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Abstract
Next generation cellular networks will implement ra-

dio sensing functions alongside customary communications,
thereby enabling unprecedented worldwide sensing coverage
outdoors. Deep learning has revolutionised computer vision
but has had limited application to radio perception tasks,
in part due to lack of systematic datasets and benchmarks
dedicated to the study of the performance and promise of
radio sensing. To address this gap, we present MaxRay:
a synthetic radio-visual dataset and benchmark that facil-
itate precise target localisation in radio. We further pro-
pose to learn to localise targets in radio without supervision
by extracting self-coordinates from radio-visual correspon-
dence. We use such self-supervised coordinates to train a
radio localiser network. We characterise our performance
against a number of state-of-the-art baselines. Our results
indicate that accurate radio target localisation can be au-
tomatically learned from paired radio-visual data without
labels, which is important for empirical data. This opens
the door for vast data scalability and may prove key to re-
alising the promise of robust radio sensing atop a unified
communication-perception cellular infrastructure. Dataset
will be hosted on IEEE DataPort.

1. Introduction
Sixth-generation (6G) wireless networks are being de-

signed from the ground up to support sensing at the physical
layer [79]. Such a brand new capability in 6G networks
marks a departure from communication-only functions, and
aims to supply applications with sensing primitives atop
a unified communication-perception infrastructure. Con-
cretely, dense cellular deployments in urban settings (e.g.,
per lamppost) would allow for unprecedented radio cover-
age, enabling a multitude of challenging perception tasks.
Examples include around-the-corner obstacle detection in
support of autonomous driving and pedestrian and drone
localisation, to name a few [2].
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Figure 1. We train a radio localisation network by using com-
monalities with vision to drive spatial attention. Without laborious
manual annotations, we learn to suppress clutter and localise targets
in radio heatmaps.

Training perception models for radio signals is a key
challenge for network infrastructure vendors. Unlike vision
and audio, radio signals are hard to label manually because
they are not human interpretable. Typically, sparse radio
signals have been paired with a groundtruth vision modality
for reliable semantic and qualitative filtration via a cross-
modal annotation flow [34, 56, 77, 85]. Recently, this radio-
visual pairing has been shown to work in a self-supervised
fashion [10], building on a wave of progress in vision self-
supervised learning (SSL) [19,22,26,40–42,45,61,62,82,84].

Computer vision has traditionally benefited from syn-
thetic datasets for: (a) content augmentation for enhanced
generalisability [54, 81], or (b) closing the learning loop on
out-of-distribution failure modes [68], e.g., in the context
of autonomous driving [1]. Extrapolating from vision, it is
also likely that synthetic data will play an important role
towards realising robust radio sensing. However, radio per-
ception tasks have yet to benefit from such publicly available
datasets.

In this work we aim to support next-gen 6G percep-
tion tasks, while championing a self-supervised radio-visual
learning approach. Concretely, Fig. 1 captures the crux of
our new machine learning proposition for radio sensing. We
demonstrate how to automatically extract radio self-labels
through cross-modal learning with vision. We then use such
self-labels to train a downstream localiser network. We show
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that our self-supervised localiser net enhances estimation in
the radio domain compared to state-of-the-art. Our contribu-
tions are:

• A synthetic dataset: We curate and synthesise radio-
visual data for a new learning task designed for target
detection and localisation in radio.

• A cross-modal SSL algorithm: We formulate a con-
trastive radio-visual objective for label-free radio local-
isation.

• Evaluation: We conduct numerous characterisations on
synthetic and empirical data in order to validate our
SSL algorithm and expose its superior performance
compared to state-of-the-art.

We discuss our dataset and algorithmic findings to galvanise
machine learners’ interest in radio-visual learning research.
We hope to both facilitate and inform future research on this
new cross-modal learning paradigm.

2. Related Work

Self-supervised learning. Self-supervised learning (SSL)
in its two strands (contrastive and non-contrastive) is the
state-of-the-art learning paradigm for visual representa-
tions [26,42,45,82]. SSL models have progressively matched
and then exceeded the performance of their fully-supervised
counterparts [17, 19, 22, 40, 47, 50, 61, 62, 84], culminating
recently in strong performance on uncurated billion-scale
data [41]. Vision SSL relies on augmentation for semantic
invariance. Differently, we deal with a new radio-visual SSL
problem that relies on cross-modal correspondence [12, 13]
as opposed to augmentation. Further, our work addresses
SSL object detection and localisation using spatial backbone
models [3, 23] rather than the prevalent object classification
in vision using 1-D backbones.
Self-supervised multi-modal object detection. A re-
lated body of work leverages multiple modalities for rep-
resentation learning, particularly between audio and vi-
sion [5, 11–13, 15, 16, 24, 60, 65]. Other works, also audio-
visual, deal with knowledge distillation from one modality to
another [4,37]. SSL audio-visual object detectors are well re-
searched and rely on feature attention between 1-D audio and
2-D vision [3, 5]. Differently in radio-visual, our attention
(a) is complicated by a sparse radio modality which could
impact the dimensional stability of cross-modal contrastive
learning [51], and (b) involves a fundamentally larger feature
search space between 2-D radio and 2-D vision.
Self-supervised saliency localisation. Recent works have
extended visual saliency localisation [70, 86] for self-
supervised systems [18]. Specifically, [59] expands class
activation map (CAM) to work within an SSL network to
markedly improve visual contrastive learning and mitigate
against augmentation bias. While notable for vision SSL,
radio-visual SSL does not suffer from the augmentation-
induced geometric perturbations during training (e.g., ran-

