
3DAvatarGAN: Bridging Domains for Personalized Editable Avatars

Rameen Abdal²1 Hsin-Ying Lee2 Peihao Zhu²1 Menglei Chai2 Aliaksandr Siarohin2

Peter Wonka1 Sergey Tulyakov2

1KAUST 2Snap Inc.

Figure 1. Editable 3D avatars. We present 3DAvatarGAN, a 3D GAN able to produce and edit personalized 3D avatars from a single

photograph (real or generated). Our method distills information from a 2D-GAN trained on 2D artistic datasets like Caricatures, Pixar

toons, Cartoons, Comics etc. and requires no camera annotations.

Abstract

Modern 3D-GANs synthesize geometry and texture by

training on large-scale datasets with a consistent structure.

Training such models on stylized, artistic data, with often

unknown, highly variable geometry, and camera informa-

tion has not yet been shown possible. Can we train a 3D

GAN on such artistic data, while maintaining multi-view

consistency and texture quality? To this end, we propose

an adaptation framework, where the source domain is a

pre-trained 3D-GAN, while the target domain is a 2D-GAN

trained on artistic datasets. We, then, distill the knowl-

edge from a 2D generator to the source 3D generator. To

do that, we first propose an optimization-based method to

align the distributions of camera parameters across do-

mains. Second, we propose regularizations necessary to

learn high-quality texture, while avoiding degenerate ge-

ometric solutions, such as flat shapes. Third, we show

a deformation-based technique for modeling exaggerated

geometry of artistic domains, enablingÐas a byproductÐ

personalized geometric editing. Finally, we propose a novel

inversion method for 3D-GANs linking the latent spaces of

the source and the target domains. Our contributionsÐfor

the first timeÐallow for the generation, editing, and anima-

tion of personalized artistic 3D avatars on artistic datasets.

Project Page: https:/rameenabdal.github.io/3DAvatarGAN

1. Introduction

Photo-realistic portrait face generation is an iconic ap-

plication demonstrating the capability of generative models

especially GANs [28,30,31]. A recent development has wit-

nessed an advancement from straightforwardly synthesizing

2D images to learning 3D structures without 3D supervi-

sion, referred to as 3D-GANs [10,41,55,64]. Such training
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is feasible with the datasets containing objects with highly

consistent geometry, enabling a 3D-GAN to learn a distri-

bution of shapes and textures. In contrast, artistically styl-

ized datasets [25, 65] have arbitrary exaggerations of both

geometry and texture, for example, the nose, cheeks, and

eyes can be arbitrarily drawn, depending on the style of the

artist as well as on the features of the subject, see Fig. 1.

Training a 3D-GAN on such data becomes problematic due

to the challenge of learning such an arbitrary distribution of

geometry and texture. In our experiments (Sec. 5.1), 3D-

GANs [10] generate flat geometry and become 2D-GANs

essentially. A natural question arises, whether a 3D-GAN

can synthesize consistent novel views of images belonging

to artistically stylized domains, such as the ones in Fig. 1.

In this work, we propose a domain-adaption framework

that allows us to answer the question positively. Specifi-

cally, we fine-tune a pre-trained 3D-GAN using a 2D-GAN

trained on a target domain. Despite being well explored for

2D-GANs [25, 65], existing domain adaptation techniques

are not directly applicable to 3D-GANs, due to the nature

of 3D data and characteristics of 3D generators.

The geometry and texture of stylized 2D datasets can be

arbitrarily exaggerated depending on the context, artist, and

production requirements. Due to this, no reliable way to

estimate camera parameters for each image exists, whether

using an off-the-shelf pose detector [72] or a manual label-

ing effort. To enable the training of 3D-GANs on such chal-

lenging datasets, we propose three contributions. 1 An

optimization-based method to align distributions of cam-

era parameters between domains. 2 Texture, depth, and

geometry regularizations to avoid degenerate, flat solutions

and ensure high visual quality. Furthermore, we redesign

the discriminator training to make it compatible with our

task. We then propose 3 a Thin Plate Spline (TPS) 3D

deformation module operating on a tri-plane representation

to allow for certain large and sometimes extreme geometric

deformations, which are so typical in artistic domains.

The proposed adaptation framework enables the train-

ing of 3D-GANs on complex and challenging artistic data.

