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Abstract

An ideal point cloud registration framework should have
superior accuracy, acceptable efficiency, and strong gener-
alizability. However, this is highly challenging since exist-
ing registration techniques are either not accurate enough,
far from efficient, or generalized poorly. It remains an open
question that how to achieve a satisfying balance between
this three key elements. In this paper, we propose BUFFER,
a point cloud registration method for balancing accuracy,
efficiency, and generalizability. The key to our approach is
to take advantage of both point-wise and patch-wise tech-
niques, while overcoming the inherent drawbacks simulta-
neously. Different from a simple combination of existing
methods, each component of our network has been carefully
crafted to tackle specific issues. Specifically, a Point-wise
Learner is first introduced to enhance computational effi-
ciency by predicting keypoints and improving the represen-
tation capacity of features by estimating point orientations,
a Patch-wise Embedder which leverages a lightweight lo-
cal feature learner is then deployed to extract efficient and
general patch features. Additionally, an Inliers Generator
which combines simple neural layers and general features
is presented to search inlier correspondences. Extensive
experiments on real-world scenarios demonstrate that our
method achieves the best of both worlds in accuracy, effi-
ciency, and generalization. In particular, our method not
only reaches the highest success rate on unseen domains,
but also is almost 30 times faster than the strong base-
lines specializing in generalization. Code is available at
https://github.com/aosheng1996/BUFFER.

1. Introduction
Point cloud registration plays a critical role in LiDAR

SLAM [23, 25], 3D reconstruction [44], and robotic navi-
gation [22, 36]. An ideal registration framework not only
requires aligning geometries accurately and efficiently, but
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Figure 1. Comparisons of the registration accuracy on the indoor
3DMatch [66] dataset, efficiency, and generalizability on the out-
door ETH [49] dataset of different approaches. Note that, all meth-
ods are trained only on the 3DMatch dataset. Our method not only
achieves the highest recall on 3DMatch, but also has the best gen-
eralization ability and efficiency across the unseen ETH dataset.

also can be generalized to unseen scenarios acquired by dif-
ferent sensors. However, due to uneven data quality (e.g.,
noise distribution, non-uniform density, varying viewing
angles, domain gaps across different sensors), it remains
challenging to simultaneously achieve a satisfactory bal-
ance between efficiency, accuracy, and generalization.

Existing registration techniques can be mainly cat-
egorized into correspondences-based [30, 63, 66] and
correspondences-free methods [3, 60, 61]. By establishing
a series of reliable correspondences, the correspondences-
based methods usually have better registration performance
compared with correspondences-free methods, especially
in large-scale scenarios. However, these correspondence-
based methods are still not ready for large-scale real-world
applications as they are either not accurate enough, far from
efficient, or generalized poorly.
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Overall, the limitations of existing correspondence-
based methods lie in two aspects. First, there is currently no
unified, efficient, and general feature learning framework.
A number of patch-wise methods [21, 66] usually employ
complex networks coupled with sophisticated steps to en-
code the fine-grained geometry of local 3D patches. Ben-
efiting from local characteristics that are inherently robust
to occlusion and easy to be discriminated, patch-wise meth-
ods usually have good generalization ability whilst low effi-
ciency. To improve computational efficiency, several point-
wise methods [5, 26] resort to adopting a hierarchical ar-
chitecture [51] to consecutively sample raw point clouds.
However, the hierarchical architecture tends to capture the
global context rather than local geometry, which makes the
learned point-wise features easy to homogenize and hard
to be matched correctly especially for unseen contexts [1].
Second, there is no efficient and general correspondence
search mechanism. Most correspondences-based registra-
tion frameworks [1, 52] leverage the RANSAC [18] or a
coarse-to-fine matching strategy [64] to search reliable cor-
respondences. Considering the efficiency of the RANSAC
algorithm is related to the inliers, this mechanism would be
time-consuming when inlier rate is very low. Additionally,
the coarse-to-fine strategy failed to generalize to unseen do-
mains due to the reliance on global context matching.

A handful of recent works also attempt to leverage un-
supervised domain adaptation techniques [24] or simplify
the network architecture [1] to achieve a better trade-off be-
tween generalization and efficiency. However, they either
need an extra target dataset for training or sacrifice the rep-
resentation capacity of the learned models. Overall, effi-
ciency and generalization seem to contradict each other as
existing techniques inherently specialize in one field and do
not complement each other.

