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Abstract

Subspace clustering is to find underlying low-

dimensional subspaces and cluster the data points

correctly. In this paper, we propose a novel multi-view

subspace clustering method. Most existing methods suffer

from two critical issues. First, they usually adopt a

two-stage framework and isolate the processes of affinity

learning, multi-view information fusion and clustering.

Second, they assume the data lies in a linear subspace

which may fail in practice as most real-world datasets

may have non-linearity structures. To address the above

issues, in this paper we propose a novel Enriched Robust

Multi-View Kernel Subspace Clustering framework where

the consensus affinity matrix is learned from both multi-

view data and spectral clustering. Due to the objective and

constraints which is difficult to optimize, we propose an

iterative optimization method which is easy to implement

and can yield closed solution in each step. Extensive

experiments have validated the superiority of our method

over state-of-the-art clustering methods.

1. Introduction
In machine learning, high-dimensional data are ubiqui-

tous. For example, images may consist of thousands of
pixels and text data may have tons of features. High di-
mensionality requires demanding computational time and
memory, and moreover, noise in the data can bring ad-
versely influence on performance. Fortunately, recent re-
search shows that high-dimensional data often lies in low-
dimensional structures. For instance, the set of face images
under all possible illumination conditions can be well ap-
proximated by a 9-dimensional linear subspace [2]. Recov-
ering the low-dimensional structures of data can not only
save computational cost, but also will improve the accuracy
and effectiveness of learning methods. For data samples lie
in low-dimensional subspaces instead of being uniformly
distributed across ambient space, subspace clustering is to
separate data according to their underlying subspaces and
the basis for each subspace [45]. For the past decade, sub-

space clustering has been explored actively and applied in
many applications such as image/motion/video segmenta-
tion [16, 50, 51], image representation [25, 60], etc.

Subspace clustering approaches have been developed
and studied extensively, and among them are: iteration-
based methods such as [44, 58] which alternates cluster
assignment and subspace fitting; factorization-based alge-
braic approaches such as [34, 46] which hypothesizes that
the subspaces are independent; statistical approaches such
as Multi-stage Learning [17], Mixtures of Probabilistic
PCA [43] which alternates between clustering and subspace
estimation via Expectation Maximization; spectral cluster-
ing based approaches such as Local Subspace Affinity [50],
Locally Linear Manifold Clustering [16] where data seg-
mentation is obtained from spectral clustering. More re-
cently, sparse subspace clustering (SSC) has been proposed
[11, 37, 38] to find a sparse representation corresponding to
the data points from the same subspace.

In the big-data era, many computer vision problems are
fed with the dataset represented by multiple feature sets,
which is so called ‘multi-view’ data. Different descriptors
characterize various and independent information from dif-
ferent perspectives. For instance, an image can be described
by color, texture, histogram of oriented gradients (HOG),
local binary pattern (LBP), etc. These different features can
provide useful information from different views to improve
clustering performance [32]. Multi-view clustering is to in-
tegrate these multiple feature sets together to perform reli-
able clustering. Most existing multi-view subspace cluster-
ing methods integrate multi-view information in similarity
or representation by merging multiple graphs or represen-
tation matrices into a shared one. For example, [18, 42]
learn a shared sparse subspace representation by performing
matrix factorization. Similarly, centroid-based multi-view
low-rank sparse subspace clustering methods [5, 33, 55] in-
duce low-rank and sparsity constraints on the shared affin-
ity matrix across different views. Instead of obtaining
a shared representation directly, Hilbert-Schmidt Indepen-
dence Criterion (HSIC) and Markov chain are introduced to
learn complementary subspace representations, followed by
adding them together appropriately [7, 48].
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Kernelize

Figure 1. Using the kernel trick, data is transformed onto a high
dimensional feature space so that better sparse representations can
be found for subspace clustering.

Although these subspace methods mentioned above have
achieved significant success, they still suffer from the fol-
lowing issues: 1) They assume the data is well separable
in linear subspace, which may not be true and extensive re-
searches show data can be better separated by mapping to
higher dimension [15, 21]. 2) Previous approaches obtain
the consensus affinity matrix by minimizing the squared
Frobenius norm of its difference to each view, which may
yield poor representation when a certain view is not well
learned [56, 57]. 3) Most existing approaches are usually
conducted in a two-step fashion [20,24,59], which may fail
to obtain optimal clustering performance since the learning
stage is separated from the subsequent clustering stage. The
main contributions of this work are summarized as follows:

• To explore the nonlinear relationship in the data, we
transform the data from original space to a kernel
space, which improves the performance of multi-view
subspace clustering when dealing with non-linearity
(e.g. specific manifold) data distributions, as shown
in Figure 1.

