high-quality synthetic scene materials with similar (stan-
dard or procedural) materials from a database. Our method
generates perceptually plausible scene variants, as shown in
Fig. 1, which can significantly increase the size and variety
of synthetic datasets. As an extension, procedural textures
allow us to generate additional scene variants quickly and
at little cost. Furthermore, this method is adaptable to any
textured input scene and does not require additional infor-
mation about the scene or the original scene materials.

Finding suitable matching materials requires establish-
ing a material similarity metric. In order to identify good
candidate material replacements, we propose a learning-
based feature extraction method for PBR materials compris-
ing of albedo, height, normal, metallic, roughness, opacity,
and ambient occlusion maps. This method involves plac-
ing each texture onto a sphere, rendering images of the
sphere, and extracting deep features (in our case, by using
a fine-tuned VGG-16 network [29]) from them. An impor-
tant design choice in this framework is the lighting that the
spheres are rendered in. We simultaneously optimize for
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the optimal lighting along with the feature extractor for the
material classification task. We do so by using one-light-
at-a-time (OLAT) renderings and estimating their optimal
weights when constructing the final image.

For each material in a given 3D scene, we extract fea-
tures and use them to find similar materials in a database.
We also account for material scale in this matching process.
Finally, we replace the input scene materials with the found
scene materials to generate variations like the ones shown
in Fig. 1. As can be seen here, our method creates a wide
diversity of scene appearance that is visually plausible be-
cause of our material similarity metric.

We summarize our contributions as:
• A material matching pipeline, allowing the perceptu-

ally plausible swapping of textures;
• A differentiable OLAT-based image merging process,

enabling the optimization of lighting conditions to im-
prove ease of discrimination of materials;

• A dataset of materials annotated with classes.

2. Related Work

Texture Features and Similarity Estimation Texture
analysis is key for many computer vision-related tasks, such
as scene understanding, image annotation, and object recog-
nition [37]. Earlier work has studied methods for retriev-
ing meaningful low-dimensional embeddings from textures
[4, 20]. Neural networks have shown impressive capabil-
ities to estimate human perception of appearance and tex-
ture [39]. Our method relies on such embeddings to iden-
tify candidate material replacements for input scenes. Ex-
tensive research has explored the use of convolutional neu-
ral networks for texture feature extraction and classification
[28, 31]. CNN features have also been used for material es-
timation [10, 26]. These methods typically extract features
from input images using a pre-trained neural network, and
compute a distance on the resulting features. We adopt this
approach in our work, using a VGG-16 architecture [29] to
extract features from renders of textured spheres.

Texture classification is typically performed on pho-
tographs captured in the wild [36], rather than PBR materi-
als represented by multiple parameter maps. When working
with photographs of textures, one has to make the learned
features robust to variations in illumination, environment,
scale, viewpoint, contrast, and color temperature. We avoid
many of these complications by rendering our materials
onto a sphere under a consistent viewpoint and lighting en-
vironment. In fact, we explicitly optimize the lighting envi-
ronment for our renderings to the most discriminative light-
ing conditions for material classification.

Material Similarity Measures Previous work has at-
tempted to model human perception of materials via crowd-

sourced material attribute labeling [18, 19, 24, 35]. A num-
ber of studies have also focused on the perception of indi-
vidual aspects of a material such as gloss [22] or translu-
cency [8]. Most of these previous methods focus on homo-
geneous BRDFs, i.e., they do not model spatially-varying
material appearance. In our work, we aim to extract fea-
tures that combine the effects of all the attributes of a given
spatially-varying material by acquiring images of the mate-
rial under the most discriminative possible lighting condi-
tions.

To compare materials, prior work typically render mate-
rials on specific shapes under specific lighting conditions.
The choice of lighting is extremely important; for exam-
ple, human viewers might rely on the presence of specular
highlights to distinguish between shiny and matte materials,
and the proper lighting conditions will make this an easier
task. Fleming et al. [7] study the importance of illumination
and environment for human material matching tasks. They
found that, when answering texture understanding ques-
tions, humans relied on their stored assumptions about the
world; that is, subjects performed better at estimating sur-
face reflectance properties when the objects they were ob-
serving were under realistic illumination conditions.