In this paper, we achieve the best of both worlds on ef-
ficiency and generalizability by combining the point-wise
and patch-wise methods. An efficient and general search
mechanism is also proposed to increase the inlier rate of
correspondences. The proposed registration framework,
termed BUFFER, mainly consists of a Point-wise Learner,
a Patch-wise Embedder, and an Inliers Generator. The in-
put point clouds are first fed into the Point-wise Learner,
where a novel equivariant fully convolutional architecture
is used to predict point-wise saliencies and orientations, fur-
ther reducing computational cost and enhancing the repre-
sentation ability of features. With the selected keypoints
and learned orientations, the Patch-wise Embedder uti-
lizes a lightweight patch-based feature learner, i.e., Mini-
SpinNet [1], to extract efficient and general local features
and cylindrical feature maps. By matching local features,
a set of initial correspondences coupled with correspond-
ing cylindrical feature maps can be obtained. These general
cylindrical feature maps are then fed into the Inlier Gener-

ator, which predicts a rigid transformation for each corre-
spondence using a lightweight 3D cylindrical convolutional
network [1] and generates the final reliable set of correspon-
dences by seeking an optimal transformation, followed by
RANSAC [18] to estimate a finer transformation.

Actually, it is non-trivial to achieve a satisfactory balance
between accuracy, efficiency, and generalizability if sim-
ply combining existing methods. For example, the point-
wise method Predator [26] is vulnerable to unseen scenar-
ios while the patch-wise method SpinNet [1] is highly time-
consuming. When combining them together directly, the
whole framework is neither efficient nor general as verified
in Fig. 1. In contrast, each component of our BUFFER has
been carefully crafted to tackle specific issues, and thus a
superior balance is more likely to be realized.

As shown in Fig. 1, being trained only on the 3DMatch
dataset, our BUFFER not only achieves the highest regis-
tration recall of 92.9% on the 3DMatch dataset, but also
reaches the best success rate of 99.30% on the unseen out-
door ETH dataset (significantly surpassing the best point-
wise baseline GeoTrans [52] by nearly 10%). Meanwhile,
our BUFFER is almost an order of magnitude faster than
patch-wise methods [1, 48, 57]. Extensive experiments jus-
tify the superior performance and compelling efficiency of
our method. Overall, our contributions are three-fold:

• We propose a new point cloud registration framework
by skillfully combining the point-wise and patch-wise
paradigms, achieving the best of both worlds in accuracy,
efficiency, and generalizability.

• We introduce an equivariant fully convolutional architec-
ture to predict point-wise orientations and saliencies.

• A new correspondence search strategy is introduced to
enhance the inlier ratio of initial correspondences.

2. Related Work
2.1. Correspondences-based Registration

As the name implies, correspondences-based registration
first extracts point cloud features, then establishes explicit
point correspondences between two scans by feature match-
ing, finally estimates the rigid transformation. From the per-
spective of features, existing correspondences-based regis-
tration work can be roughly divided into two categories:
patch-wise and point-wise methods.

Patch-wise Methods. This category of methods ex-
ploits a weight-sharing network to characterize the local 3D
patches centered at keypoints, generating sparse descrip-
tions for each fragment. The pioneering work of learned
descriptors is 3DMatch, which formulates the input local
3D patch into a voxel representation followed by multiple
neural layers to extract deep features. Afterwards, several
works [14, 21, 37, 42] successively improve the feature de-
scriptiveness. Recently, a handful of works devote to ex-
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ploring the generalization ability of descriptors. Ao et al.
propose a general feature descriptor SpinNet [1, 2] by in-
troducing ingenious cylindrical representation and powerful
neural architecture. A contemporary work Gedi [48] com-
bines the quaternion network [53] with PointNet++ [51],
achieving good generalization ability. Although patch-wise
methods can achieve high registration accuracy with strong
generalization, they are extremely time-consuming.

