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Abstract

Semantic segmentation involves classifying each pixel
into one of a pre-defined set of object/stuff classes. Such
a fine-grained detection and localization of objects in the
scene is challenging by itself. The complexity increases
manifold in the presence of blur. With cameras becoming
increasingly light-weight and compact, blur caused by mo-
tion during capture time has become unavoidable. Most
research has focused on improving segmentation perfor-
mance for sharp clean images and the few works that deal
with degradations, consider motion-blur as one of many
generic degradations. In this work, we focus exclusively
on motion-blur and attempt to achieve robustness for se-
mantic segmentation in its presence. Based on the observa-
tion that segmentation annotations can be used to generate
synthetic space-variant blur, we propose a Class-Centric
Motion-Blur Augmentation (CCMBA) strategy. Our ap-
proach involves randomly selecting a subset of semantic
classes present in the image and using the segmentation
map annotations to blur only the corresponding regions.
This enables the network to simultaneously learn seman-
tic segmentation for clean images, images with egomotion
blur, as well as images with dynamic scene blur. We demon-
strate the effectiveness of our approach for both CNN and
Vision Transformer-based semantic segmentation networks
on PASCAL VOC and Cityscapes datasets. We also illus-
trate the improved generalizability of our method to com-
plex real-world blur by evaluating on the commonly used
deblurring datasets GoPro and REDS .

1. Introduction
Motion-blur has become ubiquitous in our lives driven

largely by the compactness and affordability of light weight
cameras. While camera quality has improved significantly,
sensing technology cannot suppress blur completely yet.
For handheld cameras and cameras mounted on moving ve-
hicles, motion during capture is a major reason for the oc-
currence of blurred images. Most research in semantic seg-

Figure 1. (a) Motion-blurred images, (b) Segmentation from a
network trained on clean images (c) Segmentation after using our
augmentation for training (d) Ground truth.

mentation especially those that are deep-learning based and
state-of-the-art, focus on increasing accuracy [30], [38] and
throughput [31], [23]. While these models have achieved
significant gains, they are trained on clean data and con-
sequently struggle to perform when presented with out-of-
distribution data [13]. Such wrong predictions can have
grave consequences for safety-critical applications like au-
tonomous driving. Therefore, it becomes essential to focus
on finding ways of making these models robust to unavoid-
able degradations like motion-blur.

When trying to generalize to blurred images, an off-the-
shelf approach would be to use a deblurring algorithm to
deblur the image before continuing with the downstream
task of segmentation. However, the generalization abili-
ties of deblurring models are still subpar and they strug-
gle to perform well for real blurred out-of-distribution im-
ages [37] . Additionally, many of these image restoration
models process images at multiple-scales in a hierarchi-
cal fashion which improves the performance but also in-
creases the latency and memory requirements [34,35]. Con-
sequently, this two-stage approach of using deblurring as
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pre-processing to obtain deblurred images before attempt-
ing segmentation is not viable for deployment and real-time
applications. Hence, there is a strong need to devise single-
stage methods that can bypass this step.

Some recent works have tried to focus on analysing and
improving the robustness of existing models for different
tasks to a spectrum of commonly encountered degradations.
Unlike adversarial robustness, [11] defines robustness as the
ability of a model trained on sharp images to retain competi-
tive performance in images having degradations. [11,13,21]
benchmark standard models for their robustness to multi-
ple severity levels of sixteen commonly occurring degrada-
tions including motion-blur for the tasks of object recogni-
tion, object detection and semantic segmentation. Note that
the motion-blur being considered here is spatially invariant
and linear. [12] and [16] propose augmentation strategies
to improve generic robustness of models across the sixteen
degradations. While these augmentations have resulted in
increased robustness, we believe that significant improve-
ments can be made if degradation-specific and task-specific
insights are exploited. [14] leverages the semantic segmen-
tation annotation maps to increase the shape bias in the net-
work which has been established to improve robustness [7].
However, this is only a task-specific augmentation and at-
tempts to achieve improvements over all degradation types.