• We investigate a unified multi-view subspace clus-
tering framework which jointly optimizes similarity
learning and spectral clustering, where enriched con-
sensus affinity matrix is learned from different sources.

• We provide a formulation to obtain robust consensus
affinity matrix, which yields better clustering result.

• We propose an updating algorithm with closed solution
in each step, which is computationally efficient.

2. Multi-View Kernel Subspace Clustering
In this section, we first provide a brief background on

sparse subspace clustering. After that, we will give the mo-
tivation of our proposed method.

2.1. Sparse Subspace Clustering
Given n data points X = {x1,x2, . . . ,xn} 2 Rd⇥n,

subspace clustering assumes that each data point can be ap-
proximated by a linear combination of dataset samples [11]:

X = XC +E, (1)

where C = {c1, c2, . . . , cn} 2 Rn⇥n is the subspace rep-
resentation matrix, with each ci representing the original
data point xi based on the subspace. E 2 Rd⇥n is the error
matrix.

Sparse subspace clustering formulates the objective as:

min
C

kX�XCk2F+✓kCk1, s.t. diag(C) = 0, CT1 = 1,

(2)
where k · kF denotes the Frobenius norm while kCk1 =P

i,j |Cij |. The constraint CT1 = 1 indicates that the data
point lies in a union of affine subspaces while the constraint
diag(C) = 0 rules out the case that a data point is repre-
sented by itself, which hints that each data point xi can only
be represented by a combination of other points xj(j 6= i).
Solving the optimization problem in Eq. (2), we will get the
representation ci for each data point xi.

After obtaining the subspace structure, we construct the
affinity matrix by setting W = |C|+|C|T

2 . Therefore, we
can perform spectral clustering on subspace affinity matrix:

min
F

tr(F TLF ), s.t. F TF = I, (3)

where F is the cluster indicator matrix, L := D�W where
D is a diagonal matrix given by D(i, i) =

P
j W (i, j).

2.2. Robust Multi-View Kernel Subspace Clustering
Given the v-view dataset X(v) 2 Rdv⇥n, if we perform

the subspace learning on each single view, we can get the
subspace representation C(v) for the v-th view. The fun-
damental challenge boils down to combine multi-view fea-
tures in subspace clustering. An intuitive and naive method
is to concatenate all the features together and perform clus-
tering on the concatenated features, where the more infor-
mative view and the less informative one will be treated
equally. Therefore, the solution is inevitably not optimal
in many scenarios. In contrast, one can perform the cluster-
ing on each single view followed by fusing them together.
In order to combine multi-view sparse subspace clustering
results, we can perform the subspace learning on different
views simultaneously by solving:

min
C(v),C⇤

X

v

kX(v) �X(v)C(v)k2F + ✓kC(v)k1

+ �kC(v) �C⇤k2F , s.t. diag(C(v)) = 0, C(v)T1 = 1,

(4)
where C⇤ is the consensus affinity matrix across multiple
views and spectral clustering will be performed based on it.
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Figure 2. The framework of our proposed method.

However, experiments have demonstrated that C(v) can be
significantly different. One can see that if a certain view
C(v) is not learned well, to minimize the objective, C⇤ will
deviate from optimal solution due to the squared Frobenius
norm which is known to be sensitive to noise/outliers. In-
spired by the observation above, to mitigate its adverse in-
fluence, we propose a more robust [4, 31, 52] formulation:

min
C(v),C⇤

X

v

kX(v) �X(v)C(v)k2F + ✓kC(v)k1

+ �kC(v) �C⇤k1, s.t. diag(C(v)) = 0, C(v)T1 = 1.

(5)
On the other hand, kernel tricks have been played in various
machine learning techniques/algorithms such as PCA [35],
SVM [41], K-means [9], etc. Those kernel version meth-
ods yield very promising results especially when the data
in original space is not well separable, but can be separated
by projecting into higher dimension space via �(·) where
� : Rd ! Rm(m > d) [14]. Therefore, we introduce the
robust multi-view kernel subspace clustering by optimizing:

min
C(v),C⇤

X

v

k�(X(v))� �(X(v))C(v)k2F + ✓kC(v)k1

+ �kC(v) �C⇤k1, s.t. diag(C(v)) = 0, C(v)T1 = 1.