Point-wise Methods. This category of methods pro-
cesses the whole point cloud in a single forward pass based
on a hierarchical architecture, yielding dense descriptions
for each fragment. Using Minkowski convolutional neu-
ral networks [9] as its backbone network, FCGF [10] is the
first work to learn dense feature descriptors for point cloud
registration. Next, D3Feat [5], as a representative learn-
ing framework, is proposed to predict point-wise 3D key-
points and descriptors. Later, a handful of point-wise meth-
ods [15,26] follow this paradigm to learn keypoints and fea-
ture descriptors jointly. Recently, Yu et al. [64] propose
a coarse-to-fine registration framework, which first builds
coarse correspondences by superpoint matching and then
generates fine correspondences by performing point-wise
matching within some plausible regions. In particular, this
method does not have an explicit detection component. On
this basis, Qin et al. [52] introduce the Geometric Trans-
former to learn more representative features for robust su-
perpoint matching by encoding intra- and inter-point-cloud
geometric patterns. Overall, due to the superiority of hi-
erarchical architecture, the point-wise methods are usually
much faster than patch-wise methods, while the drawback
is its low generalization capacity to unseen scenarios.

Apart from the feature-level efforts, several methods re-
sort to improving registration performance from the corre-
spondence level. RANSAC [18] is one of the classic meth-
ods which presents the most commonly used hypothesis-
verification pipeline for robust pruning outliers. Recently,
deep learning techniques have dominated the field of 3D
outlier rejection. A handful of works [8, 45] formulate the
outlier rejection as an inlier/outlier classification problem,
and leverage the neural network to predict the inlier proba-
bility of each correspondence. Additionally, several meth-
ods [4, 31] combine traditional techniques such as geomet-
ric consistency [7] and Hough voting [55] with deep learn-
ing architecture to achieve better outlier removal. How-
ever, these methods only utilize input point coordinates, ig-
noring the characteristics underlying local geometry. Our
BUFFER considers both global information (spatial coordi-
nates) and local embeddings (cylindrical features), signifi-
cantly improving the inlier rate.

2.2. Correspondences-free Registration

Correspondences-free registration means directly esti-
mating the rigid transformation between a pair of frag-

ments, usually achieved by establishing an end-to-end dif-
ferentiable network. Typically, existing correspondences-
free registration methods can be divided into soft
correspondences-based and direct regression-based, ac-
cording to the difference in network architecture.

Soft Correspondence Based. Despite no explicit corre-
spondences, this methods [19, 38, 39, 59, 62] usually rely
on soft correspondences between features followed by a
differentiable Singular Value Decomposition (SVD) [46]
to generate the rigid transformation. To acquire accurate
soft correspondences, most registration networks combine
well-known techniques such as Graph Neural Networks
(GNN) [17, 43] and Transformers [6, 35] to learn more dis-
tinctive features. Although encouraging results have been
achieved, it remains challenging for these methods to gen-
eralize to unseen scenarios captured by different sensors.

Direct Regression Based. Intuitively, these methods
aim to regress the rigid transformation without any hard or
soft correspondences. PointNetLK [3] is the first attempt at
direct regression methods, which first extracts a global fea-
ture for each scan using PointNet [50] and then introduces
a differentiable Lucas-Kanade algorithm [40] to minimize
the feature distance, finally iteratively aligns the two point
clouds. Inspired by this, the subsequent methods [27,34,65]
generally follow the embedding-regression pipeline, while
the major differences only lie in the choice of the regression
algorithm. These methods are highly efficient since point-
to-point correspondences are not required. However, most
of them are only suitable for object-level registration and
cannot be generalized to large-scale scenes.

To sum up, existing methods exhibit satisfactory perfor-
mance on registration accuracy whilst still cannot achiev-
ing the trade-off between efficiency and generalization. In
this paper, we solve the problem by skillfully integrating
patch-wise and point-wise networks and designing a new
3D registration framework, where the point-wise compo-
nent is mainly responsible for enhancing efficiency and en-
abling the patch-wise module to extract general features.

3. BUFFER

3.1. Problem Statement

Given two partially overlapped point clouds P = {pi ∈
R3|i = 1, . . . , N} and Q = {qj ∈ R3|j = 1, . . . ,M},
the goal of point cloud registration is to compute an opti-
mal rigid transformation T = {R ∈ SO(3), t ∈ R3} be-
tween P and Q. Referring to [32], if there are ground-truth
one-to-one correspondences between subsets Pc ⊂ P and
Qc ⊂ Q, the registration problem can be reformulated as a
minimization problem:

L(Pc,Qc|P,R, t) =
1

Nc
∥Qc −RPcP− t∥2 , (1)
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Figure 2. The overall framework of the proposed BUFFER.

where Nc is the number of correctly matched correspon-
dences, P ∈ RNc×Nc is a permutation matrix.