dom crop and rotation) which make accurate object localisa-
tion trickier in vision SSL.
Self-supervision with priors. Some works bake prior in-
formation back into SSL, e.g., using off-the-shelf image
segmentation models [47, 48, 76]. Follow-up works replace
these priors with online learning that works hand in hand
with SSL [25, 49]. Our work uses priors from vision to
bootstrap radio-visual SSL in a relatively small data regime.
Similarly, however, radio-visual SSL could be made to work
without vision priors in principle.
Radio learning. Recent works train radio models on vision-
supplied labels for indoor and outdoor sensing, e.g., [34, 43,
56, 85]. SSL has also been recently applied to radio-only
learning systems. [63] proposes an SSL super-resolution
method that improves the angular resolution of radar antenna
arrays. [38] uses radar during training as a weak supervision
signal, as well as an extra input to enhance depth estimation
at inference time. [55] tackles the problem of radio-only SSL
for human sensing. Our work is different from the above
prior art in that it neither relies on explicit supervision from
vision, nor it is single-modal for radio-only learning. A
recent work proposes radio-visual SSL for object classifica-
tion within a distillation framework [10]. This differs from
our work which (a) deals with representation learning from
scratch for both radio and vision and (b) is aimed at SSL
object detection and localisation using an underlying spatial
backbone as opposed to standard classification.
Radio-visual datasets. A number of multi-modal datasets
(with radio-visual entries) are available in the adjacent
automotive literature, where it is not uncommon for
datasets that are collected using fleets of cars to be quite
large. Examples include CRUW [77], Carrada [64], AIO-
Drive [78], RADIATE [72], Oxford Radar RobotCar [20].

Table 1. Radio-visual datasets.†

Dataset Automotive 6G

CRUW [77] ✓ ✗

Carrada [64] ✓ ✗

AIODrive [78] ✓ ✗

RADIATE [72] ✓ ✗

Oxford Radar RobotCar [20] ✓ ✗

RADDet [83] ✗ ✓

DeepSense [7] ✗ ✓

MaxRay∗ ✗ ✓

∗MaxRay is the only 6G synthetic dataset.
†Refer to Tab. 3 in Appendix J for a more de-
tailed comparison.

6G networks, on the
other hand, focus on
radio-visual data col-
lected at a stationary
basestation for sensing
the surrounding envi-
ronment. RADDet [83]
and DeepSense [7] are
closely related datasets.
However, both are em-
pirical datasets with low
angular resolution. In
contrast, our synthetic dataset has higher angular resolution
and incorporates high-fidelity propagation modelling1 and
graphical rendering, which result in quality radio-visual
data. This allows for much tighter characterisation and
refinement of algorithms given the (a) controllability (e.g.,
configurability w.r.t. radio parameters, cf. Tab. 3) and (b)
measurability against perfect groundtruth.

1made possible by decades of statistical radio modelling [36, 87]
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3. Dataset
Figure 2. Block diagram of MaxRay.
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Table 2. Sensor entries in MaxRay.

Entry Type Label

Camera Image bounding box + class
Lidar Tensor per point material + class
Depth Image bounding box + class
Radar Image bounding box + reflectors + class
CSI Tensor reflectors + paths AoA∗/AoD†

∗AoA: angle of arrival
†AoD: angle of departure

Table 3. Radio synthesis.

Parameter Value

RX array 16×16
Bandwidth 800MHz
Carrier 28GHz

Range-Angle
Bins

480×640

Our radio-visual dataset is created using MaxRay [14]—a
ray tracing tool for accurate radio propagation simulations.
MaxRay also incorporates the open-source Blender engine
for creating photo-realistic environments [28]. As such, we
can model arbitrarily complex environments and synthesise
paired responses in the vision and radio domains.