In this work, we attempt to make semantic segmentation
robust to the presence of generic space-variant motion-blur.
In particular, we develop a Class-Centric Motion-Blur Aug-
mentation (CCMBA) strategy where we leverage the seg-
mentation map annotations to introduce blur in specific re-
gions of the image to enforce distinguishability and easier
training. We randomly choose a subset of classes that we
want to blur, blur the corresponding foreground image us-
ing a synthetic non-linear kernel, and then blend the blurred
foreground image with the sharp background image. Since,
motion-blur can be due camera ego-motion as well as dy-
namic scenes, the advantage of our augmentation strategy
lies in better generalization to dynamic scenes due to its se-
mantic class-centric nature. Fig. 1 shows the segmentation
results obtained on motion-blurred images with and without
our method.

Our contributions are the following :

• An effective data augmentation scheme for reliably
segmenting out regions from motion blurred images
without the need for deblurring.

• Our method is generic in nature and can be used with
any supervised semantic segmentation network.

• While our model is trained on only synthetically gen-
erated data, the class-centric nature of our augmenta-
tion enables it to perform well on general dynamic blur
datasets like GoPro and REDS, especially for common
classes like humans.

• We report improved performance for DeepLabv3+
over baseline methods with 3.2% and 3% increase on
PASCAL VOC and Cityscapes dataset, respectively,
for the highest level of blur. We also achieve improve-
ments on the Cityscapes-C dataset over previous works
with a maximum 9% increase for highest levels of blur.

Figure 2. Class-Centric Motion-Blur Augmentation (CCMBA):
Given a sharp image, its segmentation mask, and a motion-blur
kernel, we synthetically blur the regions corresponding to a subset
of classes present in the image to mimic dynamic scenes. When
all classes are chosen, camera motion-blur is synthesized making
our augmentation applicable for generic blur.

2. Related Works
2.1. Image Deblurring
In recent years, data-driven deep learning methods have
achieved significant success in image deblurring and other
low-level vision tasks using convolutional neural networks
(CNNs). Earlier deep learning works [1, 29] estimated the
blur kernel in order to obtain the deblurred image, drawing
inspiration from traditional methods of deblurring. How-
ever, this method is not practical in real scenarios due to the
complex nature of blur. DeepDeblur [22] proposed to di-
rectly map a blurry image to its sharp counterpart and this
paradigm has been prevalent ever since. A series of state-of-
the art models [33–35] have been encoder-decoder models
with model sizes increasing with increasing performance.
Some works also show that significant performance gains
can be achieved by adapting transformer-based architec-
tures for restoration tasks but these models are also bulky.
These deblurring models while giving state-of-the-art per-
formance on the training dataset, still struggle to general-
ize to real-world blurred images that are out-of-distribution
[36]. Moreover, these methods are far from real-time.
Some recent works [15, 18, 24] attempt to make deblurring
more efficient and improve throughput but real-time deblur-
ring with competitive performance remains elusive. Conse-
quently, there is an imminent need for a single-stage ap-
proach that can retain competitive performance without the
need for deblurring as a pre-processing step.
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Figure 3. Space-invariant motion-blur for (a) Exposure level 1, (b) Exposure Level 2, (c) Exposure Level 3, with anxiety decreasing from
left to right for each exposure level.

2.2. Robustness in Semantic Segmentation
Robustness of deep convolutional neural networks has

been addressed in various benchmarks. Recent works, at-
tempt to evaluate and increase the robustness of CNNs in
various naturally-occurring degradations. [17] used defocus
blur to reduce the impact of irrelevant background informa-
tion for semantic segmentation. [28] examined the impact
of blur on image classification and semantic segmentation
using VGG-16 and found that using defocus blur augmen-
tation leads to significant improvements in robustness for
classification task but not for segmentation. Subsequently,
[11] introduced the “ImageNet-C dataset” where the au-
thors corrupt the ImageNet dataset by common image cor-
ruptions and benchmark various pre-trained models for ro-
bustness. [13] follows a similar methodology to benchmark
segmentation models on Cityscapes-C and PASCAL-VOC-
C. [5, 12, 32] improve the robustness of image recognition
models to generic degradations using data augmentation.
Based on the insight from [7] that deep neural networks
trained on ImageNet seem to rely more on local texture in-
stead of global object shape, [14] proposes a method to im-
prove segmentation robustness to generic degradations by
leveraging the semantic segmentation annotations. These
methods cater to generic degradations and do not train on
any specific degradation.

