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Abstract

Depth estimation from a monocular 360◦ image is a bur-
geoning problem owing to its holistic sensing of a scene.
Recently, some methods, e.g., OmniFusion, have applied
the tangent projection (TP) to represent a 360◦ image and
predicted depth values via patch-wise regressions, which
are merged to get a depth map with equirectangular pro-
jection (ERP) format. However, these methods suffer from
1) non-trivial process of merging plenty of patches; 2) cap-
turing less holistic-with-regional contextual information by
directly regressing the depth value of each pixel. In this
paper, we propose a novel framework, HRDFuse, that sub-
tly combines the potential of convolutional neural networks
(CNNs) and transformers by collaboratively learning the
holistic contextual information from the ERP and the re-
gional structural information from the TP. Firstly, we pro-
pose a spatial feature alignment (SFA) module that learns
feature similarities between the TP and ERP to aggregate
the TP features into a complete ERP feature map in a pixel-
wise manner. Secondly, we propose a collaborative depth
distribution classification (CDDC) module that learns the
holistic-with-regional histograms capturing the ERP and
TP depth distributions. As such, the final depth values can
be predicted as a linear combination of histogram bin cen-
ters. Lastly, we adaptively combine the depth predictions
from ERP and TP to obtain the final depth map. Extensive
experiments show that our method predicts more smooth
and accurate depth results while achieving favorably bet-
ter results than the SOTA methods.

Multimedia Material
For videos, code, demo and more information, you can

visit https://VLIS2022.github.io/HRDFuse/

1. Introduction
The 360◦ camera is becoming increasingly popular as a

360◦ image provides holistic sensing of a scene with a wide

*Corresponding author (e-mail: linwang@ust.hk)

Figure 1. (a) Our HRDFuse employs the SFA module to align the
regional information in discrete TP patches and holistic informa-
tion in a complete ERP image. The CDDC module is proposed to
estimate ERP format depth outputs from both the ERP image and
TP patches based on holistic-with-regional depth histograms. (b)
Compared with OmniFusion [30], our depth predictions are more
smooth and more accurate.

field of view (FoV) [1,4,19,44,48,52]. Therefore, the abil-
ity to infer the 3D structure of a 360◦ camera’s surroundings
has sparked the research for monocular 360◦ depth estima-
tion [23, 36, 43, 45]. Generally, raw 360◦ images are trans-
mitted into 2D planar representations while preserving the
omnidirectional information [12, 50]. Equirectangular pro-
jection (ERP) is the most commonly used projection for-
mat [38, 49] and can provide a complete view of a scene.
Cubemap projection (CP) [9] projects 360◦ contents into six
discontinuous faces of a cube to reduce the distortion; thus,
the pre-trained 2D convolutional neural networks (CNNs)
can be applied. However, ERP images suffer from severe
distortions in the polar regions, while CP patches are ham-
pered by geometric discontinuity and limited FoV.

For this reason, some works [53, 54] have proposed
distortion-aware convolution filters to tackle the ERP dis-
tortion problem for depth estimation. BiFuse [43] and Uni-
Fuse [23] explore the complementary information from the
ERP image and CP patches to predict the depth map.
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Recently, research has shown that it is promising to use
tangent projection (TP) because TP patches have less dis-
tortion, and many pre-trained CNN models designed for
perspective images can be directly applied [16]. How-
ever, there exist unavoidable overlapping areas between two
neighbouring TP patches, as can be justified by the geomet-
ric relationship in Fig. 2. Therefore, directly re-projecting
the results from TP patches into the ERP format is compu-
tationally complex. Accordingly, 360MonoDepth [34] pre-
dicts the patch-wise depth maps from a set of TP patches
using the state-of-the-art (SOTA) perspective depth estima-
tors, which are aligned and merged to obtain an ERP format
depth map. OmniFusion [30] proposes a framework lever-
aging CNNs and transformers to predict depth maps from
the TP inputs and merges these patch-wise predictions to the
ERP space based on geometric prior information to get the
final depth output with ERP format. However, these meth-
ods suffer from two critical limitations because: 1) geomet-
rically merging a large number of patches is computation-
ally heavy; 2) they ignore the holistic contextual informa-
tion contained only in the ERP image and directly regress
the depth value of each pixel, leading to less smooth and
accurate depth estimation results.