Fig. 2 depicts the tool block diagram. A Blender scenario
and a configuration file (containing radio parameters such as
carrier frequency and bandwidth) are inputted to MaxRay.
MaxRay uses Python APIs to render responses for a variety
of imaging sensors (e.g., camera, lidar, depth images) along
with their labels. The rendering and label quality allow us
to train an off-the-shelf Yolo v5 models [33] from scratch.
The core of MaxRay leverages the ray casting capability of
Blender to simulate complex radio phenomena (e.g., scat-
tering and reflection) and calculate their propagation losses.
These propagation losses are then used to create channel
state information (CSI), which is in turn converted to radar
heatmaps according to an orthogonal frequency-division
multiplexing (OFDM) signalling architecture.

3.1. Modelling & synthesis details
Vision. We model everything in Blender. Currently, we
implement five different materials (glass, wood, concrete,
metal, and water), 20 different building types, and 28 unique
and accurate car models. Once the dataset is open-sourced,
the research community can build on our Blender models
to further extend the scale and richness of our radio-visual
dataset.2 As of now, we sample from a standard normal
distribution (10cm standard deviation) to randomise the loca-
tion of 28 unique cars on the road, while also permuting their

2See datasheet in Appendix K for further details on extension.
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Figure 3. Example radio-visual heatmap-image pairs of three dif-
ferent scenarios: parking lot (left), suburban (middle), and street
canyon (right)

colour. The pose is constrained by the lane along which cars
are travelling. Different scenarios are evenly distributed.
Radio. We generate radio heatmaps that correspond to vi-
sual Blender models using ray tracing. Appendix E treats
the signal processing principles of OFDM radar, which we
implement in our synthesis flow. We validate our ray tracing
against empirical measurements, as well as other commer-
cial ray tracers. Recent analysis against [7] reveals effective
behavioural modelling. Our current scenarios focus on cars.
We plan to extend to scenarios featuring humans, which
require elaborate modelling of micro Doppler effects [9].

3.2. Version 1.0
The current version of the dataset supports the sensor con-

figurations listed in Tab. 2. All available sensors are paired
and synchronised per data point, facilitating cross-modal
learning. Tab. 3 lists the radio configurations used in dataset,
which comply with current 5G Advanced specifications [52].
Further, the dataset has sequences of 15 data points that
allow for time series modelling.

The full version of the dataset has 3 scenarios: a parking
lot, a suburban street, and a street canyon. Fig. 3 depicts
one example per scenario. In parking lot, one car is driven
from left to right or right to left. In suburban, one car drives
along the houses towards the camera or away from it. The
same holds for the street canyon scenario. Note how radio
heatmaps have different ranges, as well as different amount
of spurious clutter. For instance, parking lot has dynamic
background clutter arising from changes in the location and
pose of stationary cars across data points. Groundtruth infor-
mation is supplied in the form of bounding boxes for vision
and target polar coordinates for radar (i.e., range and angle).
In the terms of data diversity, there are 50 different cars,
backgrounds and foregrounds randomised throughout the
dataset. There are also portions of data that model mixed
weather scenarios such as rain, snow, fog, and dust. We
provide a few dataset illustrations in Appendix H.

Phase 1 of dataset release focuses on the parking lot sce-
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Figure 4. Radio target localisation via self-supervised radio-visual correspondence. We combine contrastive radio-visual learning with visual
masking to extract radio target self-coordinates, on which we then train a radio-only localiser net.

nario only. For the remainder of this paper, we use parking
lot with radar and camera entries. Specifically, parking lot
has 30,000 paired radio-visual data points, split into 24k
training and 6k validation sets. An additional 10k set is
withheld for testing. All our results are reported on the 6k
validation set.

4. Method
We aim to automatically localise a target of interest in

radio by tapping into the common information radio and its
paired vision capture about the physical world. In fact, bar-
ring propagation nuances, radio imaging can be thought of as
a low-resolution form of vision—Appendix A justifies this
view using a 1st-order analytic analysis derived from first
principles. As such, jointly embedding radio and vision be-
comes not only a convenience, but is also naturally grounded
in physics. Therefore, we would hope that the joint embed-
ding architecture would constitute a powerful representation
for building a wide variety of radio-only or combined radio-
visual perception tasks. Concretely, our approach in this
paper is to: 1 learn cross-modal spatial features via radio-
visual correspondence, 2 extract self-estimates of target
coordinates (i.e., pseudo labels) via cross-modal attention
between the spatial features, and 3 use the self-coordinates
to train a radio-only target localiser network. Fig. 4 illus-
trates this three-step procedure. In what follows, we explain
further 1 , 2 , and 3 .
4.1. Representation learning