(6)

2.3. Enriched Multi-View Subspace Clustering
Most existing multi-view subspace learning will do spec-

tral clustering after obtaining C⇤ which ignores the poten-
tial connection between the two stages. As a contribution of
this paper, we propose an enriched procedure by combining

the learning with clustering stage via:

min
C(v),C⇤,F

X

v

k�(X(v))� �(X(v))C(v)k2F + ✓kC(v)k1

+ �kC(v) �C⇤k1 + � tr(F TLF ),

s.t. F TF = I, diag(C(v)) = 0, C(v)T1 = 1.

(7)
It is worth noting that here L is constructed based on the
affinity matrix W from C⇤ instead of C(v) in each view.
Therefore, different from Eq. (6) which learns C⇤ from
each view, Eq. (7) also learns C⇤ from spectral clustering.

The proposed optimization model consists of two parts.
The first part is the intra-view structure learning, which
aims to learn the subspace structure in each view. The sec-
ond part is the inter-view consistency learning, which mea-
sures the correlation across different views. By exploring
both the view-specific property and view-consistency across
multi-view data, our unified model can learn both the intra-
view subspace structure and common cluster structure si-
multaneously. In this way, the proposed method can achieve
the optimal consensus affinity matrix across multiple views
that produces promising clustering results. Fig. 2 shows the
main framework of the proposed method.

3. Optimization

Considering the constraints and non-differential property
of the above objective for C(v), we propose an updating al-
gorithm based on Alternating Direction Method of Multi-
pliers (ADMM) [3, 19, 28]. By introducing A(v) = C(v) 2
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Rn⇥n, we reformulate the objective as:

min
A(v),C(v),C⇤,F

X

v

k�(X(v))� �(X(v))C(v)k2F + ✓kA(v)k1

+ �kA(v) �C⇤k1 + � tr(F TLF ),

s.t. F TF = I, diag(C(v)) = 0,C(v)T1 = 1,A(v) = C(v)
.

(8)
The corresponding augmented Lagrangian function is:

L(A(v)
,C(v)

,C⇤
,F , �(v),⌃(v))

=
X

v

k�(X(v))� �(X(v))C(v)k2F + �kA(v) �C⇤k1

+
⇢

2
kC(v)T1� 1k22 + h�(v), C(v)T1� 1i+ ✓kA(v)k1

+
⇢

2
kC(v) �A(v) + diag(A(v))k2F + � tr(F TLF )

+h⌃(v)
,C(v) �A(v) + diag(A(v))i, s.t. F TF = I,

(9)
where � 2 Rn

,⌃ 2 Rn⇥n are the Lagrangian Multipliers.

3.1. Updating F

When fixing C⇤, L is fixed and F can be optimized via:

min
F

tr(F TLF ), s.t. F TF = I, (10)

where L = D�W and W = |C⇤|+|C⇤|T
2 . Apparently the

solutions are the eigenvectors corresponding to the small-
est k eigenvalues of the Laplacian matrix L where k is the
number of clusters [29].

3.2. Updating A(v)

For optimized A in each view, it is obtained via:

min
J

�kJk1 + ↵kJ �C⇤k1 +
1

2
kJ � Y k2F , (11)

with A = J�diag(J), where Y = C+⌃
⇢ , � = ✓

⇢ , ↵ = �
⇢ .

Apparently, diag(A) = 0 and the above equation can be
solved through element-wise optimization:

min
j

�|j|+ ↵|j � c
⇤|+ 1

2
(j � y)2. (12)

Due to space limit, we provide the closed solution for c
⇤ 6=

0 (otherwise, it degenerates into well known standard soft-
thresholding with j

⇤ = sgn(y)max{|y| � ↵ � �, 0}) by
leaving the details to supplemental file:

j
⇤ =

8
>>>>>>>>>><

>>>>>>>>>>:

y � ↵ � �, if c
⇤

> 0 ^ y � ↵ + � + c
⇤;

y + ↵ � �, if c
⇤

> 0 ^ 0 < y + ↵ � � < c
⇤;

y + ↵ + �, if c
⇤

> 0 ^ 0 � y + ↵ + �;

y � ↵ � �, if c
⇤

< 0 ^ y � ↵ + �;

y � ↵ + �, if c
⇤

< 0 ^ 0 > y � ↵ + � > c
⇤;

y + ↵ + �, if c
⇤

< 0 ^ c
⇤ � y + ↵ + �;

0, else,
(13)

where ‘^’ denotes logical conjunction.