The previous success of domain adaptation in 2D-GANs un-

leashed a number of exciting applications in the content cre-

ation area [25, 65]. Given a single image such methods first

find a latent code corresponding to it using GAN inversion,

followed by latent editing producing the desired effect in

the image space. Compared to 2D-GANs, the latent space

of 3D-GANs is more entangled, making it more challeng-

ing to link the latent spaces between domains, rendering the

existing inversion and editing techniques not directly appli-

cable. Hence, we take a step further and explore the use of

our approach to 3D artistic avatar generation and editing.

Our final contribution to enable such applications is 4 a

new inversion method for coupled 3D-GANs.

In summary, the proposed domain-adaption framework

allows us to train 3D-GANs on challenging artistic datasets

with exaggerated geometry and texture. We call our method

3DAvatarGAN as itÐfor the first timeÐoffers generation,

editing, and animation of personalized stylized, artistic

avatars obtained from a single image. Our results (See

Sec. 5.2) show the high-quality 3D avatars possible by our

method compared to the naive fine-tuning.

2. Related Work

GANs and Semantic Image Editing. Generative adversar-

ial Networks (GANs) [19, 47] are one popular type of gen-

erative model, especially for smaller high-quality datasets

such as FFHQ [32], AFHQ [14], and LSUN objects [67].

For these datasets, StyleGAN [28,30,32] can be considered

as the current state-of-the-art GAN [27, 28, 30, 32, 33]. The

disentangled latent space learned by StyleGAN has been

shown to exhibit semantic properties conducive to seman-

tic image editing [1, 3, 16, 22, 36, 44, 51, 56, 62]. CLIP [46]

based image editing [2, 17, 44] and domain transfer [15, 70]

are another set of works enabled by StyleGAN.

GAN Inversion. Algorithms to project existing images into

a GAN latent space are a prerequisite for GAN-based image

editing. There are mainly two types of methods to enable

such a projection: optimization-based methods [1,13,57,71]

and encoder-based methods [5,7,48,58,69]. On top of both

streams of methods, the generator weights can be further

modified after obtaining initial inversion results [49].

Learning 3D-GANs with 2D Data. Previously, some ap-

proaches attempt to extract 3D structure from pre-trained

2D-GANs [42, 52]. Recently, inspired by Neural Radiance

Field (NeRF) [9, 37, 43, 68], novel GAN architectures have

been proposed to combine implicit or explicit 3D represen-

tations with neural rendering techniques [11, 12, 20, 39±41,

50, 53, 55, 63, 64]. In our work, we build on EG3D [11]

which has current state-of-the-art results for human faces

trained on the FFHQ dataset.

Avatars and GANs. To generate new results in an artistic

domain (e.g. anime or cartoons), a promising technique is

to fine-tune an existing GAN pre-trained on photographs,

e.g. [45,54,60]. Data augmentation and freezing lower lay-

ers of the discriminator are useful tools when fine-tuning

a 2D-GAN [28, 38]. One branch of methods [18, 44, 70]

investigates domain adaptation if only a few examples or

only text descriptions are available. While others focus

on matching the distribution of artistic datasets with di-

verse shapes and styles. Our work also falls in this domain.

Among previous efforts, StyleCariGAN [25] proposes in-

vertible modules in the generator to train and generate cari-

catures from real images. DualStyleGAN [65] learns two

mapping networks in StyleGAN to control the style and

structure of the new domain. Some works are trained on

3D data or require heavy labeling/engineering [21, 26, 66]

and use 3D morphable models to map 2D images of carica-

4553



Figure 2. Comparison with naive fine-tuning. Comparison of

generated 3D avatars with a naÈıvly fine-tuned generator Gbase (left

sub-figures) versus our generator Gt (right sub-figures). The cor-

responding sub-figures show comparisons in terms of texture qual-

ity (top two rows) and geometry (bottom two rows). See Sec. 5.1

for details.

tures to 3D models. However, such models fail to model the

hair, teeth, neck, and clothes and suffer in texture quality. In

this work, we are the first to tackle the problem of domain

adaption of 3D-GANs and to produce fully controllable 3D

Avatars. We employ 2D to 3D domain adaptation and dis-

tillation and make use of synthetic 2D data from StyleCari-

GAN [25] and DualStyleGAN [65].