We employ a flavour of contrastive learning we dub
masked contrastive learning (MCL) in order to self-localise
targets in radio. MCL is inspired by earlier pioneering audio-
visual learning works [12, 13], as well as canonical visual
contrastive learning [26, 27]. We begin by formalising MCL.
Masked contrastive learning (MCL). Let (r, v) be a radio-
visual data pair, where r ∈ R1×H×W is a radar heatmap
and v ∈ R3×H×W is a corresponding RGB image. Encode,
respectively, radio and vision by two backbone nets fθr

and fθv , and their momentum-filtered versions fθ̄r and fθ̄v ,
assuming some weight parametrisation {θr , θv}. Each back-
bone net encodes per bin one C-dimensional feature vec-
tor within 2-dimensional spatial bins, i.e., fθr (r), fθv (v) ∈
RC×h×w. The spatial binning resolution h× w is generally

coarser than the original image resolution H × W . Denote
by frn(r), f

v
n(v) ∈ RC radio and vision spatial encodings at

bin n ∈ Ω = {1, . . . , h} × {1, . . . , w}. Construct a visual target
mask γ := [γij ] ∈ [0, 1]H×W such that f ṽm(γ ⊙ v) ∈ RC is de-
fined for m ∈ Ω̃ = {1, . . . , h̃} × {1, . . . , w̃} to retain encodings
for the target of interest only in the RGB image (e.g., as
delineated by a bounding box), where ⊙ is the element-wise
product, Ω̃ ⊂ Ω is a subset of spatial locations, and ṽ denotes
masking in vision. In practice, the target mask can either
be (1) estimated using off-the-shelf vision object detectors
such as Yolo [33, 67], or (2) obtained directly as groundtruth
during data synthesis. Use 2-layer MLP projector heads gθr

and gθv to collapse the spatial encodings of the backbone
nets fθr and fθv onto vector representations as

qr = gθr (fθr (r)), kṽ = gθv (fθ̄v (γ ⊙ v))

qṽ = gθv (fθv (γ ⊙ v)), kr = gθr (fθ̄r (r))

where vectors qr , qṽ , kr , kṽ ∈ RN , superscripts r and ṽ denote
respectively radio and masked vision, and following MoCo’s
query q and key k notation [45]. With each r, use K + 1

samples of ṽ of which one sample ṽ+ is a true match to
r and K samples {ṽ−i }K−1

i=0 are false matches—vice versa
with each ṽ, K + 1 samples of r. The one-sided cross-modal
contrastive losses that test for masked vision-to-radio and
radio-to-masked vision correspondences are

Lṽ→r
c (qr , kṽ+,kṽ−) = − E

r,v
log

esim(qr,kṽ+)

esim(qr,kṽ+) +
∑

i e
sim(qr,kṽ−i )

Lr→ṽ
c (qṽ , kr+,kr−) = − E

r,v
log

esim(qṽ ,kr+)

esim(qṽ ,kr+) +
∑

i e
sim(qṽ ,kr−i )

where sim(x, y) := x⊤y/τ is a similarity function, τ is a tem-
perature hyper-parameter, kx+/− = gθx (fθ̄x (x

+/−)) are en-
codings that denote true and false corresponding signals
x ∈ [r, ṽ] , and vector kx− = {kx−i }K−1

i=0 holds K false encod-
ings. Then the bidirectional masked contrastive loss3 that
incentivises cross-modal spatial attention becomes

LMCL = (Lṽ→r
c + Lr→ṽ

c )/2 (1)

After training, the visual spatial encodings of the masked
target f ṽm(γ ⊙ v) can be correlated against the radio spatial

3see Fig. 3 in Appendix C for further illustration
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encodings covering the entire sensing scene frn(r) in order to
produce an attention map (with appropriate padding)

hn(r, v) = conv2d
(
frn(r), f

ṽ
m(γ ⊙ v)

)
, n ∈ Ω,m ∈ Ω̃ (2)

To measure best cross-modal regional agreement, the
attention map is maximised over spatial bins

S(r, v) = max
n∈Ω

hn(r, v) (3)

4.2. Target self-estimation
Once the backbone networks are learnt and their spatial

features are stable, we can use cross-modal attention max-
imisation (cf., Eqs. 2 & 3) to self-generate target coordinate
estimates. This self-labelling is inherently noisy, but remark-
ably powerful. Particularly, a downstream localiser network
is able to smooth these self-estimates when trained over a
sufficiently large number of data points—as determined by
the mutual information with perfect coordinates [44].
Rescaling and calibration. Target coordinate estimates are
obtained in the spatial feature grid h×w. We rescale to bring
back to original grid H ×W , and perform one-off calibration
for systematic offsets on entire dataset.
4.3. Localiser network

We construct the dataset (r, ŷ) ∈ Dloc from tuples of ra-
dio heatmaps r and their target self-labels ŷ. The localiser
network is trained to regress ŷ from r using a mean squared
error (MSE) loss.

5. Benchmarks
We discuss our baselines and empirical evaluation. We

refer the reader to Appendix D for implementation details.