Motion-blur is a far more complex phenomenon than
other degradations like Gaussian noise or shot noise due
to its inherent dependency on scene complexity in terms
of moving objects and occlusions, in addition to blur con-
tributed by camera shake. This makes motion-blur a com-
plex degradation to generalize to. Standard augmentation
methods fail to take these intricacies into consideration.

We attempt to build an augmentation strategy that caters
to all types of blur from space-invariant ego-motion blur
to space-variant dynamic scene blur. Conventionally, soft
segmentation in the presence of dynamic scene motion-blur
has been modeled as an alpha-matting task. Given seman-
tic segmentation masks, we synthetically model dynamic
scene motion-blur by convolving segmentation maps of a
set of randomly selected classes with a blur kernel to ob-
tain an alpha-matte. We then blur the foreground image and
blend it with the sharp background image to obtain a space-
variant, class-centric motion-blurred image. When all the
classes in the image are selected, we get space-invariant
ego-motion blurred image. Since our method is tailored to

handle generic blur it improves the robustness of segmenta-
tion models.

3. Methodology
In this section, we begin by describing the dataset syn-

thesis process in Section 3.1 including a brief description of
blur kernel generation which is followed by a detailed de-
scription of our Class-Centric Motion-Blur Augmentation
(CCMBA) approach in Section 3.2.

3.1. Real or Synthetic Blur?
A major challenge to our task is the absence of appro-

priate datasets. To the best of our knowledge, no dataset
exists that provides accurate annotations for semantic seg-
mentation along with blurred and sharp pairs of real images.
This restricts us to (i) capturing our own data and annotat-
ing it, or (ii) generating synthetic data for our experiments.
The process of capturing and creating a new dataset with
real, consistent blurred and sharp image pairs is non-trivial
and requires special hardware setup [25]. An alternative
approach is to capture high frame rate videos and average
them to simulate synthetic motion-blur images akin to [22].
However, annotating sufficiently large number of sharp im-
ages for segmentation masks requires considerable time and
effort. Hence, following existing works [8,11,13,20,26,36],
we choose to generate synthetic data for our experiments.

Two possible approaches could be taken for synthesizing
the dataset - (a) generate pseudo-ground truth segmentation
maps for real blurred images by passing the corresponding
sharp image through a pre-trained state-of-the-art semantic
segmentation network, or (b) synthetically blur the images
for which semantic segmentation map annotations are avail-
able. For the first approach, standard deblurring datasets
like GoPro [22] can be used but the distributions of these
datasets are significantly different from the distributions of
segmentation datasets which renders them a poor choice.
Additionally, if we use a pre-trained segmentation model,
the quality of the resultant pseudo-ground truth segmen-
tation maps is dictated by the generalizability of the pre-
trained model across datasets. Training on such sub-optimal
pseudo-ground truth segmentation maps would impose an
upper limit on the performance that our model can achieve.

The second approach involves synthetically blurring
standard datasets for segmentation like PASCAL-VOC,
Cityscapes and MS-COCO [4, 6, 19] to obtain blur-sharp
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pairs. The synthetic blur can be introduced in images in
multiple ways. Some works advocate the use of Generative
Adversarial Networks (GANs) because it enforces learning
of more realistic blur [36]. But such methods do not pro-
vide any control or interpretability over the generated blur.
Other works resort to a simpler approach and blur images
by convolving them with blur kernels [26]. We too adopt
a convolution-with-blur-kernels approach to synthesize dif-
ferent blurring situations including camera shake and dy-
namic scene blur.

To generate blur kernels, we employ the methodology
described in [2] which is given in brief next.