3. Domain Adaptation for 3D-GANs

The goal of domain adaptation for 3D-GANs is to adapt

(both texture and geometry) to a particular style defined

by a 2D dataset (Caricature, Anime, Pixar toons, Comic,

and Cartoons [24, 25, 65] in our case). In contrast to 2D-

StyleGAN-based fine-tuning methods that are conceptually

simpler [29, 45], fine-tuning a 3D-GAN on 2D data intro-

duces challenges in addition to domain differences, espe-

cially on maintaining the texture quality while preserving

the geometry. Moreover, for these datasets, there is no ex-

plicit shape and camera information. We define the do-

main adaptation task as follows: Given a prior 3D-GAN

i.e. EG3D (Gs) of source domain (Ts), we aim to produce a

3D Avatar GAN (Gt) of the target domain (Tt) while main-

taining the semantic, style, and geometric properties of Gs,

and at the same time preserving the identity of the subject

between the domains (Ts ↔ Tt). Refer to Fig. 4 in sup-

plementary for the pipeline figure. We represent G2D as a

teacher 2D-GAN used for knowledge distillation fine-tuned

on the above datasets. Note that as Tt is not assumed to

contain camera parameter annotations, the training scheme

must suppress artifacts such as low-quality texture under

different views and flat geometry (See Fig. 2). In the fol-

lowing, we discuss the details of our method.

3.1. How to align the cameras?

Selecting appropriate ranges for camera parameters is of

paramount importance for high-fidelity geometry and tex-

ture detail. Typically, such parameters are empirically esti-

mated, directly computed from the dataset using an off-the-

shelf pose detector [10], or learned during training [8]. In

domains we aim to bridge, such as caricatures for which

a 3D model may not even exist, directly estimating the

camera distribution is problematic and, hence, is not as-

sumed by our method. Instead, we find it essential to en-

sure that the camera parameter distribution is consistent

across the source and target domains. For the target domain,

we use StyleGAN2 trained on FFHQ, fine-tuned on artistic

datasets [25, 65]. Assuming that the intrinsic parameters of

all the cameras are the same, we aim to match the distribu-

tion of extrinsic camera parameters of Gs and G2D and train

our final Gt using it (see illustration in Fig. 2 of the supple-

mentary materials). To this end, we define an optimization-

based method to match the sought distributions. The first

step is to identify a canonical pose image in G2D, where

the yaw, pitch, and roll parameters are zero. According to

Karras et al., [31], the image corresponding to the mean

latent code satisfies this property. Let θ, φ be the camera

Euler angles in a spherical coordinate system, r, c be the

radius of the sphere and camera lookat point, and, M be a

function that converts these parameters into the camera-to-

world matrix. Let Is(w, θ, φ, c, r) = Gs(w,M(θ, φ, c, r))
and I2D(w) = G2D(w) represent an arbitrary image gen-

erated by Gs and G2D, respectively, given the w code vari-

able. Let kd be the face key-points detected by the detector

Kd [72], then

(c′, r′) := argmin
(c,r)

Lkd(Is(w
′
avg, 0, 0, c, r), I2D(wavg)),

(1)

where Lkd(I1, I2) = ∥kd(I1)− kd(I2)∥1 and wavg and

w′
avg are the mean w latent codes of G2D and Gs, respec-

tively. In our results, r′ is determined to be 2.7 and c′ is ap-

proximately [0.0, 0.05, 0.17]. The next step is to determine

a safe range of the θ and φ parameters. Following prior

works, StyleFlow [3] and FreeStyleGAN [35] (see Fig.5 of

the paper), we set these parameters as θ′ ∈ [−0.45, 0.45]
and φ′ ∈ [−0.35, 0.35] in radians.

3.2. What loss functions and regularizers to use?

Next, although the camera systems are aligned, the given

dataset may not stem from a consistent 3D model, e.g., in

the case of caricatures or cartoons. This entices the gener-

ator Gt to converge to an easier degenerate solution with a

flat geometry. Hence, to benefit from the geometric prior

of Gs, another important step is to design the loss functions

and regularizers for a selected set of parameters to update

in Gt. Next, we discuss these design choices:
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Figure 3. Domain adaptation. Domain adaptation results of images from source domain Ts (top row in each sub-figure) to target domain

Tt. Rows two to five show corresponding 3D avatar results from different viewpoints.