3.3. Updating C(v)

For optimized C in each view, it can be obtained via (by
skipping diag(A) as it is 0 aforementioned):

min
C

k�(X)��(X)Ck2F+
⇢
2
kCT1�1+

�
⇢
k22+

⇢
2
kC�A+

⌃
⇢
k2F .

(14)
By taking the derivative and set it to be 0, we have 1:

C = (K+⇢I+⇢11T )�1(K+⇢11T�1�T+⇢A�⌃), (15)

where K = �(X)T�(X). One can see that with different
kernel chosen, K is different but always are computationally
efficient. For example, when polynomial kernel is applied,
then K(i, j) = (hxi,xji+ c)d.

3.4. Updating C⇤

As C⇤ is enriched, which is related with 2 terms, it can
be optimized via:

min
C⇤

� tr(F TLF ) +
X

v

�kA(v) �C⇤k1. (16)

Before we optimize the above equation, we first introduce a
useful lemma which is critical for C⇤:

Lemma 1. For Laplacian matrix L and the matrix F , we

have [6]:

tr(F TLF ) =
1

2

X

i,j

W (i, j)kf i � f jk22. (17)

We turn to optimize C⇤ by noticing the above equation can
be written in a more compact formulation: tr(F TLF ) =
1
2 hW ,Qi, where Q is symmetric and Q(i, j) = kf i �
f jk22. On the other hand, by definition W = |C⇤|+|C⇤|T

2 ,
by simple algebraic operation we have:

tr(F TLF ) =
1

2
h|C⇤|,Qi. (18)

Therefore, C⇤ can be optimized by:

min
�

2
h|C⇤|,Qi+

X

v

�kA(v) �C⇤k1. (19)

Similar to A, we can optimize C⇤ by element-wise:

min �q|c⇤|+
X

v

2�|a(v) � c
⇤|. (20)

1We note that for Linear Kernel case, which is �(X) = X 2 Rd⇥n

and K(X,X) = XTX . When n � d, we have accelerated updat-
ing algorithm for inversion calculation. First we denote XTX + ⇢I +
⇢11T = ZTZ + ⇢I, where Z = [X;

p
⇢1T ] 2 R(d+1)⇥n. Then

by matrix inversion lemma (aka Sherman-Morrison-Woodbury Formula),
(ZTZ+ ⇢In)�1 = ⇢�1In � ⇢�2ZT (Id+1 + ⇢ZZT )�1Z, the com-
plexity can be reduced from O(n3) to O(d3+dn2) which is a significant
improvement for n � d.
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Algorithm 1 Algorithm for Enriched Robust Multi-View
Kernel Subspace Clustering to solve Eq. (7).

Input: data X(v) 2 Rdv⇥n, number of clusters k, regu-
larization parameters �, �, ✓, number of iterations T .
Initialization: C(v)

,⌃(v)
,A(v)

,C⇤ 2 Rn⇥n
, �(v) 2

Rn
, ⇢ = 0.2, t = 1.

while t  T do
Optimize F by solving Eq. (10);
Optimize A in each view by solving Eq. (11);
Optimize C in each view by solving Eq. (14);
Optimize each C⇤ by solving Eq. (19);
Update �,⌃ in each view as Eq. (22);
Update ⇢ = 1.2⇢;
t = t + 1.

end while
Output: F , based on which K-means will be conducted
after row normalization.

Without loss of generality, we sort [a(1)
, a

(2)
, . . . , a

(v)] in
non-decreasing order as [a1, a2, . . . , av] and none is zero
(or it can be transferred into this case by simple operation).
Due to space limit, we leave the derivative details to supple-
mental file and directly give the solution2:

c
⇤ =

8
>><

>>:

ad 2v���q
4� e, if 2v� > �q ^ ad 2v���q

4� e > 0;

ad 2v�+�q
4� e, if 2v� > �q ^ ad 2v�+�q

4� e < 0;

0, else,
(21)

where d·e denotes the ceiling function.

3.5. Updating Lagrangian Multipliers in Each View
Following ADMM framework [3], we can simply update

Lagrangian Multipliers by gradient ascent:

�(v) = �(v) + ⇢(C(v)T1� 1),

⌃(v) = ⌃(v) + ⇢(C(v) �A(v)).
(22)

We summarize the above algorithm in Alg. 1.

4. Experiments
In this section, we will evaluate our proposed algorithm

on several widely used benchmark datasets to illustrate its
potential in multi-view clustering.