5.1. Baselines

Radar target detection is a historic and thoroughly inves-
tigated topic as it pertains to many civil and military applica-
tions. The objective is to predict a target’s position and veloc-
ity. However, extracting wanted information (i.e., the target)
from unwanted information (i.e., clutter) is a challenging
task. Due to radio propagation phenomena, both could ex-
hibit comparable statistical behaviour. We implement expert
statistical techniques used by various industries in millions
of products, and designate as our first strong standard base-
line. Equally, a fully-supervised localiser network trained
on groundtruth coordinates naturally forms our second deep
learning-based baseline. We also adapt to our dataset a third
radio-visual fusion scheme called RODNet [77]. In what
follows, we describe these approaches.
Statistical. Extracting information from a radio response
representation is a multi-step procedure. First, radio targets
in two different domains, range-angle and range-velocity,
are binarised via a threshold technique (e.g., CFAR [69]) and
then clustered (e.g., via DBSCAN [32]) to form one point
cloud per target. Targets are then matched between the two
different domains over the same and hopefully unique range.
Point cloud centroids are used to track targets.

Considering such multi-step procedure, the following
shortcomings come to mind. First, how should we detect the
wanted target from the matched targets (e.g., how to remove
clutter). Second, some information is ignored when assign-
ing a target centroid (e.g., information from the shape of the
point clouds). Third, setting the optimal thresholds, guard
bands, training bands, number of points per cluster [69] is an
exceedingly brittle exercise. It is our hope that end-to-end
learning is able to address some of these shortcomings.

For the statistical baseline to become more competitive
with learning-based approaches, we make it “Genie-aided”,
i.e., the peak closest to groundtruth is assigned as a target.
Genie-aided algorithms are common practice in information
theory literature to study upper performance bounds [30].
Supervised. In radio sensing, labelling empirical heatmaps
(e.g., object type, centre, bounding box) is infeasible at scale
as we cannot interpret the scene by manual inspection. How-
ever, we consider the supervised network as a useful upper
bound on the performance of self-supervised localisation.

Compared to computer vision, radio imaging has no pre-
scribed or de facto neural architectures to use for evaluation.
We therefore use Microsoft’s AutoML tool NNI (Neural
Network Intelligence) [58] to search for strong candidate
architectures. Specifically, we searched for optimizers, loss
functions, learning rates, momentums, neural architectures
via resolution branching, and activation functions. The per-
formance of the supervised baseline in Sec. 6 corroborates
the quality of the search. Detailed description of the archi-
tectural search space is given in Appendix I.
Radio-visual fusion. RODNet uses a student-teacher net-
work configuration [77]. The teacher combines object de-
tection in vision and statistical peak detection in radio to
derive object class and location estimates. The radio-only
student network is trained on the teacher’s estimates. We use
the student network as a baseline and characterise against
pseudo groundtruth labels. Like our system, our RODNet
implementation operates on a single heatmap snapshot with-
out spatio-temporal convolution. Compared to statistical
CFAR baseline—using a genie-aided peak selection where
the peak closest to the target is always assigned—RODNet’s
vision+radio teacher implements a peak fusion to approxi-
mate the optimal joint camera-radio detector.

5.2. Empirical data
For further empirical validation of our radio-visual SSL

algorithm, we use the parking lot scenario of the Camera-
Radar of the University of Washington (CRUW) dataset [77].
Tab. 4 in Appendix J compares CRUW to MaxRay.
Pseudolabels construction. Since empirical data does not
come with groundtruth correspondence labels, we employ
the following pseudolabelling procedure (based on RODNet).
First, we detect and segment objects from images using
a Mask R-CNN object detector [46]. Second, we detect
radar peaks using CFAR and cluster them into groups using
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DBSCAN. Third, we perform intrinsic camera calibration
to convert camera objects into x-y coordinates. Fourth, we
match image segmentations to radar peak clusters.
Pseudosupervision. As a replacement for the supervised
baseline on MaxRay, we use the matched range-angle pseu-
dolabels from the above procedure to train a pseudosuper-
vised localiser net that takes as input CRUW radar heatmaps.
5.3. Metrics

We measure location estimation performance using two
error statistics: 50th and 90th percentiles (abbrv. %ile), and
on the validation set unless otherwise stated. Formally, let
Xe denote the location error as a random variable, xe denote
the %ile error, Pr the error probability distribution, FXe

its cumulative probability distribution, and pe ∈ {0.5, 0.9} a
probability value it assumes. Then pe := FXe

(xe) = Pr(Xe ≤
xe). Throughout evaluation, we will simply quote these error
statistics (xe

∣∣
pe∈{0.5,0.9}) as the 50th and 90th %ile errors.

