
Autoencoders - A Comparative Analysis in the Realm of Anomaly Detection

Sarah Schneider1,2

sarah.schneider@ait.ac.at

Doris Antensteiner1

doris.antensteiner@ait.ac.at

Daniel Soukup1

daniel.soukup@ait.ac.at

Matthias Scheutz2

matthias.scheutz@tufts.edu

1Center for Vision, Automation and Control, Austrian Institute of Technology
Vienna, Austria

2Human-Robot Interaction Lab, Tufts University
Medford, MA, USA

Abstract

We applied convolutional versions of a “standard” au-
toencoder (CAE), a variational autoencoder (VAE) and an
adversarial autoencoder (AAE) to two different publicly
available datasets and compared their anomaly detection
performances. We used the MNIST dataset [14] as a sim-
ple anomaly detection scenario. The CIFAR10 dataset [13]
was used to examine the autoencoders in a more complex
anomaly detection task. The anomaly detection perfor-
mance of our different autoencoder types is compared in
a qualitative and quantitative manner. The time needed for
training the models is measured to capture their complex-
ity. The simplest model demanding the simplest training,
the CAE, computes results which are nearly as accurate and
for some cases even better than results achieved by the VAE
and AAE. We show that all three autoencoder types com-
puted convincing anomaly detection results for the more
simple-structured MNIST scenario. However, none of the
autoencoder types proved to capture a good representa-
tion of the relevant features of the more complex CIFAR10
dataset, leading to moderately good anomaly detection per-
formances.

1. Introduction

An anomaly deviates from what is regarded as normal or
usual. Anomalies appear with great diversity, therefore their
detection represents a complex problem [18]. The detection
of defects in industrial settings [22], fraud detection in bank
transfer processes [6], the localization of diseased tissue in
medical imaging [8] and many other problems can be for-

mulated as an anomaly detection framework, thus the detec-
tion of anomalies is also highly relevant. Autoencoders [20]
can be used to detect anomalous samples. The autoencoder
(AE) model consists of an encoder and a decoder. The en-
coder encodes data to a compressed latent representation.
The decoder decodes the latent representation back to the
original dimensions. The parameters of the AE are opti-
mized such that the computed output is as similar to the
input as possible.

Figure 1. Anomaly detection based on an AE. By training the
AE exclusively on images of a class defined as normal (digit 1), it
will learn the profile of this normal class and it will reconstruct its
images accurately. The reconstruction of an image belonging to
an anomalous class (digit 0, digit 2) deviates from the input image
as the mapping was learned from normal data.

By training the AE on normal samples, it will learn to re-
construct normal data accurately. As the profile of anoma-
lous data differs from the learned profile of normal data, the
trained AE model will compute a worse reconstruction for
anomalous samples. The reconstruction error can be used
as an indicator to distinguish normal from anomalous. The
reconstruction error computed for anomalies will be higher

1986

than the reconstruction error computed for normal samples.
The concept of autoencoders for detecting anomalies

was used in [21] in a medical context, namely on stained
histological images and chest X-rays. Autoencoders were
applied to discriminate schizophrenic from healthy individ-
uals in [23]. Autoencoders have also been used to detect
defects in industrial settings, e. g., [7] used autoencoders to
detect manufacturing defects on metal boxes and [17] ap-
plied the concept on images of defective rail surfaces.

We investigated the quality of anomaly detection results
of three convolutional versions of AEs - a “standard” au-
toenocoder (CAE) [9], a variational autoencoder (VAE) [12]
and an adversarial autoencoder (AAE) [15]. We used two
publicly available dataset, MNIST [14] and CIFAR10 [13].
Images of one class, e.g. class “1” for MNIST and class
“dog” for CIFAR10, were considered as normal. The im-
ages of all other classes were considered anomalous. The
reconstruction error was interpreted as an indicator to dis-
tinguish images of the normal class from images of the
anomalous classes. The results are compared based on the
area under curve of Receiver-Operator-Characteristic and
Precision-Recall curve as presented in [4] and [5].