3.1.1 Blur Kernels Synthesis
The blur kernels generated in [2] are obtained by gener-
ating continuous camera motion trajectories and sampling
them on a pixel grid. Two of the parameters that control
the trajectories generated and are relevant to us are anxiety
level (A) and exposure level (E). Anxiety level controls the
amount of jerk and velocity changes in the trajectory. A
higher anxiety level corresponds to more frequent changes
in direction. Exposure level parameter models the exposure
time of a camera. For our experiments, we consider a to-
tal of 3 exposure levels and 3 anxiety levels resulting in a
total of 9 blur-severity levels. To synthesize a blur kernel
corresponding to a particular exposure level ‘e’ and anxi-
ety level ‘a’, we first generate a continuous trajectory with
‘a’ as the parameter. To generate a trajectory, we consider
starting velocity and position as v0 and x0 sampled from
a uniform circle. Then, at every time step, the velocity is
updated using the following acceleration vector,

∆v = a(∆vg − Ixt) + 2a|v|∆vj , (1)

where, ‘a’ models the anxiety level, ∆vg is random accel-
eration drawn from N(0, σ2), Ixt is a parameter modeling
the inertia to retain position and ∆vj models the jerk and is
randomly sampled from a uniform circle. Subsequently, the
generated trajectory is sliced off at time ‘e’ to simulate the
varying exposure. The blur kernels are then computed by
sampling the continuous trajectory on a regular pixel grid,
using sub-pixel linear interpolation. Each kernel has a size
of 32× 32. The obtained motion-blur kernels are then cen-
tered by translating their barycenters to the center of the
filters. We generate 12,000 blur kernels for every pair of
anxiety and exposure values resulting in 108000 kernels for
training. For evaluation, we generate another set of 108000
kernels and randomly sample from it. Anxiety levels are
fixed at A = [0.005, 0.001, 0.00005] and exposure times as
E = [1/25, 1/10, 1/5].

Note that [26] uses 5 levels of linear blur where the im-
ages blurred with kernels corresponding to higher exposure
give rise to images that are not very commonly encoun-
tered in real-life. We argue that attempting to increase ro-

Figure 4. Examples of images generated by CCMBA. (a) Sharp
image, (b) Image with aeroplane (top) and car (bottom) class
blurred. (c) Image with only aeroplane (top) and only car (bot-
tom) class sharp. (d) All classes blurred.

bustness to these less-frequently occurring and difficult-to-
handle blur may not be necessary and can decrease the ro-
bustness of the model for the more relevant case of com-
monly occurring blurs. We restrict our experiments to ex-
posure times corresponding to an approximate maximum of
15 pixels of blurring and use non-linear blur kernels to in-
clude the effect of handshake and jerks that can occur due
to button press, etc. We define our blur levels as L1, L2 and
L3 corresponding to different exposure times for our exper-
iments with L3 corresponding to largest exposure time.

3.2. Class-Centric Blur Augmentation
Our goal is to improve the performance of semantic seg-

mentation model in the presence of commonly encountered
levels of blur while retaining comparable performance for
sharp images. A simple approach to attempt would be to
finetune pre-trained models on blurred images. Alterna-
tively, the same model could be retrained using a combina-
tion of blurred and sharp images wherein the blurred images
are sampled with a probability p. But, neither of these meth-
ods leverage the additional information that is available to
us in the form of semantic segmentation annotations.

Conventionally, the task of alpha matting has been used
to model transparent regions [10] as

I = α.F + (1− α).B, (2)

where α ∈ [0, 1], F is the foreground object, and B is the
background. Motion-blur, especially, dynamic scene blur
causes the pixels of the foreground object to smear along the
boundaries and mix with the intensities of the background.
Given a motion blurred image of a dynamic object, the task
of segmenting out the motion blurred object can be achieved
by computing the alpha matte [27].

Inspired by this, we attempt the inverse task of synthe-
sizing class-centric motion blurred images by synthetically
generating the blurred alpha matte for the selected classes
using binary segmentation masks corresponding to those
classes. The synthesized alpha matte is then used to mix
the motion-blur of selected classes with the pixel intensities
of the remaining classes. A brief overview of our approach
is given in Fig. 2.
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We refer to our approach as Class-Centric Motion-Blur
Augmentation (CCMBA) strategy. The benefits of using
such a strategy are two-fold. Firstly, blurring only the re-
gions of an image belonging to a particular class simulates
a dynamic scene being captured. As a result, the abil-
ity to generalize to complex blurs where space-variant dy-
namic scene blur is present in addition to camera shake is
improved. Secondly, learning to segment out completely
blurred images may be harder for the network as it may
struggle to distinguish between regions having same colour
but different texture because blurring leads to loss of tex-
ture. Blurring different image regions class-wise during
training makes the network focus on improving perfor-
mance specifically for the blurred region. As a result, over
time, both sharp and blurred image features get learnt effec-
tively. We now describe our CCMBA approach.