Havran et al. [11] propose to optimize both lighting and
3D shape to ensure the best possible sampling of the BRDF.
In contrast, we optimize the lighting to directly aid material
classification. Lagunas et al. [18] propose a perceptual sim-
ilarity metric for point-wise BRDFs. They do so by render-
ing objects under a specific environment illumination, col-
lecting crowd-sourced perceptual similarity measurements
and training a deep model to predict features that correlate
with human perception. Serrano et al. [25] extend this work
to analyze material perception under a set of nine lighting
conditions and also focus on specific perceptual attributes of
materials. While our goal is similar, we differ in a number
of ways: we seek a material similarity metric for spatially-
varying BRDFs, train our deep features on the material clas-
sification task (without any perceptual labels) and explicitly
optimize for a lighting condition that improves the discrim-
inative power of our extracted features.

Inspired by Xu et al. [38], we develop a procedure to
find the optimal lighting conditions for learning a perfor-
mant material similarity metric for material swapping. Our
approach relies on OLAT rendering, where images of a sub-
ject are captured with a single point light. Prior work also
uses OLAT rendering to estimate the reflectance field of a
subject [12] and to re-light portraits [30].

Data Augmentation Data augmentation is a concept
widely used to improve model robustness and generalizabil-
ity to real-world applications [27]. For example, the simple
process of horizontally flipping training images can lead to
differences in a model’s performance [17]. In the past, data-
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augmentation has been used for a variety of applications,
including as a safeguard against overfitting during image
classification [23] and to regularize generative models [15].

Prior work has used various techniques for augment-
ing synthetic 3D scenes before rendering them into images.
One approach is mixed sample augmentation, which con-
sists of taking an existing 3D dataset and generating mix-
tures of individual samples from this dataset [9, 13]. For
instance, this can be achieved by directly taking the union
of the actual 3D mesh of different scenes in the dataset [21].
The analysis in this prior work demonstrates the merits of
increasing the size and variety of 3D scene datasets for
scene understanding tasks. However, this approach is com-
putationally expensive, requires careful tailoring of mixing
proportions based on scene context, and does not guarantee
that the generated scenes are always plausible.

Simply augmenting scene renders via the randomiza-
tion of color, lighting, and texture has also been shown
to help deep learning models generalize from performing
well on synthetic data to performing well on real-world
data [32]. For example, neural style transfer for data aug-
mentation [14] transforms the entire style of original im-
age data to produce style variants of the same scene. While
this approach maintains the consistency of the style of ob-
jects within each scene, it affects the global style of result-
ing scene images. In our work, we instead augment scene
materials individually, allowing us to maintain consistency
between all other aspects of the scene renders in our dataset,
such as illumination, style, and post-processing.

3. Material Similarity Measure
We are interested in measuring material similarity be-

tween materials that can be applied to 3D assets. A natural
choice for this task is neural networks, notably VGG [29],
which was demonstrated to be particularly effective at ex-
tracting information from texture. Our insight is to fine-
tune a pre-trained VGG-16 on a material similarity task, for
which we can create annotations. We want to evaluate the
similarity of the materials’ appearance when rendered in a
3D scene that requires specific lighting. To maximize how
distinguishable the materials are under various lighting con-
ditions, we devise an end-to-end lighting optimization.

In the following, we detail the network we use for feature
extraction, our lighting optimization process, and an evalu-
ation of the material matching we obtain using our method.

3.1. Network

Feature Extraction To extract feature vectors—or
embeddings—from the material, we start from a pre-
trained VGG-16 fθ to process the material renders Rw,
which is forwarded through the neural network as

ŷfc = fθ (Rw) , (1)

Figure 2. Our lighting optimization and material feature extraction
scheme. Input EXR files are rendered out, and then a Conv2D
layer combines them into one linear sum. This is tone-mapped into
a PNG style input for a VGG, and 4096-dim features are extracted
from the penultimate layer.

where ŷfc ∈ R4096 is the feature vector output by the penul-
timate layer of VGG-16.

Fine-tuning To improve the fitness of the extracted fea-
ture vectors ŷfc to our task, we fine-tune the last three layers
of the model on a texture classification task. We use a linear
layer from 4096-dim to 8-dim to obtain the material class
output ŷc ∈ R8. We fine-tune the whole network using the
loss

Lc = ℓnll (yc, ŷc) , (2)

where yc is the ground truth class of the texture and ℓnll
is the negative log-likelihood function. We train the neural
network f starting from the pre-trained weights θ to obtain
our fine-tuned classifier fθ∗ ,

θ∗ = argmin
θ

Lc . (3)

3.2. Lighting Optimization

We are interested in matching the appearance of tex-
tures under any lighting condition. To this end, we adopt
the following pipeline, as summarized in Fig. 2. First, we
render 43 images R = {R1, . . . , R43} from a material us-
ing Blender with the Cycles renderer [6]. The setup of our
scene consists of a sphere, a background image, and 42 di-
rectional lights that point at the sphere, corresponding to 42
of our renders. The lights are evenly spaced and equidistant
from the material sphere, located at the vertices of an 42-
vertex subdivided icosahedron. In addition to these direc-
tional light renders, we also render a single image with uni-
form diffuse lighting; this constitutes our 43rd render R43.