Our experiments on AEs for anomaly detection show
that all convolutional autoencoders compute very good
results for MNIST. However, we could also observe that
the CIFAR10 dataset represents a far more challenging
task. The distinction between normal and anomalous class
samples was made only moderately accurate. To capture
the “cost-benefit ratio” of our different autoencoder types,
we evaluated the quality of their anomaly detection results
alongside with their measured training times.

Our contribution comprises:

• A thorough review and suggestions for improved de-
signs based on the given evidence,

• A quantitative and qualitative comparison of different
convolutional autoencoder types (CAE, VAE, AAE)
based on their ability to make a per-image “normal-
or-anomalous” decision,

• An analysis of the “cost-benefit ratio” for the different
AE types based on their training times and anomaly
detection quality.

2. Autoencoders for Anomaly Detection

An AE encodes an input sample x ∈ RC×H×W to a latent
representation z ∈ RCb×Hb×Wb (see Fig. 1). The latent rep-
resentation is then decoded back such that it is as similar to
the original input as possible. The dimensions of the latent
representation are usually chosen to be significantly smaller
than the dimensions of the input (“bottleneck”). This leads

to a compression of the data and the model is forced to focus
on the most relevant features.

If the AE is trained on images regarded as normal, it
will learn to compress and reconstruct these normal sam-
ples. The trained AE will then fail to reconstruct anoma-
lous data accurately since it uses the mapping learned from
normal images.

The reconstruction error R(x, x̃)∈RC×H×W is defined to
be the mean squared error (MSE, see Eq. 2), e.g. the aver-
aged squared pixel-wise difference of the network input x
and its reconstruction x̃ computed by the trained network.
A normal image sample leads to a lower reconstruction er-
ror than an anomalous image, hence R(x, x̃) is utilized to
distinguish normal from anomalous samples [2, 3, 16].

2.1. “Standard" Convolutional Autoencoder

A “standard” convolutional AE (CAE) is composed of
a convolutional encoder ECAE and a convolutional decoder
DCAE . The encoder compresses the input data x into a la-
tent representation z. The decoder decodes z back to input
dimensions.

x̃ = DCAE(ECAE(x)) = DCAE(z) (1)

The parameters of the CAE are optimized by minimizing
the mean squared error (MSE) function which is defined as
follows:

LMSE(x, x̃) =
1
H

1
W

H

∑
m=1

W

∑
n=1

(x(m,n)− x̃(m,n))2, (2)

where the scalar-filled matrices x(m,n) and x̃(m,n) denote
the intensity at the pixel locations (m,n) with m ∈ [1, ...,H]
and n∈ [1, ...,W] of image x and x̃, respectively [2,3,16,20].

2.2. Variational Autoencoder

The variational autoencoder (VAE, [12], [19]) is struc-
tured similarly to the CAE. It is composed of an encoder
EVAE and a decoder DVAE . The encoder encodes the input
to a lower dimensional latent representation, the decoder
decodes the latent representation back to input dimensions.
The VAE constrains the latent representation z of an input
x to be a random variable, distributed according to a prior
distribution pθ(z). Hence, the VAE not only compresses the
input to a latent representation, but encodes it as a distri-
bution over the latent space. The true posterior distribution
pθ(z|x) is intractable for a continuous latent space but it can
be approximated in a deterministic manner. The approxima-
tion qΦ(z|x) can be determined by applying the variational
interference technique. The underlying principle is to set
up a parametrised family of distributions and choosing the
distribution that gives the least approximation error. The
parameters of the VAE are optimized as follows:

L(θ,φ,x) =
EqΦ(z|x)[pθ(x|z)]−DKL(qΦ(z|x)||pθ(x)).