Algorithm 1 Class-Centric Motion Blur Augmentation

Input: A tuple of sharp image Is and its semantic segmen-
tation mask Ms having C semantic classes

Output: Icblur or Is
1: Sample p from Unif(0, 1)
2: if p > 0.5 then
3: Randomly sample a blur kernel K
4: c← Sample a number between 1 and C
5: csub ← Select a subset of c classes of C
6: Mf = Sum(Ms[x] for x in csub)
7: Mf [Mf > 0] = 1
8: Icblur = (Mf · Is) ∗K + (1− (Mf ∗K)) · Is
9: return Icblur

10: else
11: return Is
12: end if

Let N be the total number of semantic segmentation
classes in the dataset. Suppose we have an image Is of size
W ×H as input with C semantic classes present in the im-
age. We randomly select a c < C, as the number of classes
to be blurred and sample c of C classes. Let this subset of
selected classes be denoted as Csub. Assuming a one-hot
representation of the semantic segmentation annotations,
the dimensions of the segmentation map is W×H×N . We
combine their segmentation maps to get the foreground bi-
nary segmentation map Mf by summing up along the chan-
nel dimension for classes in Csub followed by thresholding.
Mf is zero at all pixels which do not belong to the classes
in Csub and is 1 otherwise. We blur this foreground map
with a randomly selected (generated) blur kernel K to ob-
tain Mfb. Then we take the background masked version of
the image Is ·Mf and blur it with the same kernel to ob-
tain Ifb. To get the sharp background image Ibgs, we use
1−Mfb to mask out the foreground regions from the sharp
image using Is · (1 − Mfb). The final augmented image

Icblur is then obtained by summing up the image with the
blurred foreground (Ifb) and the image with the sharp back-
ground (Ibgs). These set of operations can be summarized
as

Icblur = (Mf · Is) ∗K + (1− (Mf ∗K)) · Is (3)

where ‘·’ denotes element-wise multiplication, ‘∗’ denotes
convolution operation, Is is the sharp image, K is the ran-
domly selected blur kernel, Mf is the binary mask corre-
sponding to the set of c classes to be blurred, and Icblur is
the class-centric blurred image. Note that for each image,
the probability of it undergoing CCMBA is given by p while
the sharp image is returned with 1−p probability in order to
maintain performance on sharp images as well. We choose
p = 0.5 for our experiments.

4. Experiments
In this section, we demonstrate the effectiveness of our

CCMBA strategy for semantic segmentation in the presence
of generic motion blur. We consider a standard CNN-based
network, DeepLabv3+ [3], and a state-of-the-art vision-
transformer-based network, Segformer [30], for our exper-
iments and show results on two commonly used segmenta-
tion datasets – PASCAL-VOC [6] and Cityscapes [4]. We
show that performance gains can be achieved using our aug-
mentation scheme for any supervised segmentation method.
We perform ablation studies to further support our claims.

In Section 4.1, we discuss the implementation details of
our experiments followed by quantitative and qualitative re-
sults for space-invariant motion-blur and space-variant real
motion-blur in Section 4.2 along with ablation studies.

