This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Interactive Cartoonization with Controllable Perceptual Factors

Namhyuk Ahn! Patrick Kwon!

Jihye Back!
! NAVER WEBTOON AI

Kibeom Hong? Seungkwon Kim'

2 Yonsei University

Figure 1. Interactive cartoonization. The proposed cartoonization method allows user interaction over texture and color and can generate
diverse outputs that meet users’ demands. Leftmost: source photography and an exemplar image of the target cartoon.

Abstract

Cartoonization is a task that renders natural photos into
cartoon styles. Previous deep cartoonization methods only
have focused on end-to-end translation, which may hinder
editability. Instead, we propose a novel solution with edit-
ing features of texture and color based on the cartoon cre-
ation process. To do that, we design a model architecture
to have separate decoders, texture and color, to decouple
these attributes. In the texture decoder, we propose a tex-
ture controller, which enables a user to control stroke style
and abstraction to generate diverse cartoon textures. We
also introduce an HSV color augmentation to induce the
networks to generate diverse and controllable color transla-
tion. To the best of our knowledge, our work is the first deep
approach to control the cartoonization at inference while
showing profound quality improvement over to baselines.

1. Introduction

Cartoons gain steep popularity in a recent, and the num-
ber of cartoon creators have also increased. The univer-
sal workflow of cartoon painters is as follows: character

drawing, which is then composed into a background scene.
Post-processing such as shading is added afterward. Profes-
sional tools [, 3] provide helpful plugins to assist the artist.
Despite this, cartoon creation still remains an arduous task
even for the more skilled creators.

We follow the observation that cartoon-styled scene gen-
eration has received notable attention. Many artists con-
vert real-world photographs into cartoon styles to utilize as
a background scene, dubbed as image cartoonization. This
allows creators to more focus on effective decisions in mak-
ing cartoons, such as character generation. It is shown that
deep learning-based cartoonization approach is able to pro-
duce cartoon-stylized output with a prominent quality, that
is possible to be utilized in real service production [5,6, 19].

However, the previous deep methods skip the intermedi-
ate procedures of cartoon-making processes, thus disabling
the creators from controlling outputs. The artists follow
a series of structured steps when creating a cartoon back-
ground from a photo (Figure 2). 1) Color stylization, where
the author changes the color both locally and globally. Sky
synthesis is performed along with this procedure. 2) Texture
stylization, where additional sketch lines are drawn, and
fine details are selectively removed to achieve the different

16827

(a) Source photo (b) Sky synthesis

(c) Color stylization

Fs

(e) Post-processing

(d) Texture stylization

Figure 2. Example of the background making process. We visualize how the artist creates the background scene by the step-by-step
procedure. Note that some steps can be skipped or changed in the order depending on the artist. ©Kawaii Studio

levels of abstraction. 3) Post-processing, which includes
lighting and image filters. Unfortunately, due to the end-
to-end inference nature of the previous deep cartoonization
methods, the artist has no control over the generation pro-
cess. The creators may only intervene with a source photo
(Figure 2a) or the final output (Figure 2e), which harms the
usability of the cartoonization methods in artists’ workflow.

In this study, we present an effective approach to embed-
ding interactivity in cartoonization. The proposed solution
focuses on building a pipeline for more controllable texture
and color. We define texture control as the manipulation
of stroke thickness and abstractions. This concept can be
utilized in many scenarios; the artist can abstract the de-
tails of the far-distance scene to depict the natural perspec-
tive or emphasize the details of the character. The creators
can also choose to change the delicacy of the brushstroke to
match the texture of the foreground objects when compos-
ing the scene. As for color control, we aim to build a control
system in which the creator freely manipulates arbitrary re-
gions with the desired color. This is designed to assist the
artist in the color stylization procedure (Figure 2c).

To obtain user controllability in cartoonization, we sep-
arately build texture and color decoders to minimize inter-
ference across the features (Figure 3). We also found that
the decomposed architecture provides a robust and superb
quality of texture stylization. For texture control, we in-
vestigated the role of the receptive field and the target im-
age resolution in the level of stroke thickness and abstrac-
tion. Based on these observations, we present a fexture
controller, which adjusts the receptive field of the network
through a dynamic replacement of the intermediate features.
For color control, we jointly train the color decoder in a su-
pervised manner with the paired dataset that is built based
on the proposed HSV augmentation. Throughout this train-
ing strategy, the color module gains the ability to produce
diverse colors. With the combination of the decoupled tex-
ture and color modules, we achieve a two-dimension of con-
trol space that can create a variety of cartoonized results
upon user communication. Such a design also provides ro-
bust and perceptually high-quality cartoonized outcomes.