(3)

1987

The first term is equivalent to the loss function of the CAE
- it is the reconstruction error, measuring the reconstruc-
tion quality. The second term is the Kullback–Leibler di-
vergence. This loss term ensures that the latent distribu-
tion stays close to the prior distribution, i.e. it evaluates
how much information is lost if pθ(x) is approximated. If
it is assumed that the approximated posterior distribution
qΦ(z|x) is a Gaussian distribution, the reconstruction error
simplifies to the MSE loss (Eq. 2). When both prior approx-
imation pθ(z) and posterior approximations pΦ(z|x) are as-
sumed to be distributed according to a Gaussian distribu-
tion, the Kullback-Leibler divergence can be solved analyt-
ically as described by [12]. Variance σ and mean µ will be
determined according to Eq. 4. J is the number of elements
in the vectors σ and µ.

−DKL(qΦ(z|x)||pθ) =

1
2

J

∑
j=1

(1+ log((σ j)
2)− (µ j)

2 − (σ j)
2)

(4)

2.2.1 Re-parametrization Trick

The decoder samples from qΦ(z|x) randomly in order to
compute a latent vector z. However, backpropagation can
not flow through this random sampling operation. [12]
therefore propose the re-parametrization trick. The prob-
lematic random sampling operation is bypassed by describ-
ing z as a differentiable transformation through a function
g of another random variable denoted as ε. By assuming
qΦ(z|x) = N (z;µ,diag(σ2)) and re-parametrization with
ε ∼ N (0,I), the latent representation z can be computed
as follows:

z = µ+σ⊙ ε, (5)

where the scalars µ and log(σ) are determined previously by
the encoder network (Eq. 4) and ⊙ denotes the Hadamard
product.

2.3. Adversarial Autoencoder

The adversarial autoencoder (AAE) was proposed
in [15] and functions in a probabilistic manner. Similar
to the VAE, a prior distribution is imposed on the latent
representation z. The VAE applies the Kullback-Leibler
divergence in order to match the posterior of the latent
vector with a prior distribution. The AAE uses the concept
of Generative Adversarial Networks (GAN) [10].
Our AAE is composed of a convolutional encoder, a
convolutional decoder and an additional GAN component,
which regularizes the latent vector z. The components are
trained jointly in two phases.

During the reconstruction phase, the encoder EAAE
and decoder DAAE are trained exactly as the encoder
and decoder of a “standard” CAE. Their parameters are

optimized by minimizing the MSE loss (Eq. 2). The
components are forced to compute a reconstruction as
similar to the input as possible.

During the regularization phase, the encoder EAAE
operates as a generator for the adversarial network. The
encoder is trained to “fool” the discriminative adversarial
network CAAE “into thinking” that the latent code it
generated emerged from the true prior distribution. The
discriminative network CAAE is trained to determine if a la-
tent vector is “real” or “fake” by computing the Wasserstein
distance [1]. A “real” vector z originates from the “real”
training data distribution, a “fake” vector z̃ originates from
the “fake” distribution generated by EAAE . The Lipschitz
constraints are maintained by clipping weights to a fixed
box at each weight update [1, 15].

3. Comparison of Different Autoencoder Types
for Anomaly Detection

The architecture of the encoder and the decoder of the
CAE, the VAE and the AAE are implemented identically.
The bottleneck of the VAE consists of two innermost lay-
ers, one for the latent vector of standard deviations, one
for the latent vector of mean values. These values are then
reparametrized before being processed by the decoder of the
VAE. The architectures of the implemented networks are
explicitly given in 3.1.1. The convolutional kernels used for
feature extraction were of size 3 × 3. All AE types of iden-
tical architectures were trained in the exact same manner,
i.e. for the same number of epochs, with the same learning
rate and minibatch size for each set of experiments. The
Adam optimization algorithm [11] was used to optimize the
parameters of the AEs. Fig. 2 shows an illustration of the
similarities and differences between the different AEs.