Loss Functions. To ensure texture quality and diversity,

we resort to the adversarial loss used to fine-tune GANs as

our main loss function. We use the standard non-saturating

loss to train the generator and discriminator networks used

in EG3D [11]. We also perform lazy density regularization

to ensure consistency of the density values in the final fine-

tuned model Gt.

Texture Regularization. Since the texture can be entan-

gled with the geometry information, determining which lay-

ers to update is important. To make use of the fine-style in-

formation encoded in later layers, it is essential to update

the tRGB layer parameters (outputting tri-plane features)

before the neural rendering stage. tRGB are convolutional

layers that transform feature maps to 3 channels at each res-

olution (96 channels in triplanes). Moreover, since the net-

work has to adapt to a color distribution of Tt, it is essential

to update the decoder (MLP layers) of the neural render-

ing pipeline as well. Given the EG3D architecture, we also

update the super-resolution layer parameters to ensure the

coherency between the low-resolution and high-resolution

outputs seen by the discriminator D.

Geometry Regularization. In order to allow the network

to learn the structure distribution of Tt and at the same time

ensure properties of W and S latent spaces are preserved,

we update the earlier layers with regularization. This also

encourages the latent spaces of Ts and Tt to be easily linked.

Essentially, we update the deviation parameter ∆s from the

s activations of the S space [62]. The s activations are pre-

dicted by A(w), where A is the learned affine function in

EG3D. The s activations scale the kernels of a particular

layer. In order to preserve the identity as well as geometry

such that the optimization of ∆s does not deviate too far

away from the original domain Ts, we introduce a regular-

izer given by

R(∆s) := ∥∆s∥1. (2)

Note that we apply R(∆s) regularization in a lazy manner,

i.e., with density regularization. Interestingly, after training,

we can interpolate between s and s+∆s parameters to in-

terpolate between the geometries of samples in Ts and Tt

(See Fig. 5).

Depth Regularization. Next, we observe that even though

the above design choice produces better geometry for Tt,

some samples from Gt can still lead to flatter geometry, and

it is hard to detect these cases. We found that the problem is

related to the relative depth of the background to the fore-

ground. To circumvent this problem, we use an additional

regularization where we encourage the average background

depth of Gt to be similar to Gs. Let Sb be a face back-

ground segmentation network [34]. We first compute the

average background depth of the samples given by Gs. This

average depth is given by

ad :=
1

M

M∑

n=1

(
1

Nn

∥Dn ⊙ Sb(In)∥
2
F ). (3)
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Figure 4. 3D avatars from real images. Projection of real images

on the 3D avatar generators.

Here, Dn is the depth map of the image In sampled from

Gs, ⊙ represents the Hadamard product, M is the number

of the sampled images, and Nn is the number of background

pixels in In. Finally, regularization is defined as:

R(D) := ∥ad · J − (Dt ⊙ Sb(It))∥F , (4)

where Dt is the depth map of the image It sampled from

Gt and J is the matrix of ones having the same spatial di-

mensions as Dt.

3.3. What discriminator to use?

Given that the data in Ts and Tt is not paired and Tt is

not assumed to contain camera parameter annotations, the

choice of the discriminator (D) used for this task is also a

critical design choice. Essentially, we use the unconditional

version of the dual discriminator proposed in EG3D, and

hence, we do not condition the discriminator on the camera

information. As a result, during the training, Gt generates

arbitrary images with pose using M(θ′, φ′, c′, r′), and the

discriminator discriminates these images using arbitrary im-

ages from Tt. We train the discriminator from scratch and

in order to adapt Ts → Tt, we use the StyleGAN-ADA [28]

training scheme and use R1 regularization.