To the best of our knowledge, our framework is the first
approach that presents interactivity to deep learning-based

@ Texture Control L v, []
I <«-» 188
src ‘con
[Texture Controller IL w188 Lféﬁm
tgt t
ILab & ex .
sre m
-~
Ly | Stexture | -
~Lab @ 7
Csrc
% Scolor
e Jab
= md Lcolar > I?rc

Figure 3. Model overview. Given a photo, CARTOONER estimates
the stylized texture and color images, which are then composed
for the final product. We design decomposed texture/color paths, a
texture controller, and a multi-texture discriminator for interaction.

cartoonization. Based on the proposed solution, we demon-
strate application scenarios that permit user intentions to
create cartoonized images with diverse settings. Extensive
experiments demonstrate that the proposed solution outper-
forms the previous cartoonization methods in terms of per-
ceptual quality, while also being able to generate multiple
images based on the user’s choices of texture and color.

2. Related work

Non-photorealistic rendering. Non-photorealistic render-
ing (NPR) is a computer vision/graphics task that focuses on
representing diverse expressive styles for digital art. Among
a variety of subtasks of NPR, we briefly describe the meth-
ods that stylize natural domain image to the specific artis-
tic style. Because of its usefulness in digital art creation,
NPR has been expanded into various applicable scenarios
such as line drawing [20], image abstraction [21], and car-
toonization [18]. Style transfer methods [9, | 3] are notable
approaches in NPR. By jointly optimizing the content and
style losses, they can generate decent-quality of stylization.

Cartoonization. Deep learning-based methods show pro-
found improvement over conventional NPR algorithms on
this task. CartoonGAN [6], a pioneering study on deep
cartoonization, adopts adversarial training [10] along with

16828

g

4 small ————— (a) Resolution of style images ———— large
TSR 7 (TR T OSSR oS AR v SNEC e S /1R

f\“ R

SV ne]) PR L. &

4 small

R

e

Figure 4. What affects texture levels? (a) As the resolution of
target cartoon (style) images is increased, the stroke is thickened.
(b) As both the resolution of images and the receptive field (RF) of
the generator is increased, the abstraction becomes a high degree.

an edge-promoting loss to improve cartoon style. Ani-
meGAN [5] enhances CartoonGAN with advanced losses
suitable for cartoon style such as Gram-based loss [9]. With
a careful inspection of cartoon drawing process, Whitebox-
GAN [19] decomposed cartoon images as surface, struc-
ture, and texture representations to tackle each factor with
tailored losses. This approach achieves superior cartooniza-
tion quality compared to previous methods.

Despite the imposing cartoonization results, none of the
deep cartoonization methods support interaction, failing to
create diverse conditional outputs. Our method aims to en-
able user control while maintaining perceptually appealing
cartoonization, moving closer to the actual service level.

3. Method

We describe the interactive cartoonization method
dubbed as CARTOONER. It uses separate decoders for tex-
ture and color (Figure 3), contrary to the single decoder ar-
chitecture of the previous methods. The decision was made
by observing professional artists’ workflow, where they sep-
arate color modification from texture editing. We further in-
spect that isolated modeling of texture and color produces
reliable and high-quality cartoonized results.

The controllable features are defined as texture level vec-
tor a and users’ color modification ¢. Given a photo I,
the goal is to generate a cartoonized image I tg¢ that follows
the user intention a and ¢. To achieve this, CARTOONER en-
codes an image to the latent feature through Egj,qreqd, then
delivers it to the separate decoders, Sicpture and Scojor
Note that we use Lab color space instead of RGB, hence the
texture module produces an L-channel texture map, while
the color module generates an ab-channel color map. These
outputs are finalized by converting back to RGB space.