We apply the input texture onto the sphere and then turn
the directional lights on one at a time to render a 224x224
linear unsaturated HDR image using the OpenEXR format.
This process produces a series of renders of the textured
sphere under single isolated directional lighting conditions,
as can be seen in Fig. 3.
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Figure 3. A sample of OLAT renders of a concrete material with
ambient light (top left) and directional lights.
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Figure 4. Results of the lighting optimization. We place a light on
each vertex of a 42-vertex subdivided icosahedron and optimize
the light intensity for material classification. The ambient term
(background circle) is the strongest, and the weights sums to 1.

These 43 renders cover the spectrum of appearance of
the material well. However, we realize that not all light-
ing directions convey the same information, and many are
redundant. Therefore, we linearly combine all the renders
and optimize their weights w = {w1, . . . , w43} to increase
how distinguishable the material properties are. Inspired
by [38], we perform this optimization jointly with the fine-
tuning of eq. (3). This end-to-end optimization provides our
render weights w as the parameters of the first layer of the
network.

Our optimized weights w are shown in Fig. 4, where the
ambient lighting R43 dominates with few strong directional
lights from the sides. We apply our lighting scheme to a set

Figure 5. Visualization of the optimal lighting chosen by the net-
work on grayscale renders of materials from each category. The
network consistently created strong lights around the edge of the
object, and favored a stronger asymmetrical light on one side of
the object.

of renders R using

Rw = T

(
43∑
i=1

wiRi

)
, (4)

where T is the tone-mapping operator to convert from linear
to sRGB space [5].

3.3. Dataset

To train and evaluate our method, we downloaded 750
publicly available PBR materials from three different on-
line sources [1–3]. We chose the following eight classes as
they are particularly relevant to indoor scenes: bricks,
concrete, fabric, ground, leather, marble,
metal, wood (categories assigned by the authors).

We apply the above feature extraction process to each
material in this dataset. Note that, although extracting tex-
ture features for the whole database is time-consuming and
can take around one hour for 1000 textures on our GPU,
this only needs to be done once; after this, we can use our
database of candidate replacement texture features for any
new input scene. We can compute the feature vector em-
bedding yfc of a new unknown material and perform a near-
est neighbor search in our database to retrieve the closest
matches, a process which we will discuss in the next sec-
tion.

3.4. Implementation Details

We implement our network using PyTorch. For the light-
ing optimization, the first depth-wise 2D convolution in the
network has 43 in channels (corresponding to the 43 OLAT
renders for each texture, see Fig. 4) and one out channel,
1x1 kernel, stride 1 and padding 0 for OLAT image com-
bination. Using the ADAM optimizer [16] with an initial
learning rate of 1×10−4, we train the model for 30 epochs,
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Input Lighting Accuracy (%)
Color, no finetuning uniform 66.47 ±0.49
Grayscale uniform 80.32 ±0.46
Grayscale (ours) optimized 84.91 ±0.62
Color uniform 88.01 ±0.47
Color (ours) optimized 90.31 ±0.74

Table 1. Ablation study showing the performance of our model in
material classification with and without OLAT lighting optimiza-
tion. Our method significantly outperforms vanilla VGG (top) and
consistently improves with optimized lighting.

(a) without optimized lighting (b) with optimized lighting

Figure 6. t-SNE plots for metal and ground without and with
OLAT optimization. The features produced for metal and ground
are more clearly separated when we optimize for lighting.

which took around 8 hours on a NVIDIA Tesla K80. We
automate the process of Blender scene texture extraction,
matching and replacement by utilizing Blender’s scripting
functionalities.

3.5. Evaluation

Texture Classification Accuracy We now perform a se-
ries of experiments to assess the capacity of our network to
produce distinguishable features representative of the mate-
rial and its properties.

First, we compare the performance of our classifier with
and without fine-tuning the lighting conditions of our ren-
ders in Table 1. We use a train/train split of 60/40 on our
standard dataset of 750 textures (Section 3.3). The baseline
without fine-tuning directly uses the feature vectors from
a vanilla VGG-16. For uniform lighting, we train and test
on rendered material spheres with uniform diffuse lighting.
For the optimized lighting, we allow the network to adjust
the weights of the OLAT renders to arrive at the optimal
non-uniform lighting distribution, as described in Section
3.2. We also experiment using grayscale and color renders
as inputs to the network. We repeat each training five times
and report in the table the averages and max-min ranges of
our resulting accuracy.