3.4. How to incorporate larger geometric deforma-
tions between domains?

While the regularizers are used to limit the geometric

changes when adapting from Ts to Tt, modeling large ge-

ometric deformations, e.g., in the caricature dataset is an-

other challenge. One choice to edit the geometry is to use

the properties of tri-plane features learned by EG3D. We

start out by analyzing these three planes in Gs. We observe

that the frontal plane encodes most of the information re-

quired to render the final image. To quantify this, we sam-

ple images and depth maps from Gs and swap the front and

the other planes from two random images. Then we com-

pare the difference in RGB values of the images and the

Chamfer distance of the depth maps. While swapping the

frontal tri-planes, the final images are completely swapped,

and the Chamfer distance changes by 80 ∼ 90% matching

the swapped image depth map. In the case of the other two

planes, the RGB image is not much affected and the Cham-

fer distance of the depth maps is reduced by only 20 ∼ 30%
in most cases.

Given the analysis, we focus to manipulate the 2D front

plane features to learn additional deformation or exaggera-

tions. We learn a TPS (Thin Plate Spline) [61] network on

top of the front plane. Our TPS network is conditioned both

on the front plane features as well as the W space to enable

multiple transformations. The architecture of the module

is similar to the standard StyleGAN2 layer with an MLP

appended at the end to predict the control points that trans-

form the features. Hence, as a byproduct, we also enable

3D-geometry editing guided by the learned latent space. We

train this module separately after Gt has been trained. We

find that joint training is unstable due to exploding gradients

arising from the large domain gap between Ts and Tt in the

initial stages. Formally, we define this transformation as:

T(w, f) := ∆c, (5)

where, w is the latent code, f is the front plane, and c are

the control points.

Let cI be the initial control points producing an identity

transformation, (c1, c2) be the control points corresponding

to front planes (f1, f2) sampled using W codes (w1, w2),
respectively, and (c′1, c

′
2) be points with (w1, w2) swapped

in the TPS module. To regularize and encourage the module

to learn different deformations, we have

R(T1) := α

2∑

n=1

∥cI − cn∥1 − β∥c1 − c2∥1 − σ∥c′1 − c′2∥1.

(6)

We use initial control point regularization to regularize

large deviations in the control points which would otherwise

explode. Additionally, to learn extreme exaggerations in Tt

and ‘in expectation’, conform to the target distribution in the

dataset, we add an additional loss term. Let S(I) be the soft-

argmax output of the face segmentation network [34] given

an image I and assuming that S generalizes to caricatures,

then

R(T2) := ∥S(Gt(w)), S(It)∥1 (7)
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Figure 5. Interpolation of ∆s. Geometric deformation using the

interpolation of learned ∆s parameters.

Eq. 6, Eq. 7, and adversarial training loss are used to

train the TPS module. We adopt gradient clipping to make

sure that the training does not diverge. See the illustrations

in Fig. 3 and Fig. 4 of the supplementary materials.

4. Personalized Avatar Generation and Editing

Although 3D domain adaptation adapts Ts ↔ Tt, it is

still a challenge to effectively link the latent spaces of Gs

and Gt to generate personalized 3D avatars using a single

photograph as the reference image. Particularly, the chal-

lenge arises due to the discrepancy in the coupled latent

spaces when dealing with the projection of real photographs

on 3D generators. Moreover, one would like to edit and an-

imate these 3D avatars.

Projection. The task is to project a real image into the latent

space of Gs, transfer the latent to Gt, and further optimize

it to construct a 3D avatar. First, we use an optimization-

based method to find the w code that minimizes the simi-

larity between the generated and the real image in Gs. To

achieve this, the first step is to align the cameras. We follow

the steps mentioned in Sec. 3.1 for this step. Next, we use

pixel-wise MSE loss and LPIPS loss to project the image

into Gs [1]. Additionally, to preserve the identity of the sub-

ject, we use attribute classifiers e.g. caricature dataset [24]

provides the coupled attribute information of real images

and caricatures. We use such attribute classifier [24,25] in a

post-hoc manner as we notice that such networks can affect

the texture in the target domain and could degenerate to nar-

row style outputs if applied during training. Moreover, such

networks may not be available for all target domains. To

avoid overfitting into Gs and encourage the easier transfer

of the optimized latent code to Gt, we use W space opti-

mization for this step. Finally, we initialize this w code for

Gt and use additional attribute classifier loss [25] for Tt do-

main along with Depth regularization R(D) (Eq. 4). As an

approximation, we assume that attribute classifier [24, 25]

generalizes across all domains. We use W/W+ space opti-

mization to control the quality and diversity of the outputs.

See Algorithm 1 in supplementary for the description.