Figure 2. Illustration of the different types of AEs used. The en-
coder and decoder of the AEs are implemented in an identical
manner, the computations of the latent vector in the bottleneck
layer vary.

3.1. Experiments on MNIST and CIFAR10

In order to investigate the autoencoders also on publicly
available datasets, we applied them on MNIST [14] and CI-
FAR10 [13]. For the MNIST dataset, we defined images of

1988

the class “1” to be normal. For CIFAR10, class “dog” was
considered as normal. Our three autoencoder models were
trained on the training subset of the normal class predefined
by [13] and [14]. All other classes were treated as anoma-
lies. The trained models were then applied to unseen images
of the normal class and images of all other classes. The re-
sulting reconstruction errors (see Eq. 2) were averaged and
thresholded in order to make a binary novel-or-non-novel
decision.

3.1.1 Network Architectures

In this section we show our self-designed autoencoder ar-
chitectures. We designed architectures for MNIST and CI-
FAR10 and evaluated them for all three autoencoder types
which are shown in Fig. 2. The encoder and decoder of
the CAE, VAE and AAE are identical. The type of autoen-
coder can be switched by changing the bottleneck layer ac-
cording to the network type (CAE , VAE , AAE). Tab. 1
shows encoder and decoder architecture used for the MNIST
dataset. The architecture of the encoder and decoder imple-
mented for the CIFAR10 dataset is shown in Tab. 2. Tab. 3
represents the network architecture of the bottlenecks of the
different autoencoder types used for both datasets. The ar-
chitecture of the discriminative network CAAE of the AAE
which was used for MNIST and CIFAR10 is given in Tab. 4.

Table 1. Encoder and decoder architecture used for MNIST.

Layer Resolution Channels Input Activ. func.

E
nc

od
er

conv1 W ×H/W ×H 1/16 Image Leaky ReLU

conv2 W
2 × H

2 / W
2 × H

2 16/32 conv1 Leaky ReLU

conv3 W
4 × H

4 / W
4 × H

4 32/64 conv2 Leaky ReLU

conv4 W
4 × H

4 / W
7 × H

7 64/64 conv3 Leaky ReLU

conv5 W
7 × H

7 / W
7 × H

7 64/16 conv4 Leaky ReLU

Bottleneck (CAE , VAE , AAE)

D
ec

od
er

deconv1 W
7 × H

7 /W
7 × H

7 16/64 lin4 (reshaped) Leaky ReLU

deconv2 W
7 × H

7 /W
4 × H

4 64/64 deconv1 Leaky ReLU

deconv3 W
4 × H

4 /W
2 × H

2 64/32 deconv2 Leaky ReLU

deconv4 W
2 × H

2 /W ×H 32/16 deconv3 Leaky ReLU

deconv5 W ×H /W ×H 16/1 deconv4 Sigmoid

3.1.2 Evaluation Metrics

The quality of the novel-or-non-novel decisions was exam-
ined by computing Receiver-Operator-Characteristic (ROC)
curves and Precision-Recall (PR) curves as described in [5].
Each data point of the curves corresponds to a threshold
value used for thresholding the reconstruction error. The
comparison of anomaly detection performances is based on
the area under curve (AUC) [5] for both the ROC and PR
curve.

Table 2. Encoder and decoder architecture used for CIFAR10.

Layer Resolution Channels Input Activ. func.

E
nc

od
er

conv1 W ×H/W ×H 3/8 Image Leaky ReLU

conv2 W
2 × H

2 / W
2 × H

2 8/16 conv1 Leaky ReLU

conv3 W
4 × H

4 / W
4 × H

4 16/32 conv2 Leaky ReLU

conv4 W
4 × H

4 / W
4 × H

4 32/16 conv3 Leaky ReLU

Bottleneck (CAE , VAE , AAE)