4.1. Implementation Details
Datasets: We use two publicly available datasets in our ex-
periments. PASCAL VOC [6] is a standard natural object
segmentation dataset consisting of 21 classes with 10582,
1449, and 1456 images as training, validation and test splits.
This includes additional training augmentation data accord-
ing to [9]. Cityscapes [4] is an autonomous driving dataset
having 19 classes with a total of 5000 high resolution im-
ages divided into 2975, 500, 1525 images for training, val-
idation and testing. Cityscapes-C [13] dataset expands the
Cityscapes validation set with 16 types of algorithmically
generated corruptions. We generate the motion-blur subset
of Cityscapes-C corresponding to severity levels S1, S2 and
S3 for our experiments since it is not publicly available.
Networks: We select DeepLabV3+ [3] and Segformer [30]
as networks for our experiments owing to their competitive
performance and as representatives of their specific kinds
of architectures. DeepLabV3+ [3] is a standard convolu-
tional semantic segmentation model. It includes an atrous
spatial pyramid pooling (ASPP) module which improved
segmentation performance over previous works. Segformer
[30] is a recent framework which unifies vision transformer
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Table 1. Quantitative comparisons with baseline methods for DeepLabv3+ on PASCAL VOC and Cityscapes, and Segformer on
Cityscapes for clean and blurred images with L1, L2, L3 blur levels. Best results are given in bold and second best are underlined.

Method
VOC Cityscapes

DeepLabv3+ DeepLabv3+ Segformer
Clean L1 L2 L3 Clean L1 L2 L3 Clean L1 L2 L3

No-Retraining 77.2 69.6 53.1 36.5 75.6 70.4 58.1 41.4 81.0 78.2 73.2 62.5
Deblurring - 69.3 65.9 58.2 - 72.2 70.9 66.5 - 78.5 77.5 75.3
Finetuning 67.4 71.9 69.6 63.9 70.6 74.2 70.6 68.3 79.8 80.2 79.1 76.0

MBA 74.6 72.9 69.2 60.3 60.4 73.3 71.2 66.9 79.6 78.5 77.0 74.1
CCMBA (Ours) 76.5 74.6 72.1 66.0 76.2 75.6 73.6 70.4 81.1 80.2 78.7 76.0

backbones with lightweight multilayer perceptron (MLP)
decoders to perform semantic segmentation and achieves
state-of-the-art performance across datasets.
Comparison Baselines: Due to a dearth of previous works
for comparison, we propose a set of comparison baselines
to quantify the performance gains achieved by our method
in terms of robustness to motion blur for semantic segmen-
tation. Our first baseline is ‘No-Retraining’ where we con-
sider a model trained on clean images and quantify its ro-
bustness to different levels of blur. The second baseline
we compare with is ‘Deblurring’. Using this baseline, we
seek to benchmark the improvement that a deblurring pre-
processing step can add for segmenting a blurred image.
For experiments with this baseline, first, we blur our en-
tire test set using blur kernels of one level. We then use a
standard deblurring network, MPRnet [34], to deblur these
images. The deblurred images are then passed through a
semantic segmentation network trained on clean images to
get performance corresponding to that particular level of
blur. Our third baseline is ‘Finetuning’ where we want to
make the network adapt to newer blurred images while re-
taining performance on previously seen sharp images. To-
wards this end, we first generate a set of blur kernels fol-
lowing Sec. 3.1.1. These are then used to blur each image
in the training set. The same set of blurred images are used
for finetuning the model pre-trained on clean images. Fi-
nally, our fourth baseline is ‘Motion-Blur Augmentation’
(MBA) where we seek to achieve robustness to motion blur
by showing the network both clean and blurred images dur-
ing training. Each sample is convolved with a randomly se-
lected blur kernel with probability p during training. Note
that while such space-invariant motion-blur augmentation
can model camera-motion blur, real generic blur is often
composed of individual dynamic components which this

Table 2. Comparison with baselines and [13] on Cityscapes-C for
DeepLabv3+ and Segformer. Best results are given in bold and
second best are underlined.