We also save the final weights of the conv2D layer on

Figure 7. Our novel material replacement pipeline. Maps are ex-
tracted from an input scene materials and source candidate ma-
terials, and candidate matches are identified and inserted into the
original scene.

the OLAT renders from these experiments. These are the
lighting weights that enabled the VGG to classify textures
from our dataset with the highest accuracy. Example ren-
ders lit by this weighted lighting is visualized in Fig. 5. The
lighting appears to reveal strong specular highlights on the
edges of shiny materials, and is stronger on one side of the
sphere than on the other—rather than being incident from
the same direction as the camera—which also emphasizes
the impact of normal maps, height maps and bump maps on
rougher materials.

t-SNE plots Using our network, we extracted the 4096-
dim features ŷfc from our test set and studied these features.
We used t-SNE [34] to reduce the dimensionality down to 2
dimensions and visualize the separation between features
of different materials. In Fig. 6, we compare the t-SNE
plots of the network with and without lighting optimiza-
tion for the categories metal and ground. We compare
these categories as textures in the metal category are typi-
cally shiny, and those in ground are typically matte, so we
hypothesize that specular highlights as emphasized by our
optimized lighting should be important for differentiating
between these material categories. We find that lighting op-
timization more clearly differentiate and disentangle metal
and ground materials from each other, as fewer points are
overlapping and result in better defined clusters.

4. Material Swapping for 3D Scenes

We now employ the material similarity measure we de-
vised in Section 3 to replace materials in existing 3D scenes.
A summary of our replacement pipeline is shown in Fig. 7.

We seek to find top candidate replacements in our
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Figure 8. Our pipeline chooses to leave original materials in the
scene if it cannot find a suitable replacement. The three images
above are the albedo maps of materials our pipeline ignored.

datasets for each original scene material in an input scene.
We first compute the feature vectors as described in Sec-
tion 3.1 for all the materials in our datasets and save them
in a feature vector database. For a given input 3D scene,
we perform the same feature extraction for the material of
one of its assets. We use the cosine similarity between this
material and all the materials from the database to retrieve
the closest feature vectors from the database. We then swap
this material in the 3D scene with the retrieved material. We
can repeat this process for all the assets present in the scene.

Filtering Poor Matches Some 3D assets have their ge-
ometry and texture tightly coupled. This includes highly
structured surfaces containing written text or where partic-
ular texture coordinates map to a specific location in 3D.
Replacing these materials would be detrimental to the scene
semantics. As such, we automatically detect and filter such
materials for which we cannot find a suitable match in our
database.

To ensure that we only replace materials with a good
plausible candidate, we use a threshold on the cosine sim-
ilarity when performing material replacement. We empir-
ically found that a threshold of 0.28 provides a good bal-
ance to achieve plausible yet diverse material replacement.
Therefore, we leave all materials as-is in the 3D scene if
their closest match is larger than this value. Examples of
materials filtered by our method are shown in Fig. 8.

Scaling We do not assume any prior information or con-
sistency in the scale and UV mapping of materials in the
source data. Inconsistent scales and resolutions for the orig-
inal material maps can cause replacement textures to have
implausible scales. For example, the wood grain on a table
may end up becoming significantly enlarged during replace-
ment. To identify the best scale to use for each material
match, we render ten different tiled variants of each texture
in our dataset. First, we find the closest texture match for
an input texture. Then we run our model on the scaled vari-
ants of this texture match, and then choose the scaled variant
with the closest embedding to the input texture’s embedding

Figure 9. Before (top) and after (top) effects of learning material
scale. The wood grain on the ground and the pattern on the carpet
material in the top image are too large. Scaling fixes most of these
issues.

rather than just using the default texture scale, as shown in
Fig. 9.

4.1. Evaluation

Procedural Materials Dataset We evaluate our scene
material replacement method using the publicly available
Adobe Substance Source and Share PBR datasets [1].1

These procedural materials have the advantage of being
parametric: each material expose several parameters to the
user which alter its appearance. This allows the generation
of a large corpus of appearances with little effort. From
the 400 procedural materials, we take advantage of those
parameters to obtain 4,000 texture maps. We employ this
commercial dataset only to evaluate and showcase the flex-
ibility of our method; it is not needed to reproduce our fea-
ture extraction method.