HR style image 17k

LR style image /¢

Thickness | Thickness T

H Loss network’s RF
| Generator’s RF

(a) Stroke thickness
Content image I, Complexity T Complexity |

Complexity |

i 'HR
fram“’;“ Ioss.l ltgr

ILR

-train- loss g

Complexityd Complexity T

(b) Abstraction

Complexity t

Figure 5. Why affects texture levels? (a) With a fixed recep-
tive field (RF) of loss network, as the resolution of target domain
images changes, the stroke thickness within an RF window varies.
(b) With a fixed resolution of a content image, as the RF of the gen-
erator changes, the scene complexity within an RF window varies.
When we provide style images with disparate complexity, the gen-
erator alters the scene complexity of the cartoonized results.

3.1. Texture module

Analysis of texture level. In this module, the primary goal
is to provide a fine control mechanism and we define texture
control as altering stroke thickness and image abstraction.
To do that, we first analyze which components influence
stroke thickness and abstraction change. In our preliminary
experiments, we observed that increasing the resolution of
target cartoon images affects stroke thickness, and expand-
ing the receptive field (RF) of the generator along with the
increased resolution inflates the abstraction level (Figure 4).

For stroke thickness change, we argue that the loss net-
work with a fixed RF (e.g., VGG or discriminator) is in-
volved as shown in Figure 5a. Given the fixed loss network,
when we increase the resolution of cartoon images (green
box), the strokes are enlarged within an RF window, thus
inevitably, the generator learns to produce thick strokes at
training. When we decrease the resolution (red box), the
opposite behavior occurs. This impacts cartoonization more
since cartoon images mostly have flat texture regions.

For abstraction change, we argue that scene complexity
affects this as shown in Figure 5b. When the RF of the gen-
erator is expanded (blue box), the network can perceive a
wider region of a content image, which results in high scene
complexity. In contrast, when the resolution of a cartoon
image grows, its scene complexity becomes lower since
the loss network can only see relatively tiny regions (green
box). With these, if we utilize high-resolution cartoon im-

ages [, fglﬁ to train the generator with a large RF (which are

16829

— :
| KixKs [Kaxkz |- IKNxKNl
| K1XK1 e KzXKz |- |KNXKN|

® 9

iStroke ! !Abstraction

|3x3||3x3||3x3|
|3x3||3x3||3x3|
3

Figure 6. Texture controller. This module consists of the stroke
and abstraction control units, which both are designed as multi-
branch. Intermediate features from branches are fused through a
gating unit, which is controlled by texture factors, {«s, g }. In the
abstraction unit, kernel sizes of K1, ..., Ky are increasing order.

green and blue box, respectively), the generator is guided to
reduce the complexity of the high-complexity scene. This
arises from the loss calculation with the low-complexity
scene extracted from the loss network. As a result, the
generator with a large RF gains the ability to “abstract” the
complex details. For the lower RF (pink window), the con-
trary behavior happens. However, the abstraction change is
not as dramatic as the high one since in general, the scene
complexity of cartoon is lower than the content images. We
also analyzed the scenario where only RF of the generator is
expanded, however, the results are not drastic as Figure 4b
since the generator is not guided by the different-complexity
cartoon scene. Note that Jing et al. [12] inspected the role
of the resolution and RF in style transfer literature, however,
our in-depth analysis reveals that their behavior patterns are
disparate in cartoonization.

Texture controller. The above analysis requires multiple
networks to handle diverse levels and it cannot produce con-
sistent styles for each other. Also, it only supports discrete
control levels, making it challenging to be used as a real-
world solution. Hence, based on the analysis, we introduce
a simple but effective texture control module, dubbed as rex-
ture controller (Figure 6). It consists of the stroke and ab-
straction control units and we design both units as to be a
multi-branch architecture. In the stroke unit, each branch
is composed of two consecutive 3x3 conv layers, and these
are fused by the gating module. The abstraction unit is iden-
tical in structure to the stroke unit except it uses conv layers
with large kernel size, K1 < Ko < ... < Ky.