D
ec

od
er

deconv1 W
4 × H

4 /W
4 × H

4 32/32 lin4 Leaky ReLU

deconv2 W
4 × H

4 /W
2 × H

2 32/16 deconv1 Leaky ReLU

deconv3 W
2 × H

2 /W ×H 16/8 deconv2 Leaky ReLU

deconv4 W ×H /W ×H 8/3 deconv3 Sigmoid

Table 3. Bottleneck architecture used for MNIST (convb = conv5,
r = 100, nz = 20) and CIFAR10 (convb = conv4, r = 100, nz = 20).
Layer lin1 gets the flattened output of the encoder, convb, as its
input. For the VAE, lin3 takes the re-parametrization (see 2.2.1 for
details) of lin21 and lin22 as its input.

AE type Layer Resolution Input Activ. func.

C
A

E
/A

A
E lin1 1× W

16 ∗
H
16 ∗16 / 1×1024 convb (flattened) Leaky ReLU

lin2 1× r / 1×nz lin1 -

lin3 1×nz / 1× r lin2 Leaky ReLU

lin4 1× r / 1× W
16 ∗

H
16 ∗16 lin3 Leaky ReLU

VA
E

lin1 1× W
16 ∗

H
16 ∗16 / 1×1024 convb (flattened) Leaky ReLU

lin21 1× r / 1×nz lin1 -

lin22 1× r / 1×nz lin1 -

lin3 1×nz / 1× r lin21, lin22 (reparam.) Leaky ReLU

lin4 1× r / 1× W
16 ∗

H
16 ∗16 lin3 Leaky ReLU

Table 4. Architecture of the CAAE used for both datasets (see Fig. 2
AAE).

Layer Resolution Channels Input Activ. func.

lind1 1×nz / 1×10 - lin2 Leaky ReLU

lind2 1×10 / 1×1 - lind1 Leaky ReLU

4. Results
In this section, we demonstrate the quantitative and qual-

itative performance of our three autoencoder types as intro-
duced in Sec. 2.

4.1. MNIST

In this subsection, we evaluate the quantitative and qual-
itative performance of our three autoencoder types on the
well-known MNIST dataset [14].

4.1.1 Qualitative Results

Examples of our qualitative results are shown in Fig. 3,
which gives an insight into the autoencoder’s “way of think-
ing”. The first row shows us how the trained models re-
construct an (unseen) image of the class they were trained
on. The resulting reconstructed images look very similar to

1989

the input image. The second and third row illustrate what
happens if we apply the trained models on an image of an
anomalous class - the autoencoders reconstruct it as if it was
an image of the class they were trained on. Interestingly,
one can also observe that the choice of the convolutional
autoencoder type leads to severe differences in reconstruc-
tion results, especially the VAE seems to try to reconstruct
the image as if it was a composite of ellipsoids. One can
also see that, as all numbers are placed in the center of the
images, all models learned that the intensity of the pixel at
the center of the image is high for most cases.

Input CAE VAE AAE

N
or

m
al

A
no

m
al

ou
s

A
no

m
al

ou
s

Figure 3. Illustration of the behaviour of autoencoders on un-
known classes on the MNIST dataset. The first row shows an (un-
seen/untrained) image of the trained non-anomalous class 1 and
its reconstruction by the CAE, the VAE and the AAE. The second
and third row show two examples of the anomalous class 0 and
their reconstructions by the CAE, the VAE and the AAE.

4.1.2 Quantitative Results

Our quantitative comparisons given in Tab. 5 show that all
our tested autoencoders manage to distinguish images of the
normal class form images of the anomalous class quite ef-
fortlessly. Each autoencoder type seems to perform better
than others for some classes, but none of them outperforms
the others consistently over all classes. The training of the
CAE takes less time than training the VAE, the AAE trains
the longest. Again, this is totally reasonable since the train-
ing procedure of the CAE is the least complex one, there
is no re-parametrisation (VAE) or adversarial component
training (AAE) necessary.

4.2. CIFAR10

In this subsection, we show the performance evaluation
results on the CIFAR10 dataset [13].