To obtain the point subsets Pc and Qc, we propose a
new registration framework termed BUFFER which mainly
consists of a Point-wise Learner, a Patch-wise Embedder,
and an Inliers Generator. The pipeline is illustrated in Fig. 2.

3.2. Point-wise Learner

The Point-wise Learner is designed to predict rotation-
invariant keypoints and rotation-equivariant orientations,
further improving the registration efficiency and accuracy.
As shown in Fig. 2, it consists of two components.

Equivariant Fully Convolutional Network. To obtain
robust keypoints and point orientations, the first step is to
construct a backbone network to learn dense and rotation-
equivariant features. Existing methods such as [12, 13] ei-
ther have extremely high spatial and time complexity, or
rely on the global point coordinates which are sensitive to
translations. In this paper, we design an Equivariant Fully
Convolutional Network (EFCN), which is lightweight and
invariant to translations. To ensure the rotational equivari-
ance and translational invariance, we explore the following
three geometrical attributes of point cloud P:
(1) relative coordinate: pji = pj − pi,
(2) neighborhood center: ci = 1

|Ni|
∑

pj∈Ni
pji,

(3) initial orientation: ni is the eigenvector corresponding
to the smallest eigenvalue of Σ = 1

|Ni|
∑

pj∈Ni
pT
jipji.

Here, Ni represents all neighboring points of pi within sup-
port radius R. Based on this, the equivariant convolution at
a point pi in the l-th layer can be reformulated as:

vl+1
i = VN(vl

j ;W),∀pj ∈ Ni, (2)

where v0
j = [pji;nj ;nj × pji; ci]

T, W is a weight matrix,
and VN denotes an equivariant mapping proposed in [13].

Since v0
j is equivariant to SO(3) rotations and invariant to

translations, the whole convolutional network also has the
same invariance and equivariance.

Our EFCN is based on the hierarchical architecture of
KPConv [54] (details are in supplementary material). Com-
pared with existing equivariant networks [16,28], our EFCN
is more efficient and can be applied to scene-level tasks.
Though the sampling/upsampling in hierarchical architec-
ture inevitably brings in some quantitative errors, the strict
mathematical model behind it already provides a strong in-
ductive bias for the network to learn the equivariant fea-
tures. The EFCN for the point cloud Q is the same.

Equivariant and Invariant Branches. The next step
is to predict rotation-invariant keypoints and rotation-
equivariant orientations. To this end, we feed the equivari-
ant features in the last convolutional layer into two separate
decoder branches to produce the dense orientations OP and
saliencies SP , as shown in Fig. 2. The same operations are
also imposed on the point cloud Q.

Benefiting from the equivariance of each layer, the final
learned orientations OP ∈ RN×1×3 are naturally equivari-
ant to SO(3) rotations. In another invariant branch, we em-
ploy the same invariant transformation as [13] to yield an
invariant signal IP ∈ RN×C×3. By flatting IP and feeding
it into three MLP layers followed by Softplus activation, the
final point-wise saliencies SP ∈ RN×1 are predicted, where
K points with higher saliencies are regarded as keypoints.

In summary, based on our EFCN, the Point-wise Learner
can predict dense saliencies to select the easier matched
keypoints, thereby improving the registration efficiency.
Meanwhile, the Point-wise Learner is able to learn robust
point orientations, which is beneficial for the subsequent
Patch-wise Embedder to learn highly descriptive features.
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3.3. Patch-wise Embedder

This module is designed to learn efficient and general
features for the selected keypoints. It contains two key com-
ponents, as discussed below.

Mini-SpinNet. We leverage a local feature learner, i.e.,
SpinNet [1], to extract general features. However, the
vanilla SpinNet is time-consuming and memory-intensive.
To alleviate these problems, we develop a lightweight ar-
chitecture, termed Mini-SpinNet (see more details in ap-
pendix), to extract general local patch features.

Reference Axes. While obtaining a great improvement
in efficiency, we must admit that this lightweight structure
inevitably deteriorates the discriminability of features. To
compensate for the performance, we adopt the learned ori-
entations as reference axes, which are more repeatable and
robust than the handcrafted Z-axes used in vanilla SpinNet
(as shown in Sect. 4.4), to extract more distinctive features.