The texture controller is influenced by texture level @ =
{as, aq}, specifically, the stroke and abstraction units are
guided by stroke thickness s and abstraction o, levels, re-
spectively. With the feature f from the encoder, the stroke
unit generates a feature set g5 = {g?, ..., g} through conv
branches, and the abstraction unit produces g, as the same
way. Then, according to texture levels fs,a} which are

| ReB2Lab | [RGB2ab | | ReBzLab | | RaeBaL |
v
I I, Cow L

Figure 7. Data preprocessing on training. Given a source photo
TEGB we prepare an input color map C XS B Then, the HSV aug-
mentation is operated on both . REE and CEGE. Target domain
(cartoon) images I S?B are resized by referring to the prefixed tex-
ture control levels c. All the processed images are then converted
to Lab, L, or ab space. The green symbols indicate the input data
and red ones represent data used in the loss calculation.

a positive rational number, the two features of gy, ,) with
indices closest to a texture level are chosen. The chosen fea-
tures are then interpolated based on the respective distance
between a, 4 and indices. Finally, these are combined by
an element-wise addition operation.

We design the stroke control unit to have all 3x3 conv
layers since the texture level analysis showed that RF of the
generator does not affect the stroke thickness. Instead, each
branch is trained by different resolutions of target cartoon
images. At inference, the feature interpolation via a, en-
ables continuous control over stroke thickness. For the ab-
straction unit, we also construct a single module based on
the analysis. However, unlike the stroke unit, each branch
includes conv layers with different kernel sizes (with in-
creasing order) because changing both the RF of the genera-
tor and the resolution of target images alters the abstraction.
The output features are interpolated through «,, as identi-
cal to the stroke unit. As we design the decoupled structure
of stroke and abstraction in parallel, each unit can concen-
trate on a different aspect and it provides the ability that can
control the texture as a two-dimensional space.

In addition, to incorporate adversarial learning [10] into
texture control, we utilize a multi-texture discriminator. It is
based on the multi-task discriminator [8, 16], which consists
of multiple output branches. Each branch corresponds to a
different texture level and learns to distinguish whether a
given image is from a real cartoon domain or generated.

: : adv H
Loss function. We use adversarial loss L{.",, .. to guide

the model mimicking the texture of the target cartoon.
Liffiure = logDa(Iigf) +1og(1— Da(G(I52 @) (1)
where G is the generator and D,, denotes the multi-texture

discriminator with a given texture factors a. Itg'ta 1s a re-
sized target cartoon image to fit a respective texture level a.

16830

(b) CARTOONER

(a) Source photo

(c) CartoonGAN [6]

(d) AnimeGANV2 [5] (e) WhiteboxGAN [19]

Figure 8. Visual comparison. Images along with source photos indicate exemplar images of the target cartoon. Best viewed in zoom.

To ensure a cartoonized output well preserves the semantic
information of a source photo, we employ content loss.

L9 lVGG(IL) = VGG(G(IE™?, a))|;. ()

content — src

We use a conv4_4 layer of the pre-trained VGG19 [17]. In
addition, we enforce the generator to learn high-level tex-
ture representation via Gram-based loss as:

Ly ure = ||Gram (1) — Gram(G(ILY)l (3)
Gram indicates the Gram calculation with VGG feature ex-
traction (of conv4_4). We also use total variation loss [2] to
impose spatial smoothness on the output.

Ltv

texture

= ||[Vz(G(IE?, a)) + Vy(G(IE®)|, (4)

src src)

With balancing parameters)\, é'm"tfr o» the final loss of the tex-

ture decoder (and the shared encoder) is defined as:

_ 1 adv 2 vgg9
Lteztu’re -)‘te;vtu're * Ltezture +)‘tewture * Lcontent
3

vgg9 4 tv
+)‘texture * Ltemture +)‘tewture * Ltexture' (5)

3.2. Color module

The goal is to transfer the color of a given source photo to
a provided color intention while reflecting the color nuance
of the target cartoon. CARTOONER takes an input photo
IEab a5 well as an input color map C'L% and generates an
ab-channel image 1% which is later concatenated with the

src?

texture map thgt generated from the texture decoder. To
simulate control manipulation, we synthetically generate a
color map, C'Le® (Figure 7). Given an input photo IG5,
we create an initial color map CES® by applying a super-
pixel algorithm. Without this, fine details of an input image
become too noisy and thus not adequate to be utilized as
a color cue; a superpixel is used as a noise reduction pro-
cedure. Then, the HSV augmentation changes the color of

B B . . . T B
IEGEB and CEGE creating color manipulated images I7%¢

and CIiGB . These are converted to Lab space. Note that we
observed that color transfer to either input or output image,
unlike ours, cannot achieve faithful visual quality.