Table 5. Area under curve of the ROC (AUCROC) and PR (AUCPR)
curve for all autoencoder types on the MNIST dataset. Class 1 is
considered to be normal, all others anomalous. The last row shows
the time needed for training the models (timetr, in seconds).

Class
Type CAE CAE AAE

AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

AU
C

RO
C

0 0.9999 0.9999 0.9999 0.9989 0.9999 0.9999
2 0.9933 0.9949 0.9989 0.9975 0.9974 0.9975
3 0.9964 0.9970 0.9986 0.9977 0.9966 0.9972
4 0.9980 0.9980 0.9984 0.9975 0.9974 0.9975
5 0.9979 0.9977 0.9990 0.9982 0.9982 0.9982
6 0.9942 0.9956 0.990 0.9984 0.9959 0.9966
7 0.9664 0.9776 0.9971 0.9957 0.9711 0.9809
8 0.9985 0.9982 0.9988 0.9980 0.9992 0.9988
9 0.9876 0.9914 0.9980 0.9969 0.9893 0.9921

timetr - 1015.53 1055.02 1748.8

4.2.1 Qualitative Results

We present some illustrative images and their reconstruc-
tions in Fig. 4 for a qualitative comparison. All our three
autoencoders compute very blurry versions of the input im-
ages and put their focus mainly on the colours in the images.
The models are not able to capture more representative fea-
tures at a higher level of abstraction, e.g. that dogs have
two ears and a snout. One can see that the autoencoders
reconstruct the image of class truck as if it was an image
of the class they were trained on. The models show to ne-
glect the red colours of the given truck image and just re-
construct it by using colours they have seen during training.
As the colors of dogs deviate from the “truck-colours” more
significantly than they deviate from the “frog-colours”, dis-
tinguishing trucks from dogs is accomplished better than
distinguishing frogs from dogs.

4.2.2 Quantitative Results

Our quantitative comparisons are given in Tab. 6 and show
that the anomaly detection for the CIFAR10 dataset is sub-
stantially more challenging than for the MNIST dataset. Im-
ages of anomalous class truck and car (CIFAR10) are distin-
guished best form images of normal class dog by all autoen-
coders. The models perform worst for the classes bird, cat,
deer which is reasonable if one considers that their colours
are rather similar to the colour in the images of dogs. Sur-
prisingly, the class ship was distinguished poorly as well.
This is most likely due to the fact that, although there is a
comparably high extent of blue colours in the images, the
ships themselves are coloured in white, gray and brown
colour tones. The AAE was outperformed by either the
CAE or the VAE for all classes. The CAE performs best for
all classes except for class ship. The training of the AAE
takes the longest, followed by VAE and CAE training.

1990

Input CAE VAE AAE
N

or
m

al

(a) (b) (c) (d)

A
no

m
al

ou
s

(e) (f) 0.7379 (g) 0.7375 (h) 0.7364

A
no

m
al

ou
s

(i) (j) 0.5780 (k) 0.5677 (l) 0.5632

A
no

m
al

ou
s

(m) (n) 0.5398 (o) 0.5655 (p) 0.5370

Figure 4. Illustration of the behaviour of our autoencoders on un-
known classes of the CIFAR10 dataset. The first row shows (un-
seen/untrained) images of non-anomalous class dog, the second
includes images of anomalous class truck, the third row images
of anomalous class frog and the fourth row images of anomalous
class ship. In the first column are input images, in the second
column are their reconstructions computed by the CAE. The re-
constructions of VAE and AAE are in the third and fourth column,
respectively. The area under curve for the ROC curve AUCROC
is computed over all (unseen) images of normal class dog and im-
ages of the anomalous class to capture the quality of the distinction
between normal and anomalous images and is given below the re-
constructed images.

Table 6. AUCROC and AUCPR for all autoencoder types on the
CIFAR10 dataset. Class dog is considered to be normal, all others
anomalous. The last row shows the time needed for training the
models (timetr, in seconds).