Lastly, a set of general local features FP and cylindri-
cal feature maps CP can be obtained. By performing fea-
ture matching between FP and FQ, a series of initial cor-
respondences Ωinit can be established, as shown in Fig. 2.
In general, our Patch-wise Embedder is not only typically
lightweight and efficient, but also can learn distinctive and
general local features for feature matching.

3.4. Inliers Generator

This module is designed to search inliers from a series
of initial correspondences, improving the registration per-
formance of the whole framework. As shown in Fig. 2, it
consists of two components, as discussed below.

Transformation Estimation. Here, we intend to deal
with the inlier search problem from a new perspective of
features. Given a list of initial point correspondences Ωinit,
two cylindrical feature maps CP

i , CQ
j ∈ RH×W×D are also

obtained for each pair of correspondence {pi, qj} ∈ Ωinit,
where H , W , D represents the height, width, and feature
dimensionality of the unfolding cylindrical feature map, re-
spectively. In Sect. 3.3, we can know that the local patch
centered at keypoint pi is pre-aligned with a learned orien-
tation using a rotation matrix Rp

i . Therefore, there is only
an SO(2) rotation Rc

ij between CP
i and CQ

j . Based on this,
we aim to estimate the SO(2) rotation between two cylin-
drical feature maps, thereby recovering the rigid transfor-
mation between two matched local patches.

Inspired by disparity regression in stereo matching [29],
we first construct a 4D matching cost volume V ∈
RH×W×W×D by calculating the difference between two
cylindrical feature maps, computed at different width val-
ues. Note that, the cost volume is continuous in 360◦ over
a cylinder. To retain this property, a lightweight 3D cylin-
drical convolutional network (3DCCN) [1] is exploited for
cost aggregation C : RH×W×W×D → RW . Following a

softmax operation σ(·), the probability of each offset is ob-
tained. The predicted offset d is then computed by a soft-
argmax operation:

d =

W∑
i=1

i× σi(C(V)). (3)

Accordingly, the SO(2) rotation between two cylindrical
feature maps CP

i , CQ
j can be derived by:

Rc
ij =

cos(2πd/W ) − sin(2πd/W ) 0
sin(2πd/W ) cos(2πd/W ) 0

0 0 1

 . (4)

Further, a rotation matrix Rij = (Rq
j)

TRc
ijR

p
i and a trans-

lation vector tij = qj − piR
T
ij are produced for each pair

of correspondence {pi, qj} for inliers search.
Inliers Search. Since inlier correspondences have simi-

lar estimated transformations, it is easy to find them from a
number of putative correspondences. Specifically, we first
seek the best transformation T̂ = {R̂, t̂} based on the num-
ber of correspondences satisfied by each transformation,

{R̂, t̂} =argmax
Rij ,tij

∑
{p,q}∈Ωinit

1(
∥∥pRT

ij + tij − q
∥∥<τ),

(5)

where 1 is the indicator function, ∥·∥ denotes the Euclidean
distance, and τ denotes an inlier distance threshold. The
inlier correspondences are then obtained,

Ωfine =
{
{pi, qj}|

∥∥∥R̂pi + t̂− qj

∥∥∥ < τ
}
. (6)

Overall, our Inliers Generator first exploits simple neu-
ral layers and general cylindrical features to estimate a
coarse rigid transformation for each pair of correspondence,
and then searches reliable correspondences according to the
transformation similarity between inliers. Notice, our In-
liers Generator prunes the outliers from the feature level
rather than the correspondence level. Therefore, the pro-
posed Inliers Generator does not contradict existing outlier
rejection methods [4, 8, 45] and can also be combined with
these methods to estimate a finer rigid transformation.