Six benchmark datasets are used in the experi-
ment, including MSRC-v1, UCI Handwritten digits [10],
Caltech101-7 [13], Caltech101-20 [13], ORL [40] and Yale
[1]. For each dataset, multiple feature sets are available to

2It is worth noting that the optimal solution may not be unique. In
practice, one can visit all ai(1  i  v) in addition to 0, and simply set
c⇤ as ai or 0 which yields the lowest objective in Eq. (20).

describe the images from various aspects. The detailed in-
formation is summarized in Table 3.

Throughout the experiments, we use Matlab R2019a on
a laptop with 1.4 GHz QuadCore Intel Core i5 processor.
The clustering quality is measured by clustering accuracy
(ACC), which is the percentage of items correctly clustered
with the maximum bipartite matching [49], and normalized
mutual information (NMI) [23, 30]. We repeat each experi-
ment 10 times and report the average performance with the
standard deviation.

4.1. Feature Descriptions
Features adopted in this paper is shown as the follow-

ing, each feature captures quite different information from
images:

1. CENTRIST [47] stands for census transform his-
togram, is a holistic representation of images, which
can be applied to capture the structural and textural
properties from images.

2. HOG [8] is based on oriented gradients, so it has great
power to capture edge structures in images naturally.

3. Color moment (CMT) [53] represents the color distri-
bution in images. The mathematical basis of this de-
scriptor is that the color distribution can be represented
efficiently by some low-order moments.

4. Local binary pattern captures the texture information
from an image by computing the histogram of local
binary patterns [12].

5. GIST [39] is a global image feature. Gist features rep-
resent scene information from images well. It relates
to the gradient information for different parts in an im-
age, including scales and orientations.

6. Gabor, which is extracted by a Gabor filter and can do
texture analysis and object detection in images.

7. Intensity (IT). Pixel intensity is the primary informa-
tion stored within pixels, represents the densities of a
certain pixel.

4.2. Experiment Setup
To evaluate the performance of our method, we com-

pare our method with two subspace learning algorithms
applied on single view: spectral clustering (SC) [36] and
lower rank representation (LRR) [26], and five state-of-the-
art multi-view methods including: pairwise co-regularized
multi-view spectral clustering (P-CoReg) [22], centroid co-
regularized multi-view spectral clustering (C-CoReg) [22],
robust multi-view spectral clustering via low-rank and
sparse decomposition (RMSC) [48], multi-view consensus
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Table 1. Subspace clustering results on various benchmark datasets

MSRC-v1 Handwritten Caltech101-7 Caltech101-20

Method ACC NMI ACC NMI ACC NMI ACC NMI

HOG-SC 0.597±0.057 0.502±0.027 0.632±0.071 0.518±0.074 0.609±0.051 0.561±0.039 0.307±0.062 0.287±0.025
CEN-SC 0.618±0.038 0.556±0.017 0.711±0.027 0.641±0.041 0.657±0.032 0.587±0.031 0.501±0.018 0.536±0.019
CMT-SC 0.331±0.052 0.203±0.056 0.213±0.087 0.198±0.077 0.391±0.097 0.281±0.011 0.214±0.051 0.258±0.028
LBP-SC 0.587±0.061 0.525±0.038 0.303±0.043 0.321±0.076 0.458±0.082 0.322±0.059 0.301±0.022 0.317±0.028
GIST-SC 0.309±0.049 0.281±0.027 0.288±0.036 0.212±0.081 0.402±0.073 0.378±0.054 0.262±0.057 0.209±0.062
Gabor-SC 0.328±0.059 0.277±0.066 0.397±0.071 0.306±0.039 0.296±0.062 0.309±0.039

HOG-LRR 0.611±0.015 0.572±0.018 0.512±0.056 0.413±0.072 0.622±0.013 0.508±0.023 0.312±0.011 0.257±0.011
CEN-LRR 0.457±0.018 0.323±0.007 0.581±0.019 0.512±0.017 0.615±0.005 0.479±0.012 0.467±0.012 0.472±0.004
CMT-LRR 0.343±0.031 0.201±0.009 0.182±0.072 0.131±0.025 0.322±0.005 0.282±0.019 0.276±0.012 0.297±0.005
LBP-LRR 0.627±0.012 0.477±0.016 0.219±0.057 0.238±0.052 0.423±0.009 0.327±0.014 0.281±0.005 0.315±0.009
GIST-LRR 0.318±0.021 0.196±0.011 0.256±0.061 0.291±0.015 0.399±0.012 0.301±0.009 0.269±0.011 0.291±0.007
Gabor-LRR 0.302±0.049 0.256±0.068 0.307±0.019 0.217±0.011 0.302±0.011 0.272±0.013