Method DeepLabv3+ Segformer
Clean S1 S2 S3 Clean S1 S2 S3

No-Retraining 75.6 71.2 65.7 56.9 81.0 77.8 74.6 68.8
Finetuning 70.6 72.4 70.4 68.1 79.8 78.0 76.0 73.1

MBA 60.4 57.9 54.5 50.8 79.6 77.4 75.3 71.9
PbN [14] 76.1 72.3 68.7 63.2 - - - -

CCMBA (Ours) 76.2 74.0 72.3 68.9 81.1 77.7 75.9 72.3

augmentation scheme fails to take into account.
We train DeepLabv3+ on PASCAL VOC and Cityscapes

datasets and Segformer on Cityscapes dataset using our
CCMBA strategy and compare their performances with
each of the proposed baselines. To eliminate the need to re-
peatedly synthesize kernels for experiments, we take 12000
blur kernels corresponding to each of the 9 combinations
of anxiety and exposure levels and save them before train-
ing. A separate set of such kernels is created for testing.
Kernels are always randomly selected across blur levels un-
less specified otherwise. Images are blurred with reflection
padding to ensure the naturalness of the image at the edges
after blurring. For training the ‘Finetuning’ baseline, we re-
duce the base learning rate by a factor of 10. For training
the MBA baseline and our CCMBA strategy, the image is
blurred with a probability p = 0.5 with space-invariant and
space-variant blurring, respectively. The evaluation met-
ric used in our experiments is standard mean-Intersection-
over-Union (mIoU). All models were written in Pytorch
and were trained to convergence on NVIDIA GeForce RTX
3090 GPUs. A single GPU was used to train all models on
PASCAL-VOC while two GPUs were used for Cityscapes.

For DeepLabv3+ on PASCAL VOC, we consider a batch
size of 4 and crop size of 513 × 513 during training and a
batch size of 16 with crop size of 768×768. For Segformer
on Cityscapes, we consider a batch size of 16 with crop size
of 1024 × 1024. In all our experiments, we use ResNet-50
as backbone for DeepLabv3+ and MiT-B2 as backbone for
Segfomer unless specified otherwise. All the other hyper-
parameters and training setup are the same as those in the
original papers.

4.2. Results

To establish the increased robustness of models trained
with our augmentation, we compare quantitative results
with a set of baseline methods and [14] for space-invariant
blur in Table 1. We show qualitative comparisons for space-
invariant blur in Fig. 5. Since no works exist that investigate
the robustness of semantic segmentation for real dynamic
scene motion-blur, we compare our qualitative results ob-
tained for blurred and sharp images from GoPro and REDS
dataset with the baseline methods in Fig. 6.
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Quantitative Results

We provide comprehensive comparisons with baseline
methods in Table 1 for DeepLabV3+ on PASCAL VOC
and Cityscapes dataset, and on Cityscapes dataset for Seg-
former. A general trend in performance is observed across
all experiments. The ‘No-Retraining’ baseline performance
drops severely as we move from blur levels L1 to L3. While
‘Deblurring’ baseline shows improved performance in the
presence of blur, there is still a significant drop especially
at blur levels L2 and L3. The ‘Finetuning’ baseline im-
proves the performance across blur levels L1, L2 and L3
at the cost of performance drop for clean images which is
not desirable. The ‘MBA’ baseline shows improved perfor-
mance across all levels of blur while retaining performance
for clean sharp images. Our CCMBA achieves performance
gains of 2.3%, 3.5% and 3.2% over the best performing
baseline for L1, L2, L3 blur levels for DeepLabv3+ on PAS-
CAL VOC while retaining performance on clean images.
For Cityscapes, performance gains of 1.9%, 3.4% and 3.1%
are observed over the best performing baseline for L1, L2
and L3 blurs respectively while performance is retained for
clean images. For Segformer, our CCMBA achieves com-
parable performance to the best case performance achieved
by any baseline for each level of blur.

To establish the robustness of our approach, we show re-
sults for models trained using our strategy on the motion-
blur subset of Cityscapes-C in Table 2. Compared to
[14], our method achieves 2.3%, 5.2% and 9% gains on
DeepLabv3+ over blur levels S1, S2 and S3. Note that this
subset of blurring kernels has not been used for training our
model. Our method also achieves 1.7%, 5.1 % performance
gains over pre-trained Segformer for S2 and S3 and 2%,
0.5% gains over MBA baseline for Clean and S3 blur level
while retaining comparable performance for the rest.