To tackle these issues, we propose a novel framework,
called HRDFuse, that subtly combines the potential of con-
volutional neural networks (CNNs) and transformers by
collaboratively exploring the holistic contextual informa-
tion from the ERP and regional structural information from
the TP (See Fig. 1(a) and Fig. 3). Compared with previ-
ous methods, our method achieves more smooth and more
accurate depth estimation results while maintaining high ef-
ficiency with three key components. Firstly, for each pro-
jection, we employ a CNN-based feature extractor to extract
spatially consistent feature maps and a transformer encoder
to learn the depth distribution with long-range feature de-
pendencies. In particular, to efficiently aggregate the in-
dividual TP information into an ERP space, we propose a
spatial feature alignment (SFA) module to learn a spatially
aligned index map based on feature similarities between
ERP and TP. With this index map, we can efficiently mea-
sure the spatial location of each TP patch in the ERP space
and achieve pixel-level fusion of TP information to obtain a
smooth output in ERP format. Secondly, we propose a col-
laborative depth distribution classification (CDDC) module
to learn the holistic depth distribution histogram from the
ERP image and regional depth distribution histograms from
the collection of TP patches. Consequently, the pixel-wise
depth values can be predicted as a linear combination of his-
togram bin centers. Lastly, the final result is adaptive fused
by two ERP format depth predictions from ERP and TP.

We conduct extensive experiments on three bench-
mark datasets: Stanford2D3D [2], Matterport3D [7], and
3D60 [54]. The results show that our method can achieve

Figure 2. Geometric relationship between TP and ERP. Two TP
patches are projected from the red area and yellow area.

more smooth and more accurate depth results while favor-
ably surpassing the existing methods by a significant margin
on 3D60 and Stanford2D3D datasets (See Fig. 1 and Tab. 1).
In summary, our main contributions are four-fold: (I) We
propose HRDFuse that combines the holistic contextual in-
formation from the ERP and regional structural information
from the TP. (II) We introduce the SFA module to efficiently
aggregate the TP features into the ERP format, relieving the
need for expensive re-projection operations. (III) We pro-
pose the CDDC module to learn the holistic-with-regional
depth distributions and estimate the depth value based on
the histogram bin centers.

2. Related Work
2.1. Monocular 360 Depth Estimation
ERP-based methods. To address the spherical distortion
in the ERP images, endeavours have been made to leverage
the characteristics of convolutional filters. OmniDepth [54]
applies row-wise rectangular filters to cope with the distor-
tions in different latitudes, while ACDNet [53] leverages a
group of dilated convolution filters to rectify the receptive
field. Tateno et al. [39] explored the standard convolution
filters trained with the perspective images, and deformed
the shape of sampling grids based on spherical distortion
accordingly during the inference. SliceNet [33] partitions
an ERP image into vertical slices and directly applies the
standard convolutional layers to predict the ERP depth map.
Combination of CP and ERP. BiFuse [43] proposes to
bidirectionally fuse the ERP and CP features at both encod-
ing and decoding stages. By contrast, UniFuse [23] fuses
the features only at the encoding stage as it is argued that
ERP features are more important for final ERP format depth
prediction. Differently, [3] employs CNNs to extract ERP
features and a transformer block [14] to extract CP features,
which are fused to predict the final depth map. Recently,
M3PT [46] introduces the shared random masks to process
the ERP panoramas and CP depth patches simultaneously
and combines the RGB information with sparse depth in-
formation to achieve panoramic depth completion.
TP-based methods. TP is recently shown to suffer less
from distortion (See Fig. 2), and the pre-trained CNN mod-
els designed for perspective images can be directly ap-
plied [11]. Accordingly, 360MonoDepth [34] and OmniFu-
sion [30] build their frameworks based on the TP patches.
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Figure 3. Overview of our HRDFuse, consisting of three parts: feature extractors for both ERP and TP inputs, spatial feature alignment
(SFA) module, and collaborative depth distribution classification (CDDC) module (See Fig. 4 for details).

Concurrently, PanoFormer [36] proposes a transformer-
based architecture to process the TP patches as the tokens
for depth estimation. Different from [30, 34], PanoFormer
designs a handcrafted sampling method to form a tangent
patch by sampling eight most relevant tokens for each cen-
tral token on the ERP domain rather than dividing the ERP
images into TP patches. However, PanoFormer is limited by
the inference speed (See Sec. 4.2), and ignores the 2D struc-
ture and spatial local information within each patch [20].
For more details, we refer readers to a recent survey [1]. In
comparison, our HRDFuse combines the potential of CNNs
and transformers by collaboratively learning the holistic
contextual information from the ERP image and regional
structural information from the TP patches.