P-CoReg 0.781±0.008 0.691±0.015 0.767±0.017 0.711±0.039 0.678±0.031 0.677±0.022 0.551±0.021 0.601±0.015
C-CoReg 0.767±0.006 0.678±0.031 0.758±0.015 0.704±0.041 0.658±0.052 0.687±0.017 0.502±0.029 0.558±0.021
RMSC 0.771±0.012 0.652±0.017 0.775±0.009 0.714±0.012 0.667±0.019 0.676±0.029 0.451±0.018 0.389±0.017
MCGC 0.682±0.012 0.601±0.009 0.768±0.011 0.721±0.021 0.649±0.035 0.533±0.071 0.425±0.033 0.392±0.019
MNMF 0.657±0.007 0.597±0.017 0.689±0.052 0.518±0.039 0.652±0.027 0.502±0.019 0.455±0.012 0.388±0.021

Our 0.822±0.037 0.712±0.022 0.831±0.028 0.798±0.037 0.693±0.057 0.671±0.038 0.576±0.025 0.657±0.022
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(a) Color moment
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(b) HOG
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(d) LBP
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(e) GIST
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(f) Consensus

Figure 3. View-specific and consensus subspace representation matrices on MSRC-v1 dataset. (Please zoom in to observe.)

graph clustering (MCGC) [54], and multi-view clustering
via joint nonnegative matrix factorization (MNMF) [27].

Detailed description about the methods mentioned above
and the experiment process is as the following:

1. Single view with SC. We run spectral clustering on

each view-specific affinity matrix independently to get
clustering results based on different features.

2. Single view with LRR. We run LRR on each single
feature set to get the low-rank subspace representation
first, and then apply spectral clustering on each such

1998



(a) Fixing � to 0.01 (b) Fixing � to 1
(c) Fixing ✓ to 0.01

Figure 4. Ablation study – the influence of regularization parameters on clustering accuracy.
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(a) Fixing � to 0.01 (b) Fixing � to 1 (c) Fixing ✓ to 0.01

Figure 4. Effect of varying parameters on performance.
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(a) Linear kernel
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(b) Polynomial kernel with degree = 4
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(c) Objective

Figure 5. C⇤ obtained from polynomial kernel mapping is helpful for better clustering compared with directly on vanilla data (aka linear
kernel). Typical objective change with update is illustrated in the right panel.

Table 2. Subspace clustering performance

Yale ORL

Method ACC NMI ACC NMI

IT-SC 0.271±0.026 0.256±0.031 0.353±0.012 0.559±0.015
LBP-SC 0.617±0.036 0.637±0.017 0.713±0.009 0.798±0.011

Gabor-SC 0.653±0.012 0.643±0.011 0.647±0.011 0.813±0.006

IT-LRR 0.153±0.022 0.101±0.007 0.108±0.013 0.138±0.017
LBP-LRR 0.631±0.019 0.602±0.022 0.722±0.018 0.855±0.015

Gabor-LRR 0.625±0.023 0.637±0.018 0.721±0.021 0.823±0.012

P-CoReg 0.635±0.015 0.667±0.037 0.723±0.005 0.878±0.012
C-CoReg 0.655±0.009 0.637±0.011 0.731±0.007 0.852±0.008
RMSC 0.630±0.012 0.644±0.014 0.725±0.015 0.825±0.011
MCGC 0.649±0.035 0.533±0.071 0.425±0.033 0.392±0.019
MNMF 0.564±0.031 0.571±0.027 0.625±0.013 0.798±0.008

Our 0.668±0.012 0.672±0.009 0.732±0.025 0.853±0.019

co-regularizers in the objective function.

4. C-CoReg, similar to P-CoReg, it regularizes the eigen-
vectors related to each specific view feature towards a
consensus set.

5. RMSC, is based on Markov chain method for cluster-
ing. A transition probability matrix from each single
view is constructed at first, and then use these matri-
ces to recover a shared low-rank transition probability
matrix, which is a crucial input to the standard Markov
chain method for clustering. Spectral clustering is em-
ployed to do clustering.

6. MCGC, a consensus graph structure is learned by min-
imizing disagreement between diverse views and con-
straining the rank of the Laplacian matrix. MCGC
is able to obtain the cluster assignment directly from
the consensus graph itself without any post-processing
steps like k-means.

7. MNMF, a joint nonnegative matrix factorization algo-
rithm to regularize coefficient matrices learnt from fac-
torizations of different views towards a common con-
sensus. Then do k-means on the consensus coefficient
matrix.

