
6. Supplemental
A. The detailed derivation of Eq.(13) is as the following:

We denote the derivative of Eq.(12) regarding to j as H ,
1) When c

⇤
> 0:

a. If j � c
⇤: H = � + ↵ + j � y = 0, we can get

j = y � ↵ � �, and with the assumption j � c
⇤, y has to

satisfy y � ↵ + � + c
⇤ to get this solution;

b. If 0 < j < c
⇤: H = � � ↵ + j � y = 0, which

leads to j = y+↵��, and similarly due to the prerequisite
0 < j < c

⇤, we should have 0 < y + ↵ � � < c
⇤;

c. If j  0: H = �� � ↵ + j � y = 0, we can get
j = y + ↵ + �, so y + ↵ + �  0 as well;

2) When c
⇤

< 0:
a. If j � 0: H = � + ↵ + j � y = 0, we can get

j = y � ↵ � �, and with the assumption j � 0, only when
y � ↵ + � we can get this solution;

b. If c
⇤

< j < 0: H = �� + ↵ + j � y = 0, then we
have j = y � ↵ + �, also c

⇤
< y � ↵ + � < 0;

c. If j  c
⇤: H = �� � ↵ + j � y = 0, we can get

j = y + ↵ + �, so when y + ↵ + �  c
⇤ we can get this

solution.
B. The derivative details for Eq.(21) is as the following:
We suppose the optimal solution is c

⇤ = ai, and it’s ob-
vious that the subgradient of |ai � c

⇤| is any element in the
interval of [-1, 1].

1) When c
⇤

> 0:
To make the derivative of Eq.(20) regarding to c

⇤ equal
to 0, we should have

�1  2�(i � 1)� 2�(v � i) + �q  1, (23)

which leads to

2v� � �q

4�
+

1

2
� 1

4�
 i  2v� � �q

4�
+

1

2
+

1

4�
, (24)

i has to be an integer as an index, so
l
2v���q

4�

m
is an ap-

propriate value for it. Also, an index i has to be larger than
0, we should have 2v� > �q, and since the assumption is
c
⇤

> 0, only when ad 2v���q
4� e > 0 we can get this solution;

2) When c
⇤

> 0:
To make the derivative of Eq.(20) regarding to c

⇤ equal
to 0, we should have

�1  2�(i � 1)� 2�(v � i)� �q  1, (25)

which leads to

2v� + �q

4�
+

1

2
� 1

4�
 i  2v� + �q

4�
+

1

2
+

1

4�
, (26)

Again,
l
2v�+�q

4�

m
is an appropriate value for i, and the index

should not exceed v, thus we have

2v� + �q

4�
 v, (27)

which leads to
2v� � �q, (28)

similarly due to the assumption c
⇤

< 0, only when
ad 2v�+�q

4� e < 0 we can get this solution.
When there is no such ad 2v���q

4� e or ad 2v�+�q
4� e, it’s easy

to see c
⇤ = 0 minimizes Eq.(20).

C. Below are some figures that are not included in the
main body of the paper due to space limitation:

The residual plot of the ADMM solver is presented in
Fig.8, it’s converging to 0 as the iteration increases:

Figure 8. Residual with update.

To show the advantage of combining multi-view feature
sets, in subspace clustering, we run our proposed method
with increasing number of views on four datasets. Compar-
ison of NMI is shown in Fig.9:
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Figure 9. NMI comparison with increasing views, 1-5 views for
Handwritten and MSRC-v1, 1-3 views for ORL and Yale.
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