2.2. Distribution-based Planar Depth Estimation
Many methods estimate depth by directly regressing the

depth values; however, they suffer from slow convergence,
and deficiency of global analysis [27, 29]. For this reason,
[18] discretized the depth range into several pre-determined
intervals and recast depth prediction as an ordinal regres-
sion problem, which accounts the depth distributions de-
pending on the located intervals. Adabins [5] divides the
depth range into many adaptive bins whose widths are com-
puted from the scene information, and the depth values are a
linear combination of the bin centers, showing better perfor-
mance over previous methods. Our HRDFuse is the first to
explore the idea of depth distribution classification for 360◦

depth estimation. The proposed CDDC module learns the
holistic depth distribution histograms from the ERP image
and regional depth distribution histograms from the collec-
tion of TP patches. As such, the final depth values are pre-
dicted as a linear combination of bin centers.

2.3. Vision Transformer
Transformers are capable of modeling the long-range de-

pendencies for computer vision tasks [14,35,42]. Recently,
it has been shown that the combination of convolutional op-
erations and self-attention mechanisms further enhance the
representation learning. For instance, DeiT [40] employs a

CNN as the teacher model to distill the tokens to the trans-
former, while DETR [6] models the global relationship via
serially feeding the features extracted by CNNs to the trans-
former encoder-decoder. Moreover, some works,e.g., [8,32]
attempted to concurrently fuse the features from CNNs and
transformers. Our HRDFuse framework is also built based
on the combination of CNNs and transformers; however, it
shares a different spirit as we focus on ensuring network ef-
ficiency. Thus, we extract the high-resolution feature maps
using a CNN-based encoder-decoder and feed them to a
smaller transformer encoder [14] to estimate distributions.

3. Methodology
3.1. Overview

As depicted in Fig. 3, to exploit the complementary in-
formation from holistic context and regional structure, our
framework simultaneously takes two projections of a 360◦

image, an ERP image and N TP patches, as inputs. For
the ERP branch (See Fig. 3 Top), an ERP image with the
resolution of H × W is fed into a feature extractor, com-
prised of an encoder-decoder block, to produce a decoded
ERP feature map FERP. For the TP branch (See Fig. 3
Bottom), N TP patches are first obtained with gnomonic
projection from the same sphere [16]. This indicates that
the feature distributions of TP branch are closely corre-
lated with those of the ERP branch, similar to ERP-to-CP
(E2C) or C2E feature transform in [43]. Then, these TP
patches are passed through the TP feature extractor to ob-
tain 1-D patch feature vectors {Vn, n = 1, . . . , N}, which
are passed through the TP decoder to obtain the TP feature
maps

{
FTP
n , n = 1, . . . , N

}
.

To determine and align the spatial location of each TP
patch in the ERP space and avoid complex geometric fusion
for overlapping areas between neighboring TP patches, we
propose the spatial feature alignment (SFA) module (Fig. 3)
to learn feature correspondences between pixel vectors in
the ERP feature map FERP and patch feature vectors {Vn}.
This way, we can obtain the spatially aligned index map M ,
recording the location of each patch in the ERP space.
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Next, the index map M , ERP feature map FERP, and
TP feature maps

{
FTP
n

}
are fed into the proposed collabo-

rative depth distribution classification (CDDC) module that
accordingly outputs two ERP format depth predictions (See
Fig. 4). In principle, the CDDC module first learns holistic-
with-regional histograms to simultaneously capture depth
distributions from the ERP image and a set of TP patches.
Consequently, the depth distributions are then converted to
depth values through a linear combination of bin centers.
Lastly, the two depth predictions from the CDDC module
are adaptively fused to output the final depth result. We
now describe these modules in detail.

3.2. Feature Extraction
Overall, taking the ERP image and a collection of TP

patches as inputs, the feature extractor of the ERP branch
outputs the decoded feature map FERP, and the feature ex-
tractor of the TP branch produces encoded patch feature
vectors {Vn} and decoded TP feature maps

{
FTP
n

}
.

Specifically, for the ERP branch (Fig. 3 Top), we design
the feature extractor with an encoder-decoder network, fol-
lowing the design of OmniFusion [30]. It consists of an
encoder built with the pre-trained ResNet34 [22], a multi-
head self-attention block [41], and a decoder with com-
monly used up-sampling blocks. This way, we obtain the
decoded feature map FERP.

For the TP branch, we first sample TP patches from the
sphere via gnomonic projection [1, 16]. The details can
be found in the suppl. material. Secondly, we feed the
patches simultaneously into the feature extractor, similar to
the ERP branch but without the multi-head self-attention
block, which helps to maintain the independence of each
patch feature vector for spatial feature alignment. As such,
we extract the patch feature vectors {Vn} through the en-
coder and obtain the decoded patch feature maps

{
FTP
n

}
.