Similarity Measure We use the cosine distance between
extracted feature vectors to assess the similarity between
materials. We retrieve the top five closest substances for
each original material based on our similarity measure, and
use these as the candidate replacement set for each material.
For example, Fig. 10 shows the results of using cosine dif-
ferences to obtain candidate replacements from the Adobe
Substance Source dataset on three different input textures.

Qualitative Scene Assessment We report the results of
our pipeline tested on several 3D scenes from Evermo-

1https://substance3d.adobe.com/assets/
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Figure 10. Albedo maps of input materials (left column) and their
closest matches obtained by our VGG-based material matching
model.

Figure 11. Input scene from Evermotion (left) and results from our
pipeline (right).

Figure 12. Comparison between random material assignment and
similarity-based material assignments on an input scene of an of-
fice space. Our method produces more plausible and aesthetically
pleasing variations.

tion,2 which comprises of photo-realistic synthetic scenes

2https://evermotion.org/, specifically several scenes from
ArchInteriors Vol. 33.

of rooms and buildings.
We achieve promising qualitative results by running

sample scenes through our material swapping pipeline, and
rendering these results. Fig. 10 presents sample material
matches directly to illustrate the results of our material
matching model. For each input scene, we used the top
material matches and default generative parameters to in-
spect the scenes side-by-side. For example, in Fig. 11, our
pipeline successfully replaced the transparent window ma-
terial with another transparent glass material, and all of the
material replacements appear to be qualitatively plausible.

In Fig. 12, we can see that our method is qualitatively
more successful than randomly replacing the materials in
a given scene. In the randomly replaced version, there is
an out-of-scale floor, a shutter wall, a pink concrete desk
and a gravel texture on the double bass. In our version, we
have successfully scaled the varnished floor texture. The
candidate replacements all appropriately match the objects
in the scene, such as a wooden texture replacement that was
chosen for the double-bass and desk.

We also generated a number of scene variants for our
test scenes. We used the top three matches for each mate-
rial, and for each of these matches we created three variants
by automatically modifying generative substance material
parameters as can be seen in Fig. 13.

Impact of Lighting Optimization We tested our scene
augmentation pipeline with and without our lighting opti-
mization. That is, in one case we use texture features ob-
tained with the optimal lighting described in Section 3.2,
and in the other case we use texture features obtained with
uniform lighting. An example of this can be seen in Fig. 14.
In this case, an orange wood on the wall of an office space
was replaced by an orange metal when we did not used op-
timized lighting for feature extraction, and was replaced by
cherry wood when we did use optimized lighting for fea-
ture extraction. While the appearance of the metal wall and
cherry wood walls differ greatly under the lighting condi-
tions of the scene, the colors of these two materials alone
appear similar as can be seen in their albedo maps at the
bottom of Fig. 14.

5. Conclusion
We present a novel data-augmentation pipeline that can

create a large number of variants of a synthetic scene. Our
central idea is to automatically replace the materials in the
scene with alternate similar materials to quickly and easily
create many plausible scene variations. We identify a quali-
tatively successful means of finding close matches between
the features of source and candidate materials for replace-
ment. Furthermore, we used OLAT renderings to identify
the most discriminative lighting conditions to use to render
a material, allowing us to encode as much information as
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Figure 13. Pipeline-generated variants on a single input scene. Each set of variants (1, 2, 3) and (4, 5, 6) each represent three procedurally
generated variants of one set of procedural material replacements.

Figure 14. Original scene (top), replacements achieved without
lighting optimization (left) and replacements achieved with light-
ing optimization (right). Wood was replaced by a metal texture
when lighting optimization was not used (bottom left) and a cherry
wood grain when lighting optimization was used (bottom right).

possible about a material in a single merged render before
extracting its features.

Despite the success of our method, it can only be ap-
plied to textures with low or no structure. In particular, tex-
tures strongly coupled with geometry through UV-mapping

or very structured textures such as text fonts cannot be used
with our technique. An interesting extension to our work
would be to focus on replacing parts of textures, alleviating
this limitation. As future work, we would like to explore
the use of optimized lighting in tandem with a constrastive
learning framework to extend our model beyond our eight
material classes. Furthermore, we hope to test the effective-
ness of synthetic datasets created by our method for training
on downstream tasks such as depth estimation or intrinsic
decomposition.

We hope that our method can pave the way for large-
scale synthetic dataset creation and help bridge the domain
gap for methods that train on synthetic data.
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