HSV augmentation is a simple but effective method that
can reflect diverse color control intentions from a user. It
randomly alters all color channels of HSV; hue, saturation,
and value (brightness). To prevent the color shifting from
generating perceptually implausible outputs, we further ap-
ply the L caching trick [7] prior to the color augmentation,
which caches the luminance (L) of image and reverts the lu-
minance of the augmented image to a cached one. We cache
L instead of V-channel since V indirectly interferes with L,
which is important in regard to diverse cartoonization.

Loss function. We use a simple mean squared error-based
reconstruction loss as shown below.

Leotor = ||jab - G(ILab C«Lab)||2 (6)

src src src

In our experiment, additional adversarial loss or regulariza-

16831

Table 1. Quantitative comparison. We compare with previous deep cartoonization methods using

Table 2. User study. Higher

FID [11] and FIDcpip [5] metrics. Lower score is better. quality preference score is better.
Hayao Shinkai FreeDraw Barkhan

Method FID FiDoyp| FID FlDap || FID FiDep| FID FiDap ethod Preference

CartoonGAN |172.63 59.09 |167.66 56.67 || 162.69 49.09 |108.80 28.04 CartoonGAN 8.9%

AnimeGANvV2 | 156.21 57.81 [146.28 54.62 || 132.67 4527 | 82.67 23.38 AnimeGANv2 17.5%

WhiteboxGAN | 153.50 63.38 [150.69 58.53 |/ 120.12 41.10 | 93.25 27.67 Whitebox GAN 16.1%

CARTOONER | 142.77 56.76 |132.57 51.78 | 103.88 28.50 | 74.68 16.44 CARTOONER 57.5%

used monet2photo [

] as the photo domain. We collected

tion shows marginal improvement in color quality. We sus-
pect that the decomposed color modeling, as well as the

color cue (C'La%) provision, ease the training difficulty.

Reflecting target cartoon’s color. We designed to preserve
the color information of an input image to increase the con-
trollability, however, one might want to generate an image
that has a similar color distribution to the target cartoon. To
handle this scenario, we additionally fine-tune the color de-
coder with an assist of adversarial loss as in below.

LZZ)l:or = Aiolor * LCOlOT +)‘golor * ngllz)r where,
Ligh,, = logD(Ify,) + log(1 = D(G(ILY, L)) (D

Note that we use a color cue that is generated from an orig-
inal image (CL2%), instead of C'L%°. With the aforemen-
tioned color decoder parts, a user can choose which “color

mode” to use interchangeably depending on the situation.
3.3. Model training

Unlike previous deep cartoonization methods, we do not
perform network warm-up [6]. We train the entire frame-
work with a loss of L = Licqture + Leolor, €Xcept for the
abstraction control unit. Then, the abstraction unit is trained
(via Lyeytyre) While other components are all frozen. To
provide various resolution images to the generator, we re-
size IfI¢P according to texture level o (Figure 7). We set
kernel sizes of the abstraction unit, {K7, K»,..., Ky}, as
{3,7,11,15,19} each. When training CARTOONER, we
randomly choose oy 4y € {1,...,5}, which respectively
resize 1175 to be {2562,320%,416%, 544%,800?} resolu-
tions, but ag, 43 can be expanded to arbitrary numbers at
inference. More detailed setups are described in Suppl.

4. Experiment

Baselines. We compare CARTOONER with the state-of-
the-art deep learning-based cartoonization methods, Car-
toonGAN [6], AnimeGANV2 [5], and WhiteboxGAN [19].
Since they have trained their cartoonization network on dif-
ferent datasets and setups from each other, we retrained us-
ing our cartoon datasets using official codes.

Datasets. We built datasets focused on landscape, to better
target the domain of cartoonizing background scenes. We

cartoon datasets from Japanese animations and Webtoons.
Specifically, we acquired artworks by Miyazaki Hayao
and Shinkai Makoto, and comics of titles “FreeDraw” and
“Barkhan” from the NAVER Webtoon platform. Detailed
dataset generation protocols are described in Suppl.

Metrics. We evaluated the cartoonization with Frechet In-
ception Distance (FID) [1 1] and FID¢rp [15]. We addition-
ally conducted a user study to measure perceptual quality.
We asked 26 users to select the best results for how well the
outputs follow both the cartoon styles and source photos.