4.3. Experiment Results
Fig 3 shows the subspace representation matrices C ob-

tained by different feature descriptors and the final consen-

7

Figure 5. C⇤ obtained via Linear Kernel and Polynomial Kernel. (Please zoom in to observe.)
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Figure 6. Objective with update.

Table 2. Subspace clustering results on benchmark datasets

Yale ORL

Method ACC NMI ACC NMI

IT-SC 0.271±0.026 0.256±0.031 0.353±0.012 0.559±0.015
LBP-SC 0.617±0.036 0.637±0.017 0.713±0.009 0.798±0.011

Gabor-SC 0.653±0.012 0.643±0.011 0.647±0.011 0.813±0.006

IT-LRR 0.153±0.022 0.101±0.007 0.108±0.013 0.138±0.017
LBP-LRR 0.631±0.019 0.602±0.022 0.722±0.018 0.855±0.015

Gabor-LRR 0.625±0.023 0.637±0.018 0.721±0.021 0.823±0.012

P-CoReg 0.635±0.015 0.667±0.037 0.723±0.005 0.868±0.012
C-CoReg 0.655±0.009 0.637±0.011 0.731±0.007 0.852±0.008
RMSC 0.630±0.012 0.644±0.014 0.725±0.015 0.825±0.011
MCGC 0.649±0.035 0.533±0.071 0.425±0.033 0.392±0.019
MNMF 0.564±0.031 0.571±0.027 0.625±0.013 0.798±0.008

Our 0.668±0.012 0.672±0.009 0.732±0.025 0.863±0.019

representation we obtained.

3. P-CoReg, which makes the eigenvector matrix in stan-
dard spectral clustering method related to different
views be close to each other, by employing pair-wise
co-regularizers in the objective function.

4. C-CoReg, similar to P-CoReg, it regularizes the eigen-

vectors related to each specific view feature towards a
consensus set.

5. RMSC, which is based on Markov chain method for
clustering. A shared low-rank transition probability
matrix is used as a crucial input to the standard Markov
chain method for clustering.

6. MCGC, where a consensus graph structure is learned
by minimizing disagreement between diverse views
and constraining the rank of the Laplacian matrix, it’s
able to obtain the cluster assignment directly from the
consensus graph without any post-processing steps.

7. MNMF, a joint nonnegative matrix factorization al-
gorithm to regularize coefficient matrices learnt from
different views towards a consensus, followed by K-
means on the consensus matrix.

4.3. Experiment Results
Fig. 3 shows the subspace representation matrices C ob-

tained by different feature descriptors and the final consen-
sus C⇤ of the MSRC-v1 dataset. A good C should have a
clear block diagonal structure, since the data in the MSRC-
v1 dataset is grouped by object classes. In Fig. 3, view-
specific C vary a lot from each other since they are captur-
ing different characteristic from images. And for some of
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Table 3. Datasets information and available feature sets

Dataset # images # classes HOG CENTRIST Color Moment LBP GIST Intensity Gabor

MSRC-v1 210 7 X X X X X
Handwritten 2000 10 X X X X X X
Caltech101-7 1474 7 X X X X X X

Caltech101-20 2386 20 X X X X X X
ORL 400 40 X X X
Yale 165 15 X X X

them, there is no obvious block structure, noise exists over
the whole matrix. It is apparent that only relying on one
single view-specific C has a high chance to achieve poor
result. But for the consensus C⇤, the block diagonal struc-
ture is well-established and there is almost no noise off the
diagonal blocks, which means each sample is well repre-
sented by the remaining data from the same object class,
thus a great clustering result can be obtained based on it.
We also utilize polynomial kernels to further improve the
subspace learning performance. Fig. 5 shows the consen-
sus C⇤ obtained with linear kernel and polynomial kernel
for the MSRC-v1 dataset, please zoom in to observe the
details and differences. The block diagonal structure gets
more recognizable with an appropriate polynomial kernel.
Thus on complex datasets where nonlinear relationships ex-
ist, polynomial kernels can have superior performance com-
pared to simple linear kernel. And from Fig. 6 we can see
that the objective of the ADMM solver is converging as the
iteration increases.

Experiment results on six datasets are shown in Table 1
and 2, highest ACC and NMI for each dataset is highlighted.
From the results it’s not hard to conclude that certain view-
specific C cannot have a satisfying clustering performance,
this may be caused by the fact that images from different
clusters have great similarity in the characteristic captured
by that view, for example, the color moment feature doesn’t
work well on the Handwritten dataset. But with multi-view
clustering methods, independent feature sets are combined
together to construct a view-consistent C⇤, the clustering
performance is greatly improved. What’s more, in our pro-
posed method, the consensus C⇤ will not deviate from the
optimal solution when a view-specific C is not well learned,
so our proposed method can achieve best clustering perfor-
mance in most cases over the comparison methods.