Editing and Animation. Since our 3D domain adaptation

is designed to preserve the properties of W and S spaces,

we can perform semantic edits via InterFaceGAN [51],

GANSpace [22], StyleSpace [62] etc., and geometric ed-

its using TPS (Sec. 3.4) and ∆s interpolation (Sec. 3.2).

To perform video editing, we design an encoder for EG3D

based on e4e [58] to encode videos and transfer the edits

from Gs to Gt based on the w codes [4, 6, 59]. We leave a

more fine-grained approach for video processing as future

work.

5. Results

5.1. Quantitative Results

In this section, we consider three important evaluations

to verify the quality of the texture, geometry, and identity

preservation in the new domain using the Caricature, Car-

toons, and Pixar toons datasets. We evaluate the ablation

of our design choices in the supplementary materials. In

the evaluation, let Gbase be the baseline naÈıve fine-tuning

method which is trained with all the parameters using the

losses in EG3D fine-tuned from FFHQ trained prior Gs.

Note here we still align the cameras in Gbase using the

method defined in Sec. 3.1 and use adaptive discrimina-

tor [28] with R1 regularization for a fair comparison.

Texture Quality. To verify the quality of the texture, di-

versity of samples as well as to some extent, the geometry

in the target domain Tt, we compare the FID [23] scores

using Gbase and Gt in Table 1. Note that in the case of

Caricatures, we report two scores i.e. with and without us-

ing the attribute classifier loss in the training as discussed

in Sec. 4. Notice that our method outperforms the naÈıve

baseline method by a huge margin in some cases, especially

in Caricatures and Cartoons. We attribute these differences

to the mode collapse prone training of Gbase which is cor-

related with flat geometry degenerate solution. We show

visual results of the flat geometries learned by Gbase and

comparison in Fig. 2.

Geometric Quality. To quantify the flat geometries, in Ta-

ble 2, we show three scores that help us understand such de-

generate solutions. Here we consider coupled depth maps

generated from sampling in the domains Ts (Gs) and Tt

(Gt and Gbase). First, we compute the expectation of the

absolute mean differences (Md) of the corresponding fore-

ground depth maps sampled from Ts and Tt. We also com-

pute the expectation of the absolute standard deviation dif-

ferences (Sd) for the same setting. Here, we assume that the

flatter geometries have a large difference in the depth maps

as compared to the prior as indicated by Md. Moreover, Sd

computes the distance in the distribution of the depth values,

where a larger difference indicates a narrow distribution,

and hence a flatter geometry. We also notice that the flat

geometry is correlated with the generator learning diverse

poses when images are rendered under standard canonical

camera parameters i.e. M(0, 0, c, r). We hypothesize in the

case of the flatter geometries, the model learns to pose in-
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Figure 6. Deformations using TPS. Geometric edits using our proposed TPS (Thin Plate Spline) module learned on the frontal tri-plane

features. Each sub-figure shows a 3D avatar and three examples of TPS deformations sampled from the learned 3D deformation space.

Table 1. FID Computation. FID (FrÂechet Inception Distance) be-

tween the 2D dataset and the samples generated by the fine-tuned

3D GAN using baseline (Gbase) and Ours (Gt). ’*’ represents the

score with the inclusion of the attribute classifier loss discussed in

Sec. 3.2.

Method Caricatures Cartoons Pixar Toons

Gbase 67.8 79.0 15.1

Gt (Ours) 19.4/20.2* 12.8 12.4

Table 2. Geometry Evaluation. Comparing the geometry using

baseline method (Gbase) and Ours (Gt). For the definition of Md,

Sd and R(T2), refer to Sec. 5.1.

Metric Method Caricatures Cartoons Pixar

Md ↓ Gbase 0.47 0.21 0.29

Gt (Ours) 0.21 0.13 0.13

Sd ↓ Gbase 0.22 0.14 0.15

Gt (Ours) 0.15 0.10 0.09

R(T2) ↓ Gbase 2.99 3.39 4.01

Gt (Ours) 2.27 1.62 1.56

Table 3. Identity Preservation. Identity preservation using base-

line (Gbase) and Ours (Gt).