6. Results
Having described our benchmarking setup in Sec. 5, we

turn next to discussing results. For MaxRay and CRUW,
results are computed on 6k and 1.8k data points of validation
sets, respectively.
6.1. Localisation performance

We examine the overall performance of our MCL-based
self-labelled localiser net and compare it against: fully super-
vised, RODNet, and statistical baselines. The self-labelled
net, supervised, and RODNet share identical downstream
architecture and training configurations. This common archi-
tecture is only specialised with different convolutional kernel
sizes across datasets due to differences in radio configura-
tions (cf., MaxRay vs. CRUW in Appendix J). We denote the
statistical baseline by Constant False Alarm Rate (CFAR).
Tab. 4 summarises the performance in terms of 50th %ile and
90th %ile localisation errors on the validation sets. Not sur-
prisingly, the fully-supervised net performs most favourably
with around 30cm and 1.4m median errors, respectively
on MaxRay and CRUW. Note the drop in supervised perfor-
mance between MaxRay and CRUW is largely due to the
halved angular resolution of CRUW (cf., Appendices A & J).
MCL comes second with approx. 0.94m and 2.5m median
errors, respectively on MaxRay and CRUW. This is re-
markable given that MCL has automatically learned how to
localise targets by simply observing paired radio-visual data.
Genie-aided CFAR performs worse with roughly 2.8× and
1.8× MCL’s median errors, respectively on MaxRay and
CRUW. RODNet is also worse with 3.2× and 1.3× MCL’s
median errors, respectively on MaxRay and CRUW. As
discussed in Sec. 5.1, RODNet teacher employs a conven-
tional radio-visual fusion scheme that relies on radio CFAR
detection aided by vision. On the higher angular resolution
of MaxRay, RODNet’s fusion scheme seems to be far less
effective than our joint embedding architecture.

Table 4. Performance summary on MaxRay and CRUW.
MCL sets a new SOTA perf. for label free localisation.

MaxRay perf. (error in m) CRUW perf. (error in m)

Method Label free 50th %ile 90th %ile 50th %ile 90th %ile

Supervised∗ ✗ 0.289 ±0.017 0.922 ±0.042 1.382 ±0.128 5.402 ±0.063

MCL ✓ 0.942 ±0.016 4.681 ±0.158 2.558 ±0.072 10.969 ±0.032

CFAR† ✓ 2.709 8.062 4.659 6.161
RODNet ✓ 3.012 ±0.014 8.913 ±0.107 3.281 ±0.334 7.791 ±0.355

∗pseudosupervised in CRUW †Genie-aided

Table 5. Backbone training con-
figurations: MCL, SCL, CL

MaxRay perf. (error in m)

Backbone 50th %ile 90th %ile

MCL 0.942 ±0.016 4.681 ±0.158

SCL 1.571 ±0.050 3.539 ±0.062

CL 3.111 ±0.358 17.498 ±0.317

Table 6. Backbones with Yolov5
bounding boxes.

MaxRay perf. (error in m)

Backbone 50th %ile 90th %ile

MCLY 1.351 7.649
SCLY 2.188 5.462

Y using Yolov5 bounding boxes

6.2. Ablations and analysis
We now conduct experiments to better understand MCL’s

performance against alternatives, its dependence on masking
accuracy and self-labelling density, its modelling capacity,
and its sensitivity to radio-visual commonalities.
Masked contrast vs. other contrastive learning flavours.
We have found MCL to be an effective radio-visual learning
strategy on synthetic and noisier empirical data. We would
like to understand, however, how MCL compares to other
forms of contrastive learning from the literature. To this end,
we first consider spatial contrastive learning (SCL) that has
appeared in multiple recent works that use 2-D backbone
modelling [3, 5, 80]. SCL performs contrastive learning in
2-D to incentivise cross-modal spatial attention. We adapt
SCL to the radio-visual problem setting and provide formal
definition and illustrative comparisons in Appendix C. We
also consider vanilla contrastive learning (CL) without mask-
ing [26]. I.e., the following investigates the performance
of model variants: SCL and CL. We ask: What role does
masking play during contrastive radio-visual learning?