The resolutions of the ERP feature map FERP and TP fea-
ture maps

{
FTP
n

}
are set to half of the corresponding input

resolutions for efficiency.

3.3. Spatial Feature Alignment

With ERP feature map FERP and patch feature vectors
{Vn}, our SFA module outputs the spatially aligned index
map M . It determines the spatial relations between the in-
dividual TP patches and pixel positions in the complete ERP
space according to the feature similarity score ranking (See
Fig. 3) and can be applied to achieve smooth pixel-wise fu-
sion of individual TP information. Existing works aggregate
the discrete TP information into the complete ERP space via
geometric fusion [30, 34]. However, they are less capable
of predicting smooth equirectangular depth outputs without
holistic contextual information. For instance, as shown in
Fig. 1(b), depth predictions in OmniFusion suffer from se-
vere artifacts along the edges of the merged regions. For this
reason, we propose the SFA module to measure, rank, and

Figure 4. Overview of the CDDC module with two steps: depth
distribution histogram classification, and depth prediction combi-
nation based on the range attention maps.

record the pixel-wise similarities between the ERP feature
map FERP and patch feature vectors {Vn}. The pixel-wise
similarity can be formulated as:

s(i,j),k =

−−−−−−−→
FERP(i, j) ·

−→
Vk

∥FERP(i, j)∥ ∥Vk∥
, (1)

where (i, j) is the coordinate of a pixel in the ERP fea-
ture map and k is the TP patch index. As depicted in
Fig. 3, for each feature vector FERP(i, j) in the ERP feature
map, our SFA module calculates the cosine similarity score
s(i,j),k between FERP(i, j) and each patch feature vector
Vk. Then, it ranks the scores, and selects the m-th patch
that satisfies:

m = argmax
k

s(i,j),k, (2)

and records the index m of the pixel location (i, j) on the
spatially aligned index map M . For convenience, we ex-
tend each index into an N-dimension one-hot vector and
transform the resolution size of index map M to he × we,
where (he, we) is the resolution size of ERP feature map
FERP. Note that this spatially aligned index map is pro-
duced with the guidance of the holistic contextual informa-
tion only contained in the ERP image. With this index map,
we can efficiently aggregate the TP features into an ERP
format feature map while maintaining spatial consistency.

3.4. Collaborative Depth Distribution Classification

The proposed CDDC module replaces the pixel-wise
depth value regression with depth distribution classification,
inspired by the works for perspective images [5,18]. Impor-
tantly, to fully exploit the complete view in the ERP image
and structural details in the less-distorted TP patches, we
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(a) RGB (b) UniFuse (c) OmniFusion-2iter (d) Our HRDFuse (e) GT

Figure 5. Qualitative results on 3D60 (top), Matterport3D (middle) and Stanford2D3D (bottom).

marry the potential of CNNs and transformers to learn the
holistic-with-regional histograms capturing the ERP and TP
depth distributions simultaneously. In the following, we in-
troduce our CDDC module in three parts: generic depth dis-
tribution classification, depth prediction based on the holis-
tic depth distribution, and depth prediction based on the re-
gional depth distributions.
Generic depth distribution classification. Following pre-
vious works [5, 18], given an extracted feature map F ∈
RH×W×Cin (e.g., FERP in Fig 4(a)), a sequence of embed-
ding tokens Tin is obtained from F by a convolutional layer
followed by a spatially flattening module. A transformer
encoder then encodes the embedding tokens Tin, producing
processed tokens Tout. Note that the processed tokens Tout

now benefit from the global context and thus can accurately
capture the depth distribution. Then the first token Tout[0]
from Tout is selected to predict the bin centers c of depth
distribution histograms (e.g., cH in Fig 4(a)) as:

ci = Dmin + (wi/2 +

i−1∑
j=1

wj), (3)

wi = (Dmax −Dmin)
(mlp(Tout[0]))i + ϵ∑B
j=1 (mlp(Tout[0]))j + ϵ

, (4)

where i, j = 1, . . . , B, w is the bin widths of the dis-
tribution histogram, mlp denotes a multi-layer perceptron
(MLP) head with a ReLU activation, (Dmin, Dmax) is the
depth range of the dataset, B denotes the number of depth
distribution bins, and ϵ is a small constant to ensure that
each value of w is positive. Finally, the bin centers c are
linearly blended with a probability score map P (e.g., PH

in the Fig 4(a)) to predict the depth value at each pixel (i, j):

D(i, j) =
∑B

b=1 P (i, j)b · cb. (5)