Method Caricatures Cartoons Pixar Toons

Gbase 1.28 0.92 0.85

Gt (Ours) 0.87 0.81 0.73

formation in the earlier layers instead of being camera view-

dependent. To quantify this, since pose information may not

be available for some domains (e.g. cartoons), we compute

the R(T2) scores between corresponding images in the do-

main Ts (Gs) and Tt (Gt and Gbase). Note that these scores

are computed without the TPS module. Our scores are lower

in all three metrics, hence, validating that our method avoids

the degenerate solution and preserves the geometric distri-

bution of the prior. For discussion on the TPS module and

ablations refer to the supplementary materials.

Identity Preservation. Identity preservation score is an-

other important evaluation to check the quality of latent

space linking between Gs and Gt. In Table 3, we compute

the attribute loss (BCE loss) between the domains Ts and Tt

using the attribute classifiers [24,25]. Note that our method

Figure 7. Local edits. Local edits performed on the 3D avatars

using the S space.

is able to preserve the identity better across the domains.

5.2. Qualitative Results

For qualitative results, we show the results of the domain

adaptation, as well as the personalized edits (geometric and

semantic), performed on the resultant 3D avatars. First, in

order to show the quality of domain adaptation, identity

preservation, and geometric consistency, in Fig. 3, we show

results from Gs and corresponding results from 3D avatar

generator Gt trained on Caricatures, Pixar toons, Cartoons,

and Comic domains. Next, in order to show that the method

generalizes to real images, we use the method described in
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Figure 8. 3D avatar animation. Animation of 3D avatars generated using a driving video encoded in source domain Ts and applied to

samples in target domain Tt. The top row shows the driving video and the subsequent rows show generated animations using a random

Caricature or Pixar toon. The head pose is changed in each frame of the generated animation to show 3D consistency.

Sec. 4 to project and transfer the latent code from Gs to Gt

to produce the 3D avatars. In Fig. 4, we show our results

of real to 3D avatar transfer. Notice the quality both in

terms of texture as well as geometry for both these results

achieved by our method. Next, we show geometric and

semantic edits possible to produce personalized 3D avatars:

Geometry Edits. We show two type of geometric edits

i.e. ∆s interpolation (Sec. 3.2) and deformation using TPS

(Sec. 3.4). First, in Fig. 5, we show the geometry interpo-

lation by interpolating between original s activations of Gs

and learned ∆s parameters. In Fig. 6, we show some ad-

ditional exaggerations in caricatures using the learned 3D

deformation latent space of TPS module.

Semantic Edits and Animation. Since in our method, we

encourage the latent regularization to preserve the proper-

ties of the latent space learned by the Gs generator, in Fig. 7

we show S space edits performed on the 3D avatars. Notice

the quality of edits in terms of locality and adaptability. Ad-

ditionally, we can edit semantics like hair as opposed to 3D

morphable model based methods. In Fig. 8, thanks to the

latent space semantics preservation ensured by our method,

we can perform some video edits to create a coherent ani-

mation based on the difference of w codes of video encoded

in Gs (Sec. 4) and applied to layers 7−10 in Gt. Notice the

quality of expressions, identity preservation, and 3D consis-

tency across each identity in each row.

6. Conclusion

We tackled two open research problems in this paper.

In the first part, we proposed the first domain adaptation

method for 3D-GANs to the best of our knowledge. This

part yields two linked EG3D generators, one in the photo-

realistic source domain of faces, and another EG3D genera-

tor in an artistic target domain. As possible target domains,

we show results for cartoons, caricatures, and Comics. In

the second part, we built on domain adaptation to create

3D avatars in an artistic domain that can be edited and ani-

mated. Our framework consists of multiple technical com-

ponents introduced in this paper. First, we propose a tech-

nique for camera space estimation for artistic domains. Sec-

ond, we introduce a set of regularizers and loss functions

that can regularize the fine-tuning of EG3D in such a way

that enough of the 3D structure and geometry of the origi-

nal model is kept, while the distinguishing attributes of the

artistic domain, such as textures and colors and local ge-

ometric deformations can still be learned. Third, we in-

troduce a geometric deformation module that can reintro-

duce larger geometric deformations in a controlled manner.

These larger geometric deformations can interact and coop-

erate with EG3D so that semantic edits are still possible.

Finally, we propose an embedding algorithm that is espe-

cially suitable for two linked EG3D generator networks.
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