Tab. 5 analyses the performance of the three backbone
configurations on MaxRay. We note that vanilla CL per-
forms poorly with 3.1m median error. We attribute the high
localisation error to the lack of target sensitivity of CL dur-
ing training. MCL, on the other hand, is trained to attend
to targets through masking and exhibits a 50th %ile error
of 0.94m, interestingly 1/3rd better than SCL at 1.57m. A
closer look at MCL’s 90th %ile error at 4.6m reveals that
it is also around 1.3× “lazier” than SCL at tracking higher
%ile targets. However, we note that SCL has failed to train
on the noisier empirical CRUW dataset, while MCL has
given a new SOTA 50th %ile performance as shown in Tab. 4
(despite CRUW’s low angular resolution). We conjecture
that MCL’s 2-layer MLP projector supports denoising—a
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crucial feature the more computationally efficient SCL lacks.
Classically, noisy radar data could have many spurious ghost
targets [69]. Hence, a parameter-heavy projector head may
prove necessary to stabilise learning. Fig 5 depicts the error
cumulative density functions (CDFs) of all methods.
Impact of noisy masks. Taking advantage of the control-
lability of MaxRay, we have so far utilised perfect masks
generated during synthesis. We now investigate the impact
of using noisy mask estimates during contrastive learning.
To this end, Tab. 6 lists the localisation performance of MCL
and SCL using masks from Yolov5, similar to how we inte-
grated CRUW into our SSL pipeline (see Appendices G & J).
We observe around 0.4m and 0.6m degradation in the median
localisation performance, respectively for MCL and SCL.
Impact of label density. We investigate performance en-
hancements as a function of increased number of noisy labels.
Using MaxRay’s 24k training set, we sweep the amount of
labels and self-labels used to train the localiser nets of super-
vised, MCL, and SCL. Then we evaluate on the validation
set to gauge the localisation performance sensitivity to the
amount of available training (self-)labels. We cover the train-
ing points in logarithmic steps.

With the noisy labels of MCL and SCL, it can be shown
that the localiser nets learn to compensate for such noise
by using sufficiently large number of data points [44]. The
number of required data points is a function of the mutual
information between noisy target coordinates and perfect
coordinates [44]. Fig. 6 examines this effect for supervised
as a reference baseline, and MCL and SCL. We observe
that MCL has a better label density tolerance than SCL w.r.t.
the 50th %ile performance. The opposite holds true, i.e.,
SCL is better than MCL w.r.t. the 90th %ile performance.
This finding mirrors the localisation error analysis of Fig. 5.
On MaxRay, MCL seems to be a better self-localiser of
the bulk of the distribution of the validation set, while SCL
seems to cope better with corner cases.
Self-labels deviation from groundtruth. We have uncov-
ered qualitative differences between the ability of MCL and
SCL to self-localise targets using cross-modal attention. We
turn next to quantify how far the self-labels of MCL and
SCL deviate from groundtruth labels. The following analysis

sheds further light on the performance differences between
masked projector contrast and spatial contrast.

We analyse the deviation of self-labels from groundtruth
labels through the lens of three metrics. Let pgt(y) and
pest(ŷ) denote the distributions of groundtruth labels y and
self-label estimates ŷ, respectively. The shift between pgt

and pest can be quantified using the 1-D Wasserstein dis-
tance DW (pgt, pest) =

∫ 1
0 c

(
|F−1

gt (x) − F−1
est (x)|

)
dx, where

F is the CDF function, and c denotes a cost function—
we use a quadratic cost below. We employ DW because
of its robustness and specificity on empirical measure-
ments [66]. We also use two more conventional information-
theoretic measures: the Kullback-Leibler (KL) divergence
DKL(pgt(y)||pest(ŷ)) and mutual information (MI) I(y; ŷ) =

DKL(p(gt, est)||pgt pest) [29]. KL quantifies the shift between
pgt and pest, similar to the Wasserstein distance. MI measures
how dependent pest is on pgt (in nats below).

Tab. 7 evaluates numerically the three distribution devia-
tion metrics. The metrics are computed for the training and
validation sets separately. The metrics are also computed
for range and angle coordinates separately. On MaxRay, we
can see that SCL outperforms MCL consistently across met-
rics, sets, and coordinates. Specifically, both DW and DKL
are lower for SCL, indicating better match to groundtruth.
Similarly, MI is higher for SCL, indicating better match
to groundtruth. Similar observations hold for MCLY and
SCLY using mask estimates from Yolov5. For qualitative
comparison of distributions, consult the empirical histograms
in Fig. 5 in Appendix F.
Impact of dimensionality. We investigate if SSL backbone
capacity limits performance. To do so, we train backbone
configurations and measure their self-label deviation from
groundtruth as a function of: (a) feature dimensionality per
spatial bin (denoted by C in Sec. 4.1) for MCL and SCL, and
(b) the dimensionality of the 2-layer MLP projector head
for MCL. Fig. 8 depicts the Wasserstein distances across a
number of (a) & (b) configurations. For SCL, doubling C up
to 1024 features per spatial bin has negligible effect on range
and angle self-label distances to groundtruth. For MCL,
there is a mild reduction in distances as a function of feature
dimensionality, and no effect for using a larger projector

17436



Table 7. Quantifying how far self-labels deviate from groundtruth.