In addition, we investigate the performance of our
method with varying parameter settings. There are three
important parameters in our method: �, �, and ✓. We ex-
plore the effect of two parameters by fixing another. We
present the results on MSRC-v1 dataset as Fig. 4 demon-
strates. From the figure we see that with the setting of � in
the range of (0.001, 10), � in the range of (0.001, 10) and
✓ in the range of (0.001, 1), promising performance can be
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0
Handwritten MSRC-v1 ORL Yale
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C
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Figure 7. Accuracy comparison with increasing views, 1-5 views
for Handwritten and MSRC-v1, 1-3 views for ORL and Yale.

achieved. To show the advantage of combining multi-view
feature sets in subspace clustering, we run our proposed
method with increasing number of views on four datasets.
The result is averaged on all the possible combinations of
views, and for each combination we run the experiment 5
times. Comparison is shown in Fig. 7. Apparently subspace
clustering performance is improved significantly as number
of views increases for all the datasets, since the data is de-
scribed in a more comprehensive and extensive way.

5. Conclusion

In this paper, we propose an Enriched Robust Multi-View

Kernel Subspace Clustering model. Different from most
existing multi-view clustering methods, our method obtains
an enriched consensus affinity matrix from both the learn-
ing and clustering stages. Besides, the proposed method
extends linear space to kernel space to capture the nonlin-
ear structure hidden in the multi-view data. To optimize the
objective with various constraints, we propose ADMM to
obtain the optimal solution where in each step a closed so-
lution is provided. Extensive experimental results on six
benchmark datasets have demonstrated the superiority of
our method over several SOTA clustering methods.
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sparse subspace clustering: A joint affinity learning and sub-
space clustering framework. IEEE Transactions on Image

Processing, 26(6):2988–3001, 2017. 1
[26] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong

Yu, and Yi Ma. Robust recovery of subspace structures by
low-rank representation. IEEE transactions on pattern anal-

ysis and machine intelligence, 35(1):171–184, 2012. 5
[27] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view

clustering via joint nonnegative matrix factorization. In Pro-

ceedings of the 2013 SIAM international conference on data

mining, pages 252–260. SIAM, 2013. 6
[28] Kai Liu, Lodewijk Brand, Hua Wang, and Feiping Nie.

Learning robust distance metric with side information via ra-
tio minimization of orthogonally constrained l21-norm dis-
tances. In Proceedings of the Twenty-Eighth International

Joint Conference on Artificial Intelligence, 2019. 3
[29] Kai Liu, Qiuwei Li, Hua Wang, and Gongguo Tang. Spheri-

cal principal component analysis. In Proceedings of the 2019

SIAM International Conference on Data Mining, pages 387–
395. SIAM, 2019. 4

[30] Kai Liu and Hua Wang. High-order co-clustering via strictly
orthogonal and symmetric l1-norm nonnegative matrix tri-
factorization. In Proceedings of the Twenty-Seventh Interna-

tional Joint Conference on Artificial Intelligence, 2018. 5

2001



[31] Kai Liu, Hua Wang, Feiping Nie, and Hao Zhang. Learn-
ing multi-instance enriched image representations via non-
greedy ratio maximization of the l1-norm distances. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7727–7735, 2018. 3
[32] Kai Liu, Hua Wang, Shannon Risacher, Andrew Saykin,

and Li Shen. Multiple incomplete views clustering via
non-negative matrix factorization with its application in
alzheimer’s disease analysis. In 2018 IEEE 15th Interna-

tional Symposium on Biomedical Imaging (ISBI 2018), pages
1402–1405. IEEE, 2018. 1

[33] Shirui Luo, Changqing Zhang, Wei Zhang, and Xiaochun
Cao. Consistent and specific multi-view subspace clustering.
In Thirty-second AAAI conference on artificial intelligence,
2018. 1

[34] Yi Ma, Allen Y Yang, Harm Derksen, and Robert Fos-
sum. Estimation of subspace arrangements with applica-
tions in modeling and segmenting mixed data. SIAM review,
50(3):413–458, 2008. 1

[35] Sebastian Mika, Bernhard Schölkopf, Alexander J Smola,
Klaus-Robert Müller, Matthias Scholz, and Gunnar Rätsch.
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