4.1. Comparison with state-of-the-art method

When comparing CARTOONER with others, we generate
images to reflect the target cartoon since FIDs can be influ-
enced by color information. In addition, we set the texture
levels (s, avg) as zero, which is identical stylization setting
to others. Table 1 shows the quantitative comparison. CAR-
TOONER achieves exceeding performance on both FID and
FIDcp with significant margins for all the cases. We also
present the visual comparison in Figure 8. Separation of the
texture and color decoders helps prevent image artifacts, for
instance, CARTOONER produces fewer color bleeding (Fig-
ure 8, 2nd row). The visual quality is also profoundly en-
hanced and CARTOONER can capture adequate stroke and
color nuance of the target cartoon. A user study shows the
superiority of CARTOONER as well (Table 2).

4.2. Interactivity

As shown in Figure 9, CARTOONER creates diverse re-
sults according to user interaction. When the artist manip-
ulates the colors to their tastes (with any color adjustment
UI), CARTOONER automatically reflects the intention. They
can also edit textural details by simply controlling the stroke
or abstraction factors to match the output in various cartoon
situations. These editings can be performed locally or glob-
ally through a simple mask-based region control UI (shown
in Suppl.). Our cartoonization workflow is more compact
than the traditional editing tools, while still maintaining an
adequate level of user intervention. Although CARTOONER
may not achieve the degree of meticulous editing work-
flows (which requires the effort of skilled artists), it can

16832

Initial result

Source photo

— Change stroke & abs. — Change color tone

i

(b) — Coloring

(a) Coloring —

Figure 10. Comparison to naive coloring approach. We alter
the color of sky to yellow and tree to orange maple. (a) A pipeline
of re-colorization (to an input image) — cartoonization. (b) A
pipeline of cartoonization — re-colorization. (¢) Our method.

provide a broader range of user experiences with suitable
quality. We would like to emphasize that none of the deep
cartoonization methods can provide controllability nor pro-
duce diverse results of a given source photography.

4.3. Model analysis

Color module. In Figure 10, we present the result where
the color change is performed before or after cartooniza-
tion, unlike ours that jointly models the color and texture.
The pre-execution of color change (Figure 10b) cannot ad-
equately handle the delicate color alters and produces un-

(a) Result (b) Stroke (c) Abstraction

Figure 11. Output feature of texture controller. (Top) Lower
stroke thickness and abstraction levels. (Bottom) Higher texture
levels. The stroke unit focuses on fine details regards to edge re-
gion while the abstraction unit concentrates on the overall region.

even texture level since the model has not observed the re-
colorized input image at training, which becomes out-of-
distribution. The pipeline of color change after cartooniza-
tion (Figure 10c) cannot generate cartoon-style colors at all.

What does texture controller learn? We visualize the
output feature map of the texture controller in Figure 11.
The stroke control unit produces features that more con-
centrate on the high-frequency edge regions, which empir-
ically demonstrates why this can control the stroke thick-
ness. On the other hand, the abstraction control unit focuses
on a wide range of regions including flat texture and some

16833

(a) #levels =2

Stroke strength
=W -

T
o et |

(b) # levels = 5 (ours)

Figure 12. Study on the stroke levels. We compare the model
trained with 2-level and 5-level stroke thickness. The 2-level case
cannot adequately reflect the subtle change in stroke thickness.

mid-frequency details. Consequently, this unit can deliver
helpful clues about the abstraction change to the decoder.

Stroke control unit. We decrease the number of stroke lev-
els at training and examine how the models react at infer-
ence. Figure 12 shows that the model trained with 2-levels
cannot capture high stroke thickness; we observed that it
produces saturated thickness only. In contrast, the model
with increased stroke levels adequately expresses a wide dy-
namic range of stroke thickness. In Suppl., we demonstrate
a similar analysis regards on the abstraction control unit.

5. Application

Reference image-based color control. In Section 4.2, we
demonstrated a simple interactive cartoonization workflow
with CARTOONER. However, unskilled users might strug-
gle to choose appropriate color tones if they have little expe-
rience in coloring. To increase usability for inexpert users,
we present reference image-based color control (Figure 13).
Instead of direct color manipulation, a user prepares a color
guidance image and chooses which regions to be referred
via region masking UI. After this, CARTOONER transfers
the color information of the selected area to the cartoonized
outputs. To implement this, we first extract a color palette
from a reference image and then manipulate the color map,
Cs,c using palette-based color transfer algorithm [4].