Holistic distribution-based depth prediction. As depicted
in Fig. 4(a), we follow the process of generic depth distri-
bution classification to predict the holistic depth bin cen-
ters cH . We then perform the following steps to obtain the
holistic probability score map PH . First, we select a part of
processed tokens, which are the output of the transformer
encoder and contain global context, as the “query” embed-
ding TH . At the same time, we encode a spatially consistent
feature map FH containing local pixel-wise information as
the “keymap”. Next, we calculate the dot-production be-
tween the query TH and pixel features in FH to obtain
a range attention map RH . This range attention map RH

thus contains global context and is spatially aligned with
the ERP feature map. Then RH is passed through a 1 × 1
convolutional layer with a softmax activation to predict the
probability score map PH . Given holistic depth bin centers
and probability score map, we can now calculate the holistic
depth map following Eq. 5. Note that the ERP feature map
is with the half resolution of the input ERP image to limit
GPU memory usage. Therefore, we additionally employ an
up-sampling module to upscale the probability score map to
the desired resolution (i.e., H ×W ).
Regional distribution-based depth prediction. Compared
with the ERP branch, predicting an ERP format depth map
from TP patches based on corresponding regional depth dis-
tributions meets two critical difficulties: 1) accurate and
smooth fusion of individual TP patches; 2) capturing the
holistic information for the ERP format depth output. To
address them, we utilize the spatially aligned index map M
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Datasets Method Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Stanford2D3D

FCRN [28] −/− 0.1837 - 0.5774 - 0.7230 0.9207 0.9731
BiFuse with fusion [43] −/− 0.1209 - 0.4142 - 0.8660 0.9580 0.9860

UniFuse with fusion [23] −/− 0.1114 - 0.3691 - 0.8711 0.9664 0.9882
OmniFusion (2-iter) [30] 256× 256 / 80◦ 0.0950 0.0491 0.3474 0.1599 0.8988 0.9769 0.9924

PanoFormer* [36] −/− 0.1131 0.0723 0.3557 0.2454 0.8808 0.9623 0.9855

HRDFuse,Ours 128× 128 / 80◦ 0.0984 0.0530 0.3452 0.1465 0.8941 0.9778 0.9923
HRDFuse,Ours 256× 256 / 80◦ 0.0935 0.0508 0.3106 0.1422 0.9140 0.9798 0.9927

Matterport3D

FCRN [28] −/− 0.2409 - 0.6704 - 0.7703 0.9714 0.9617
BiFuse with fusion [43] −/− 0.2048 - 0.6259 - 0.8452 0.9319 0.9632

UniFuse with fusion [23] −/− 0.1063 - 0.4941 - 0.8897 0.9623 0.9831
OmniFusion (2-iter) * [30] 256× 256 / 80◦ 0.1007 0.0969 0.4435 0.1664 0.9143 0.9666 0.9844

PanoFormer* [36] −/− 0.0904 0.0764 0.4470 0.1650 0.8816 0.9661 0.9878

HRDFuse,Ours 128× 128 / 80◦ 0.0967 0.0936 0.4433 0.1642 0.9162 0.9669 0.9844
HRDFuse,Ours 256× 256 / 80◦ 0.0981 0.0945 0.4466 0.1656 0.9147 0.9666 0.9842

3D60

FCRN [28] −/− 0.0699 0.2833 - - 0.9532 0.9905 0.9966
Mapped Convolution [15] −/− 0.0965 0.0371 0.2966 0.1413 0.9068 0.9854 0.9967
BiFuse with fusion [43] −/− 0.0615 - 0.2440 - 0.9699 0.9927 0.9969

UniFuse with fusion [23] −/− 0.0466 - 0.1968 - 0.9835 0.9965 0.9987
ODE-CNN [10] −/− 0.0467 0.0124 0.1728 0.0793 0.9814 0.9967 0.9989

OmniFusion (2-iter) [30] 128× 128 / 80◦ 0.0430 0.0114 0.1808 0.0735 0.9859 0.9969 0.9989

HRDFuse,Ours 128× 128 / 80◦ 0.0363 0.0103 0.1565 0.0594 0.9888 0.9974 0.9990
HRDFuse,Ours 256× 256 / 80◦ 0.0358 0.0100 0.1555 0.0592 0.9894 0.9973 0.9990

Table 1. Quantitative comparison with the SOTA methods. ∗ represents that the model is re-trained following the official setting. red
indicates that our method achieves the best performance.

from the SFA module and the holistic query embedding TH

from the ERP branch (See Fig. 4(b)). We first follow the
generic depth distribution classification to collect regional
depth bin centers from the collection of TP feature maps{
FTP
n

}
and concatenate them to obtain the tensor cR with

the size B × N . Then, with the spatial guidance of index
map M , we can obtain an ERP format bin center map Mc

from bin center vector set cR as:

Mc(i, j) =

N∑
n=1

M(i, j)n · cRn (6)

where (i, j) is the pixel coordinate, and n is the patch in-
dex. The bin center map Mc represents the depth distri-
bution of each pixel with aggregated regional structural in-
formation. Meanwhile, we concatenate and average a col-
lection of processed regional tokens, which record the re-
gional structural information of each individual TP patch,
to a tensor TR. Similarly, the index map M then helps to
aggregate the regional structure in TR to a regional feature
map Mkey . Next, with Mkey as the “keymap” and TH as
the “query”, we can predict the regional probability score
map PR and further output the ERP format regional depth
map DR. Note that the query embedding TH from the ERP
branch provides necessary and favorable holistic guidance.
Due to the page limit, more details, e.g., network architec-
ture, can be found in Table. 1 of the suppl. material.

3.5. The Final Output and Loss Function
To obtain the final depth map, we adaptively fuse the

depth prediction DH from the holistic contextual branch

and depth prediction DR from the regional structural
branch, which can be formulated as follows:

D = w0D
H + w1D

R, (7)

where w0 and w1 are learnable parameters and w0 +
w1 = 1 (superiority of adaptive weighting is shown in
Table. 6). Following previous works [23, 30], we adopt
BerHu loss [27] for pixel-wise depth supervision, denoted
as Ldepth. Furthermore, to encourage the holistic distribu-
tion to be consistent with all depth values in the ground truth
depth map, we adopt the commonly used bi-directional
Chamfer loss [17] as the holistic distribution loss LHbin

.
Therefore, the total loss Ltotal can be written as:

Ltotal = Ldepth + λLHbin
, (8)

where λ is a weight factor and set to 0.1 for all experiments
empirically [5].

4. Experiments

Datasets and Metrics. We conduct experiments on three
benchmark datasets: Stanford2D3D [2], Matterport3D [7],
and 3D60 [54]. Note that Stanford2D3D and Matterport3D
are real-world datasets, while 3D60 is composed of two
synthetic datasets (SUNCG [37] and SceneNet [21]) and
two real-world datasets (Stanford2D3D and Matterport3D).
However, there exists a issue in the 3D60 dataset, which is
mentioned by UniFuse [23] that the problematic rendering
may cause some problems with depth prediction.

Following previous works [23, 30, 43], we evaluate our
method with the standard metrics: Absolute Relative Er-
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ERP branch TP branch geometric fusion SFA CDDC FPS #Params Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
✓ 7.88 33.57M 0.1028 0.0985 0.4543 0.9086 0.9658 0.9841

✓ ✓ 3.56 37.09M 0.1018 0.0982 0.4492 0.9104 0.9662 0.9842

✓ ✓ ✓ 2.82 70.66M 0.0986 0.0944 0.4466 0.9141 0.9664 0.9843

✓ ✓ ✓ 6.21 49.95M 0.0991 0.0956 0.4479 0.9132 0.9666 0.9843

✓ ✓ ✓ ✓ 3.23 56.96M 0.0978 0.0940 0.4458 0.9146 0.9666 0.9841

✓ ✓ ✓ ✓ 5.52 53.77M 0.0967 0.0936 0.4433 0.9162 0.9669 0.9844

Table 2. The ablation results for individual components. Both ERP and TP branch are trained with the depth distributions following [5].

Number Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑
10

128×128 / 80◦
0.0996 0.0965 0.4491 0.9130 0.9664

18 0.0967 0.0936 0.4433 0.9162 0.9669
26 0.0978 0.0945 0.4444 0.9151 0.9670
46 0.1232 0.1178 0.4996 0.8780 0.9563

10

256×256 / 80◦
0.0976 0.0948 0.4447 0.9152 0.9668

18 0.0981 0.0945 0.4466 0.9147 0.9666
26 0.0974 0.0953 0.4478 0.9147 0.9662
46 0.0966 0.0938 0.4432 0.9168 0.9668

Table 3. The ablation results for the number of TP patches.

ror (Abs Rel), Squared Relative Error (Sq Rel), Root Mean
Squared Error (RMSE), Root Mean Squared Logarithmic
Error (RMSE (log)), as well as a percentage metric with a
threshold δt, where t ∈ {1.251, 1.252, 1.253}. Due to the
lack of space, the details of datasets and metrics can be
found in the suppl. material.
Implementation Details. We implement our method using
Pytorch and train it on a single NVIDIA 3090 GPU. We use
ResNet-34 [22], pre-trained on ImageNet [13], as the en-
coder. Following [30], we use Adam [24] optimizer with
cosine annealing [31] learning rate policy and set the ini-
tial learning rate to 10−4. The default TP patch number is
N = 18, and the batch size is 4. Following [30], we train
80 epochs for Stanford2D3D [2] and 60 epochs for Matter-
port3D [7], and 3D60 [54]. The input images are augmented
only by horizontal translation and horizontal flipping.