Config. Training Validation

Range Angle Range Angle

D↓
W D↓

KL MI↑ D↓
W D↓

KL MI↑ D↓
W D↓

KL MI↑ D↓
W D↓

KL MI↑

MCL 28.509 7.294 0.947 59.359 5.572 1.120 27.940 5.319 0.931 57.901 3.571 1.121
SCL 19.063 7.281 1.217 40.115 5.548 1.567 18.691 5.282 1.226 39.387 3.541 1.528

MCLY 34.930 7.287 0.934 63.613 5.559 0.985 34.814 5.303 0.913 62.095 3.572 0.987
SCLY 20.867 7.273 1.117 49.472 5.566 1.512 21.035 5.289 1.124 48.213 3.562 1.476

Y using pseudo bounding boxes obtained from Yolov5
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Figure 8. Effect of dimensionality on self-labelling for
MCL & SCL, on MaxRay’s validation set and as measured
by DW . L proj in legend denotes 4× projector head.

head. We, therefore, conclude that the performance of self-
labels is fundamentally limited by the underlying resolution
of radio imaging rather than the model’s learning capacity.
Impact of cross-modal commonalities. We investigate the
relationship between cross-modal commonalities and local-
isation performance. The InfoMin principle tells us how
to “regularise” contrastive learning in order to obtain opti-
mal downstream performance [74].4 According to InfoMin,
there are three regimes of MI captured during learning: (1)
missing info, (2) sweet spot, and (3) excessive info [74].
These three regimes can be empirically observed as a U-
shaped curve for a given downstream task. We control the
amount of radio-visual MI through masking in the vision
domain. Specifically, we train MCL model variants with the
groundtruth target masks progressively enlarged or shrunk,
i.e., by positively or negatively padding the masks. We then
obtain self-labels for these MCL variants and measure their
DW as before. Fig. 7 depicts DW of the angle distribution
as a function of target mask offsets. We observe a U-shaped
curve whose minima is at an offset of 2 pixels. This cor-
roborates that masking in vision enhances target sensitivity
(ablated in Tab. 5), and further illustrates the degradation as
we increase (+ offsets) or reduce (− offsets) radio-visual MI.

7. Discussion
6G sensing. Making cellular basestations “see” the surround-
ing environment while sending data is a major feature in 6G
networks. There are non-trivial protocol-level challenges
in 6G network design in order to support sensing (see Ap-
pendix E). In this paper, we concentrate on the higher-level
challenge of automatically building target localiser models
using radio heatmaps that are accompanied by visual im-
ages, i.e., paired radio-visual data collected at a basestation
equipped with a camera. Through cross-modal attention, we
show how to estimate self-labels for training a downstream
radio localiser network. Specifically, we demonstrate that the
performance of the localiser network is not upper bounded
by the accuracy of self-labels, and that using larger number
of noisy self-labels enhances estimation. This finding is in
line with prior work [44], and serves to reaffirm the paradigm

4building on earlier information bottleneck literature [6, 35, 75]

of self-supervised radio-visual learning for scalable radio
sensing. Our synthetic radio-visual dataset helps establish
the performance trends of radio-visual SSL localisation by
virtue of a controlled groundtruth. That is, out dataset is
dedicated to the study and refinement of radio-visual SSL al-
gorithms, and not to the production of 6G perception models.
Our SSL algorithm, on the other hand, is readily applicable
to empirical data with no groundtruth (cf., Tab. 4). We be-
lieve that our radio-visual SSL objective provides a viable
route towards vast data scalability for 6G sensing.
Limitations. We note that radio sensing capabilities are
fundamentally set by the choice of configurations in Tab. 3.
We have opted to base this somewhat conservative choice on
5G Advanced specifications [52] in order to inform cellular
stakeholder discussions. We would, however, note that much
improved radio sensing performance can be attained through
increased bandwidth and/or denser antenna arrays, such as
in Terahertz or even higher Millimetre-wave bands [31, 71].
We would refine our dataset and results in light of future
consensus on 6G sensing specifications.
Broader impact. Our work has a broader societal impact in
that it has the potential to alleviate some of risks associated
with the surveillance economy. Specifically, once trained
and deployed, our radio sensing system offers a scalable
alternative to pervasive vision surveillance that is inherently
privacy-preserving, while achieving many of the sought-after
safety and security benefits.

8. Conclusion
In this paper, we present a new radio-visual learning task

for emerging 6G cellular networks. The task tackles the
problem of accurate target localisation in radio, employing
a novel learning paradigm that works by simply ingesting
large quantities of paired radio-visual data. This is in stark
difference to supervised and/or classic statistical methods
whose success hinges on laborious labelling and/or mod-
elling of empirical measurements, which are expensive to
scale. We demonstrate strong label-free target localisation
performance on synthetic and empirical data. Our novel tar-
get localisation paradigm is made possible by a new dataset
and benchmark intended to foster future research on radio
sensing for next generation cellular systems.
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