3.5. Training and Inference

Loss Functions. We train the entire model with a loss L
composed of four terms: L = Lo +Lf +Lk +Lg . Given a
set of ground-truth correspondences Ω∗ = {pi, qi}i=1...Nc

and the ground-truth transformation T = {R, t}, the cor-
responding orientations {op

i ,o
q
i } can be obtained by the

Point-wise Learner. Insipred by the the probabilistic cham-
fer loss proposed in [33], we define a probabilistic cosine
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loss Lo as the learned orientations supervision:

Lo =
1

Nc

Nc∑
i=1

(
ln ϵi +

ei
ϵi

)
, ei = 1− cos (op

iR
T,oq

i )

(7)

where Nc is the number of ground-truth matched corre-
spondences and ϵi is a learnable parameter. Next, we fol-
low D3Feat [5] to leverage the contrastive loss Lf for fea-
ture learning and detection loss Lk for keypoints detection.
To train the proposed Inliers Generator, we first calculate
the ground-truth offset d∗ between two cylindrical feature
maps, and then adopt the L1 loss as the transformation esti-
mation supervision:

Lg =
1

Nc

Nc∑
i=1

| ∥di − d∗i ∥1 . (8)

Hypothesis Generation. We find that the RANSAC [18]
algorithm is very efficient for the correspondences Ωfine

with a high inlier rate. In the whole registration framework,
the time consumption by RANSAC is almost negligible.
Therefore, we perform RANSAC on the point correspon-
dences Ωfine to calculate an accurate rigid transformation.

4. Experiments
In this section, we first test the registration performance

of our BUFFER when both training and test sets belong to
the same domains. Extensive comparative experiments are
then performed on unseen domains to evaluate generaliz-
ability. Finally, a set of ablation studies are conducted.

4.1. Datasets and Settings

Following [1], we select four datasets, i.e., indoor
3DMatch [66] and 3DLoMatch [26], outdoor KITTI [20]
and ETH [49], to evaluate the registration performance of
all methods. On both 3DMatch and 3DLoMatch datasets,
we use Registration Recall (RR) [66] as our evaluation met-
rics. On both KITTI and ETH datasets, Relative Transla-
tional Error (RTE), Relative Rotation Error (RRE), and Suc-
cess rate are used as the evaluation metrics [41]. For more
details please see the appendix.

Implementation Details. Our BUFFER is implemented
with PyTorch. To ensure fairness, we leverage the code and
trained models released by the baselines to conduct com-
parative experiments. All methods are implemented with
PyTorch and run on a computer with an Intel Xeon CPU
@2.30GHZ and an NVIDIA RTX 3090 GPU. For more de-
tails please see the appendix.

4.2. Evaluation on Datasets of Same Domains

Results on Indoor 3DMatch Datasets. We compare the
proposed BUFFER with the state-of-the-art methods w.r.t

Method 3DMatch 3DLoMatch #Param.
RR(%)↑ Time(s)↓ RR(%)↑ Time(s)↓ (M)↓

FCGF [10] 85.1 0.16 40.1 0.16 8.76
D3Feat [5] 81.6 0.40 37.2 0.40 24.30

Predator [26] 90.5 0.54 62.5 0.54 7.43
YOHO [57] 90.8 3.31 65.2 3.30 12.38

Gedi [48] 85.3 6.65 48.7 6.65 3.11
SpinNet [1] 92.4 7.12 71.6 7.11 1.41

GeoTrans [52] 92.5 0.23 74.0 0.23 9.83
RoReg [58] 93.2 2.67 71.2 2.64 12.71

Ours 92.9 0.20 71.8 0.20 0.92

Table 1. Results on the 3DMatch and 3DLoMatch datasets.

Method RTE RRE Success Time #Param.
(cm)↓ (◦)↓ (%)↑ (s)↓ (M)↓

FCGF [10] 13.3 0.31 81.80 0.18 8.76
D3Feat [5] 5.55 0.23 97.12 - 14.08

Predator [26] 5.17 0.25 96.94 0.69 22.77
SpinNet [1] 5.55 0.24 97.48 14.57 1.41

GeoTrans [52] 7.02 0.23 96.76 0.31 25.50
Ours 5.37 0.22 97.66 0.30 0.92

Table 2. Results on the KITTI odometry dataset.

registration recall and running time on both the 3DMatch
and 3DLoMatch datasets. As shown in Table 1, our
BUFFER achieves the highest registration recall and re-
markable computational efficiency on the 3DMatch dataset.
Benefiting from the efficient submanifold sparse convolu-
tion, FCGF is the quickest approach. However, the registra-
tion recall achieved by FCGF is almost the worst among all
methods, nearly 8% lower than our BUFFER. On the low-
overlap 3DLoMatch dataset, the results of our BUFFER are
on par with the state-of-the-art methods. In particular, our
BUFFER is the most lightweight method, and is around 35
times faster than the vanilla SpinNet.