4.1. Comparison with the state-of-the-arts
In Table. 1, we compare our HRDFuse with the SOTA

methods on three benchmark datasets. For a fair compari-
son, we do not discuss self-supervised methods [25,26,41].
Note that OmniFusion did not provide the pre-trained mod-
els on the Matterport3D dataset, thus we re-trained them
with the official hyper-parameters. PanoFormer did not pro-
vide the experiment details, e.g., epochs; thus for fair com-
parison, we re-trained the model with the same setting using
the official hyper-parameters for the same epochs. For all
the datasets, we show the results of the proposed HRDFuse
with TP patch sizes of 128× 128 and 256× 256.

As shown in Table. 1, our HRDFuse performs favor-
ably against the SOTA methods [23,28,30,43,54] by a sig-
nificant margin on two of the three datasets. Specifically,
for the Stanford2D3D dataset, our HRDFuse with the patch
size of 256×256 outperforms UniFuse [23] by 16.07% (Abs
Rel), 15.85% (RMSE), and 4.29% (δ1). Compared with
OmniFusion (2-iter), our HRDFuse improves RMSE(log)

Patch FoV Patch size Abs Rel ↓ Sq Rel ↓ RMSE ↓

60 128×128 0.0986 0.0961 0.4454
256×256 0.0986 0.0942 0.4448

80 128×128 0.0967 0.0936 0.4433
256×256 0.0981 0.0945 0.4466

100 128×128 0.0970 0.0938 0.4453
256×256 0.0979 0.0940 0.4458

Table 4. The ablation results for the TP patch size and FoV.

by 11.07% and δ1 by 1.52%. More comparisons with it can
be found in the suppl. material due to the space limit.

For Matterport3D and 3D60 datasets, which contain
more samples, our HRDFuse is more advantageous and sur-
passes the compared methods for all metrics. On the Matter-
port3D dataset, our HRDFuse with the patch size 128×128
outperforms UniFuse by 2.65% (δ1), 9.03% (Abs Rel), out-
performs PanoFormer by 3.46% (δ1) and outperforms Om-
niFusion (2-iter) by 3.97%(Abs Rel), 3.41% (Sq Rel). On
the 3D60 dataset, HRDFuse with the patch size 256 × 256
outperforms UniFuse by 23.18% (Abs Rel) and 20.99%
(RMSE), and outperforms OmniFusion (2-iter) by 16.74%
(Abs Rel) and 13.99% (RMSE).

In Fig. 5, we present the qualitative comparison with
UniFuse 5(b) and OmniFusion 5(c). Our HRDFuse can re-
cover more regional structural details (e.g., leaves and seats)
and suffer less from artifacts caused by the discontinuity
among TP patches (red boxes). More qualitative compar-
isons can be found in the suppl. material.

4.2. Ablation Study and Analyses
The effectiveness of each module. We verify the effective-
ness of each module in our HRDFuse by adding one mod-
ule each time (Table. 2). We form our baselines in three
ways. Firstly, for the ERP branch-only baseline, we directly
follow the Adabins [5] to predict the holistic depth distri-
butions from the ERP images and regress the depth maps.
Secondly, with only the TP branch, we add the geometric
fusion, as done in [30], to the feature extractor to obtain
the ERP format depth map. Thirdly, we combine the ERP
branch and TP branch, followed by the geometric fusion
mechanism in [30]. Based on this, we then add the SFA
module. Here, we directly leverage the spatially aligned in-
dex map to aggregate the patch feature vectors Vn into an
ERP feature map and predict the depth map, without em-
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Number of bins Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑

20 0.0997 0.0963 0.4502 0.9132 0.9661
50 0.0971 0.0939 0.4454 0.9159 0.9665

100 0.0967 0.0936 0.4433 0.9162 0.9669
150 0.0997 0.0948 0.4497 0.9121 0.9662

Table 5. Impact of the number B of depth histogram bins.

ploying the decoder (see Fig. 3) or geometric fusion module
of [30] in the TP branch. Lastly, we add the CDDC module
to learn the holistic-with-regional depth distributions.