Class
Type CAE CAE AAE

AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

Plane 0.6343 0.6280 0.6448 0.6338 0.6338 0.6254
Car 0.7689 0.7389 0.7615 0.7259 0.7510 0.7180
Bird 0.5405 0.5482 0.5328 0.5353 0.5315 0.5363
Cat 0.5525 0.5489 0.5421 0.5321 0.5447 0.5380

Deer 0.5463 0.5459 0.5404 0.5344 0.5328 0.5246
Frog 0.5780 0.5616 0.5677 0.5474 0.5632 0.5495
Horse 0.6612 0.6345 0.6470 0.6185 0.6435 0.6255
Ship 0.5398 0.5445 0.5655 0.5692 0.5370 0.5462

Truck 0.7379 0.7132 0.7375 0.7073 0.7364 0.7120
timetr - 89704.82 99882.32 105906.03

5. Conclusions
For this paper, we compared three types of convolu-

tional autoencoders - a standard AE, a variational AE
and an adversarial AE - on the well known MNIST and
CIFAR10 datasets. The averaged reconstruction error
can be seen as an “anomaly score”, as it will be higher
for an image of an anomalous class than for an image
of a normal class. By thresholding the averaged recon-
struction error, we can classify an image to be normal
or anomalous. The results computed by the different AE
types are compared in a quantitative and qualitative manner.

For the MNIST dataset, using the proposed autoen-
coder types for detecting anomalous classes led to highly
accurate results over all autoencoder types and all classes.
However, the models struggle to distinguish normal from
anomalous classes for the far more complex CIFAR10
dataset. The results show systematic difficulties, which can
be explained by the fact that the images of class dog are
mainly composed of differently sized rounded regions with
mostly white, brown, grey and black colours. As a result,
the trained networks are relatively good at distinguishing
trucks and cars from dogs as the vehicles appear in more
colourful versions, but are unable to distinguish frogs from
dogs since dogs and frogs appear in similar colours.

The CAE demands the simplest implementation and
training procedure. This leads to the fastest measured
training times. Training the VAE takes longer than training
a CAE (see Tab. 5 and 6), due to the re-parametrization
step and two innermost bottleneck layers. The AAE took
the longest to train (see Tab. 5 and 6). This is of course
reasonable, because we do not only train the encoder and
decoder during the reconstruction phase, but the adversar-
ial components during the regularization phase. Despite
extended model and training complexity, the AAE and
VAE models achieve only slightly better results than the
CAE model for very few classes of MNIST and CIFAR10
(Tab. 5 and Tab. 6).
The increase in anomaly detection performance is only
marginal and not even present for some classes. Neverthe-
less, Tab. 3 provides insight on the fact that, although all
three autoencoder types are based on the same principle
of encoding and decoding information, their underlying
concepts vary. The reconstruction results differ from each
other (Fig. 3 and 4). This might be utilized in some way
and is definitely an interesting starting point for further
investigation. However, for some applications one might
need to consider if it is justified to use a far more complex
model if the results it computes are not significantly better.

The autoencoder showed high versatility and the un-
derlying principle straightforward. For flawless (“good”)

1991

data, it is straightforward to compose a strong and diverse
training set and the approach is therefore easily applicable.
Although AEs are trained in an unsupervised manner, the
compilation of a good representative training set can be
demanding for real-word data. The results of the CIFAR10
dataset show nicely that we depend on the fact that the
network learns to extract the “relevant distinction features”
- if the model does not capture that dogs have a snout, four
legs and two ears, it will fail to properly separate dogs from
other classes.