Semi-automatic cartoon making. As discussed, making
background scenes is repetitive and time-consuming. CAR-
TOONER can help to reduce the burden of background cre-
ation with interactive texture-color editing so the artists can

Figure 13. Reference-based color control. (Top) Color-reference
images and a source photo. (Bottom) Cartoonized output.

Cartooner makes
cartoon makin

much easier If

(b) Result

(a) Source photo

Figure 14. CARTOONER in cartoon making. The artists can
employ CARTOONER to their workflow to improve productivity.

focus more on other creative tasks. Figure 14 shows an ex-
ample where one can use CARTOONER to effectively cre-
ate a cartoon cut, consisting of a background scene blended
with character(s) and/or speech balloons, which would have
been a strenuous task for previous pipelines.

6. Conclusion

We proposed an interactive cartoonization model, CAR-
TOONER. The proposed method accepts user-guided texture
control in the form of abstraction and stroke strength levels,
which are passed to a fexture controller to dynamically con-
trol the overall texture of the generated image. The user can
also manipulate the color scheme through a color module,
which is reinforced by the HSV augmentation. Experimen-
tal results demonstrate CARTOONER’s superiority in both
quality and usability as applications for cartoon creators.

Although we provided effective control space, there exist
more controlling factors, especially for texture control (Fig-
ure 2d). In the future, it is worth exploring the other aspects
of texture editing such as brush stroke’s style [14].

16834

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

Adobe. Adobe after effects, 2022. 1

Hussein A Aly and Eric Dubois. Image up-sampling using
total-variation regularization with a new observation model.
IEEE Transactions on Image Processing, 14(10):1647-1659,
2005. 5

CELSYS. Clip studio paints, 2022. 1

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi,
and Adam Finkelstein. Palette-based photo recoloring. ACM
Trans. Graph., 34(4):139-1, 2015. 8

Jie Chen, Gang Liu, and Xin Chen. Animegan: A novel
lightweight gan for photo animation. In International Sym-
posium on Intelligence Computation and Applications, pages
242-256. Springer, 2019. 1, 3,5, 6

Yang Chen, Yu-Kun Lai, and Yong-Jin Liu. Cartoongan:
Generative adversarial networks for photo cartoonization. In
CVPR, pages 9465-9474, 2018. 1,2, 5,6

Junho Cho, Sangdoo Yun, Kyoung Mu Lee, and Jin
Young Choi. Palettenet: Image recolorization with given
color palette. In CVPR Workshops, pages 62-70, 2017. 5
Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8188-8197, 2020. 4
Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414-2423, 2016. 2, 3

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 2, 4
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30,2017. 6

Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng,
Yizhou Yu, Dacheng Tao, and Mingli Song. Stroke con-
trollable fast style transfer with adaptive receptive fields. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 238-254, 2018. 4

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694-711.
Springer, 2016. 2

Dmytro Kotovenko, Matthias Wright, Arthur Heimbrecht,
and Bjorn Ommer. Rethinking style transfer: From pix-
els to parameterized brushstrokes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12196-12205, 2021. 8

Tuomas Kynkéddnniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The role of imagenet
classes in fr\’echet inception distance. arXiv preprint
arXiv:2203.06026, 2022. 6

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In

(17]

(18]

(19]

(20]

(21]

(22]

16835

International conference on machine learning, pages 3481—
3490. PMLR, 2018. 4

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

Jue Wang, Yingqing Xu, Heung-Yeung Shum, and Michael F
Cohen. Video tooning. In ACM SIGGRAPH 2004 Papers,
pages 574-583. 2004. 2

Xinrui Wang and Jinze Yu. Learning to cartoonize using
white-box cartoon representations. In CVPR, pages 8090-
8099, 2020. 1, 3, 5,6

Holger Winnemdller, Jan Eric Kyprianidis, and Sven C
Olsen. Xdog: an extended difference-of-gaussians com-
pendium including advanced image stylization. Computers
& Graphics, 36(6):740-753, 2012. 2

Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing
via 1 0 gradient minimization. In Proceedings of the 2011
SIGGRAPH Asia conference, pages 1-12,2011. 2

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223—
2232,2017. 6