As shown in Table. 2, with the ERP branch alone, it is
difficult to alleviate the projection distortion, thus leading to
the worst depth estimation performance. The performance
improves when using the TP branch only due to less dis-
tortion, and is further improved by the fusion of the ERP
branch and TP branch (with the geometric fusion mecha-
nism). Furthermore, by introducing the SFA module, the
network parameters are significantly reduced by 29.31%,
leading to more than three frames per second (FPS) gain in
inference speed. When the CDDC module is finally added,
the performance is further boosted by 2.42%(Abs Rel) and
2.09%(Sq Rel), although the parameters slightly increase.
Especially, compared with PanoFormer (20.37 M parame-
ters), our method higher FPS (5.52) than it (4.93).
Patch size, FoV, and the number of patches of TP. They
are essential parameters and directly affect the accuracy
and efficiency of our method. Thus, we study their impact
and find an optimal balance between efficiency and perfor-
mance. Following [30], we fix the patch number as 18 and
examine how TP patch size affects the learning under multi-
ple patch FoVs. As in Table 4, on the Matterport3D dataset,
all the results with the patch size of 128× 128 perform bet-
ter than those of 256 × 256, which indicates that too large
patch size may cause the redundancy of regional structural
information and degrade the accuracy of the final ERP out-
put. Meanwhile, we can observe the influence of patch FoV
in Table 4: either too small patch FoV or too large patch
FoV degrades the performance. When FoV is too small, the
regional information in each TP patch would be insufficient;
in contrast, too large FoV increases the inconsistency in the
overlapping areas between adjacent TP patches.

Furthermore, as the number of TP patches and the com-
putational memory cost are directly related, we fix the patch
size and FoV to compare the depth results with different
patch numbers such that we can find the most cost-effective
patch number. As shown in Table. 3, too few patches can
not provide sufficient region-wise structural details, while
too many patches lead to the redundancy of details, thus de-
grading the role of holistic contextual information. We find
that N = 18 performs best in our experiments.
Number of bins. We now compare the performance with
various numbers of depth distribution histogram bins. As
observed from Table. 5, starting from B = 20, the depth ac-
curacy first improves with the increase of B, and then drops

ERP branch TP branch Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑
1 0 0.0976 0.0948 0.4450 0.9153 0.9664
0 1 0.0975 0.0944 0.4459 0.9149 0.9670

0.5 0.5 0.0969 0.0942 0.4442 0.9157 0.9668

Adaptive weighting 0.0967 0.0936 0.4433 0.9162 0.9669

Table 6. The ablation study for the final fusion.

significantly. The result indicates that too many bins lead to
difficulty in classification. For this reason, we choose 100
as the number of bins for experiments.
Weights of fusion. Table. 6 lists the depth results under
4 groups of fusion weights with the patch number set as
N = 18, patch size as 128×128, and FoV as 80◦. Overall,
our adaptive weighting achieves the best performance.
Rationality of SFA module. As depicted in Fig. 2 and Ta-
ble. 2, the geometric fusion of [30] requires more inference
time to ensure the depth values of overlapping areas among
TP patches. By contrast, our SFA module can provide the
alignment in the feature space, which is more efficient and
effective. As shown in Fig. 7 in the suppl. material, when
the holistic scene structure is simple, SFA module makes
the index map (Fig. 7(b)) centralized to several representa-
tive TP patches with higher frequency of index (e.g., index
4, 6 in Fig. 7(c)) to avoid redundant usage. This indeed
validates the overlap among the TP patches, as shown in
Fig. 2. In comparison, when the scene structure becomes
more complex (Fig. 8 in the suppl. material), more TP
patches (with index 12,16 in Fig. 8(c)) are needed to de-
scribe the holistic depth information.

5. Conclusion and Future Work
This paper proposed a novel solution for monocular 360◦

depth estimation, which predicts an ERP format depth map
by collaboratively learning the holistic-with-regional depth
distributions. To address the two issues: 1) challenges in
pixel-wise depth value regression; 2) boundary discontinu-
ities brought by the geometric fusion, our HRDFuse intro-
duced the SFA module and the CDDC module, whose con-
tributions allow HRDFuse to efficiently incorporate ERP
and TP, and significantly improve the depth prediction accu-
racy and obtain favorably better results. Our work focused
on the supervised monocular 360◦ depth estimation and did
not cover self-supervised methods. In the future, we will
explore the potential of TP, e.g., contrastive learning for TP
patches. In addition, our task and 360◦ semantic segmenta-
tion [47,51] are closely related, as they are both dense scene
understanding tasks. Therefore, joint 360◦ monocular depth
estimation and semantic segmentation based on the combi-
nation of ERP and TP is a promising research direction.
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[19] Marc-André Gardner, Yannick Hold-Geoffroy, Kalyan
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