Our currently ongoing future work and follow-up ex-
periments with autoencoders do not only treat images of
one class as normal, but extend our approach and vary be-
tween different choices of classes to be considered normal.
Additionally, we will investigate the defect detection per-
formances of autoencoders in industrial inspection settings
thoroughly.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. Proceedings
of the 34th International Conference on Machine Learning
(ICML), 70:214–223, 2017. 3

[2] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoen-
coders. CoRR, abs/2003.05991, 2020. 2

[3] Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattleg-
ger, and Carsten Steger. Improving unsupervised defect seg-
mentation by applying structural similarity to autoencoders.
Proceedings of the 14th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory
and Applications (VISIGRAPP), 2019. 2

[4] Andrew P. Bradley. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
Recognition, 30(7):1145–1159, 1997. 2

[5] Jesse Davis and Mark Goadrich. The relationship between
precision-recall and roc curves. Proceedings of the 23rd
International Conference on Machine Learning, ACM, 06,
2006. 2, 4

[6] Alexander Diadiushkin, Kurt Sandkuhl, and Alexander Ma-
iatin. Fraud detection in payments transactions: Overview of
existing approaches and usage for instant payments. Com-
plex Systems Informatics and Modeling Quarterly, pages 72–
88, 2019. 1

[7] Oumayma Essid, Chafik Samir, and Laga Hamid. Auto-
matic detection and classification of manufacturing defects
in metal boxes. PLOS ONE, 2018. 2

[8] Tharindu Fernando, Harshala Gammulle, Simon Denman,
Sridha Sridharan, and Clinton Fookes. Deep learning for
medical anomaly detection – a survey. ACM Computing Sur-
veys, 54:1–37, 2021. 1

[9] Lovedeep Gondara. Medical image denoising using con-
volutional denoising autoencoders. 2016 IEEE 16th Inter-
national Conference on Data Mining Workshops (ICDMW),
pages 241–246, 2016. 2

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Y. Bengio. Generative adversarial networks. Advances in
Neural Information Processing Systems, 3, 2014. 3

[11] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2014. 3

[12] Diederik P. Kingma and M. Welling. Auto-encoding vari-
ational bayes. Computing Research Repository (CoRR),
abs/1312.6114, 2014. 2, 3

[13] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 1, 2, 3, 4, 5

[14] Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. 1, 2, 3, 4

[15] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey. Adversarial autoencoders.
ArXiv, abs/1511.05644, 2016. 2, 3

[16] Ilja Manakov, Markus Rohm, and Volker Tresp. Walking the
tightrope: An investigation of the convolutional autoencoder
bottleneck. ArXiv, abs/1911.07460, 2019. 2

[17] Manpreet Singh Minhas and John Zelek. Semi-supervised
anomaly detection using autoencoders. 2020. 2

[18] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton
Van Den Hengel. Deep learning for anomaly detection. ACM
Computing Surveys, 54(2):1–38, 2021. 1

[19] Joseph Rocca. Understanding variational autoencoders
(vaes) - building, step by step, the reasoning that leads to
vaes. 2019. 2

[20] David E. Rumelhart and James L. McClelland. Learning
internal representations by error propagation. Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition: Foundations, pages 318–362, 1987. 1, 2

[21] Nina Shvetsova, Bart Bakker, Irina Fedulova, Heinrich
Schulz, and Dmitry V. Dylov. Anomaly detection in medical
imaging with deep perceptual autoencoders. IEEE Access,
9:118571–118583, 2021. 2

[22] Jing Yang, Shaobo Li, Zheng Wang, Hao Dong, Jun Wang,
and Shihao Tang. Using deep learning to detect defects in
manufacturing: A comprehensive survey and current chal-
lenges. Materials, 13:5755, 2020. 1

[23] Ling-Li Zeng, Huaning Wang, Panpan Hu, Bo Yang, Weidan
Pu, Hui Shen, Xingui Chen, Zhening Liu, Hong Yin, Qin-
grong Tan, Kai Wang, and Dewen Hu. Multi-site diagnos-
tic classification of schizophrenia using discriminant deep
learning with functional connectivity mri. EBioMedicine,
30:74–85, 2018. 2

1992

