6. Supplemental

A. The detailed derivation of Eq.(13) is as the following:
We denote the derivative of Eq.(12) regarding to j as H,

1) When ¢* > 0:

a. Ifj >c¢*: H=p+a+j—y =0, we can get
j =y — a — B, and with the assumption j > c*, y has to
satisfy y > a4+ 8 + ¢* to get this solution;

b. f0<j<c: H=p—-a+j—y =0, which
leads to j = y+ « — 3, and similarly due to the prerequisite
0<j<c*,weshouldhave 0 < y + o — 8 < ¢*;

c. Ifj <0 H=—-—-—a+j—y =0, wecan get
Jj=y+ta+pB,soy+a+pB<0aswell

2) When ¢* < 0:

a. If j >0 H=pF8+a+j—y = 0, we can get
J =y — a — 3, and with the assumption j > 0, only when
y > a + B we can get this solution;

b.Ifc* <j<0H=-F+a+j—y=0,then we
have j =y —a+ B,alsoc* <y—a+ £ <0;

c. Ifj<c"* H=-—-—a+j—y =0, wecan get
Jj=y+a+8,sowheny+ a+ f < ¢* we can get this
solution.

B. The derivative details for Eq.(21) is as the following:

We suppose the optimal solution is ¢* = a;, and it’s ob-
vious that the subgradient of |a; — ¢*| is any element in the
interval of [-1, 1].

1) When ¢* > 0:

To make the derivative of Eq.(20) regarding to c* equal
to 0, we should have

—1<i—1) =2Mv—i)+v¢ <1,  (23)

which leads to
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i has to be an integer as an index, so 2”3“;”""—‘ is an ap-

propriate value for it. Also, an index ¢ has to be larger than
0, we should have 2vA > ~q, and since the assumption is
c* > 0, only when a[mxﬂq] > (0 we can get this solution;
EDN
2) When ¢* > 0:
To make the derivative of Eq.(20) regarding to c* equal
to 0, we should have
—1<2\(i—1)=2\(v—1) —yq <1, (25)

which leads to
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Again, [2“2\1‘;7‘1—‘ is an appropriate value for 4, and the index

should not exceed v, thus we have

20\ + g <

27
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which leads to
20\ > g, (28)

similarly due to the assumption c*
A 20atvq] < 0 we can get this solution.

< 0, only when

When there is no such O[20Azng] OF G 20ataq], it’s easy

to see ¢* = 0 minimizes Eq.(20).

C. Below are some figures that are not included in the
main body of the paper due to space limitation:

The residual plot of the ADMM solver is presented in
Fig.8, it’s converging to 0 as the iteration increases:
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Figure 8. Residual with update.

To show the advantage of combining multi-view feature
sets, in subspace clustering, we run our proposed method
with increasing number of views on four datasets. Compar-
ison of NMI is shown in Fig.9:
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Figure 9. NMI comparison with increasing views, 1-5 views for
Handwritten and MSRC-v1, 1-3 views for ORL and Yale.
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