Qualitative Results
Qualitative comparisons with baseline methods for PAS-
CAL VOC dataset for space-invariant blur is given in Fig.5.
Our results are consistent across clean and blurred images
with minor deviations at highest blur level. Our approach
is also able to segment out finer details better like the side-
wing of the aeroplane in Fig.5 (a), the handle of the cycle
in Fig.5 (b) and the leg of the rider in Fig.5 (c). Qualitative
comparisons for space varying real blur is given in Fig.6 for
one image from GoPro and two images from REDS. Our
results are clearly more consistent between sharp and blur
images. To appreciate the benefits of our method, for Fig.6
(a), compare the segmentation map regions corresponding
the girl in foreground. Our approach gives a much more ac-
curate segmentation map than others. For Fig.6 (b), zoom
in on the couple in the center to appreciate our consistently
better performance for blurred images. Note that the buses
category is also getting predicted better across both blur and

sharp images for our method while other works get con-
fused. In Fig.6 (c), other methods are not able to segment
out some humans in the blurred image, while our method is
able to segment them out in both blurred and sharp images.
The better generalization of our approach to real blur can be
attributed to its class-centric nature where the network sees
different subsets of class regions blurred at different instants
of time during training, which effectively models dynamic
scene blur along with egomotion blur.

Ablations
Through our ablation studies, we investigate the effect of
model parameter initialization, backbone size and the blur
levels considered during training on our augmentation strat-
egy. To investigate the effect of parameters initialization
on our augmentation strategy, we use DeepLabv3+ with
PASCAL VOC. We first train a the model from scratch
using CCMBA with random initialization. We then re-
peat the same experiment with initialization from clean pre-
trained network weights. Results in Table 3 establish that
finetuning a pre-trained network using our augmentation
scheme gives better results. We perform ablation studies for
DeepLabV3+ on PASCAL VOC for MobileNetV2, ResNet-
50 and ResNet-101 backbones. The consistent increase
in performance with increasing backbone size in Table 4
shows the effectiveness of our approach. To demonstrate
the necessity to train on all 3 levels of blur together in order
to achieve best performance, we train our MobileNetV2 on
PASCAL VOC for each blur level individually. The results
in Table 5 clearly show that training with all 3 levels of blur
is necessary.

Table 3. Ablation studies on network initialization.

Initialization mIoU
Clean L1 L2 L3

Random 75.5 73.6 69.6 61.5
Pre-trained 76.5 74.6 72.1 66.0

Table 4. Ablation studies illustrating the applicability of our aug-
mentation across network size.

Backbone Params mIoU
Clean L1 L2 L3

MobileNetV2 3.4M 69.3 68.2 65.6 61.5
ResNet-50 25.6M 76.3 75.3 72.5 68.6
ResNet-101 44.5M 77.6 76.3 75.2 71.3

Table 5. Ablation studies for blur levels during training. Best
results are given in bold and second best are underlined.

Training Data mIoU
Clean L1 L2 L3

Clean 70.1 60.3 44.4 29.0
L1 66.4 65.1 58.7 39.1
L2 66.4 65.6 63.2 53.5
L3 64.5 64.1 61.9 58.6

L1, L2, L3 69.3 68.2 66.6 61.5

Supplementary We include in our supplementary more
qualitative results for both PASCAL VOC and Cityscapes.
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Figure 5. Qualitative results for space-invariant motion blur for DeepLabv3+ on PASCAL VOC. Note that our method CCMBA captures
finer details better than all baselines.

Figure 6. Qualitative comparisons with baselines for space-varying real blur on GoPro and REDS dataset.

We also include a detailed sensitivity analysis for each class
and blur level alongwith an ablation study for the probabil-
ity parameter ‘p’. We also include an ablation for the role
of non-linear blur in our improved performance.

5. Conclusions
In this work, we attempted to improve the robustness

of semantic segmentation performance in the presence of
generic motion blur. We developed a class-centric motion-

blur augmentation strategy inspired by the alpha-matting
modeling of blur in literature. We selected a subset of
classes and generate a synthetic alpha-matte by blurring the
corresponding segmentation maps and subsequently blend
it with the sharp background. Experiments demonstrate the
effectiveness of our approach and its applicability to im-
proving the robustness of any supervised semantic segmen-
tation approach without any increase in model parameters
and inference time.
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