Results on Outdoor KITTI Datasets. We compare
the proposed BUFFER with strong baselines on the KITTI
dataset, as shown in Table 2. It is obvious that our BUFFER
achieves the highest success rate and is the most lightweight
model and highly efficient. Though FCGF is quicker than
our method, its registration success rate is significantly
lower than our BUFFER by 15.86%. It is also observed all
methods spend more time on the KITTI dataset to register
point clouds than on the 3DMatch dataset. This is because
the outdoor KITTI dataset contains larger scenarios with a
higher number of sampling points.

4.3. Generalizing to Unseen Domains

To extensively evaluate the generalizability of the pro-
posed BUFFER on unseen domains, we conduct three
groups of experiments following the settings in [1]: general-
izations from indoor to outdoor, from outdoor to indoor, and
from outdoor to outdoor. In each group of experiments, all
methods are trained on one dataset and then directly tested
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Method RTE RRE Success Time #Param.
(cm)↓ (◦)↓ (%)↑ (s)↓ (M)↓

FCGF⋄ [10] 9.98 0.94 61.43 0.17 8.76
D3Feat⋄ [5] 5.54 0.65 74.47 0.26 24.30

Predator⋄ [26] 7.82 0.89 69.00 0.37 7.43
YOHO⋄ [57] 7.79 1.07 66.90 3.13 12.38

GeoTrans⋄ [52] 7.97 0.65 90.18 0.27 9.83
RoReg⋄ [58] 7.24 0.99 74.33 2.56 12.71

Gedi† [48] 4.80 0.75 99.24 6.65 3.11
SpinNet† [1] 3.88 0.65 97.62 7.12 1.41

Ours 5.22 0.65 99.30 0.26 0.92

Table 3. Results of generalization from 3DMatch to ETH. ⋄ rep-
resents point-wise methods while † denotes patch-wise methods.

Method RTE RRE Success Time #Param.
(cm)↓ (◦)↓ (%)↑ (s)↓ (M)↓

FCGF [10] 14.4 0.49 62.52 0.15 8.76
D3Feat [5] 12.6 0.46 69.55 - 24.3

Predator [26] 16.5 1.38 46.13 0.48 7.43
GeoTrans [52] 10.2 0.37 88.47 0.29 9.83

Gedi [48] 5.99 0.28 95.68 6.31 3.11
SpinNet [1] 7.00 0.33 94.59 14.6 1.41

Ours 8.58 0.30 95.86 0.28 0.92

Table 4. Results of generalization from 3DMatch to KITTI.

on other unseen datasets.
From Indoor 3DMatch to Outdoor ETH and KITTI.

Table 3 and Table 4 list the results of generalization from
3DMatch to ETH and from 3DMatch to KITTI, respec-
tively. It can be noticed that all point-wise methods ex-
hibit a low success rate when being directly generalized to
unseen datasets. This is mainly because they adopt a hi-
erarchical network architecture to learn feature descriptors,
which is detrimental for generalization [1]. It is also noted
that patch-wise methods have excellent generalization abil-
ity, but they are very time-consuming, almost an order of
magnitude slower than point-wise methods. In contrast, our
BUFFER skillfully combines the two methods, which not
only achieves the highest success rate across unseen do-
mains, but also is far more efficient than patch-wise meth-
ods. Admittedly, our BUFFER is slightly worse than the
SpinNet on RTE and RRE, primarily because SpinNet uti-
lizes more sampling points.

From Outdoor KITTI to Indoor 3DMatch. As shown
in Table 5, those point-wise methods i.e., FCGF, D3Feat,
Predator, and GeoTrans, exhibit poor generalization results
due to the large domain gap. It is noticed that our method
surpasses SpinNet by 3.6% recall on the 3DMatch dataset,
while the performance gap is widened to 11.7% on the
3DLoMatch dataset. This is primarily because the SpinNet
can only generate the point correspondences with a lower
inlier rate on the low-overlap 3DLoMatch dataset. In con-
trast, the proposed Inliers Generator can significantly in-
crease the inlier rate, further improving the registration per-

Method 3DMatch 3DLoMatch #Param.
RR(%)↑ Time(s)↓ RR(%)↑ Time(s)↓ (M)↓

FCGF [10] 19.7 0.16 2.26 0.16 8.76
D3Feat [5] 53.6 - 11.6 - 14.08

Predator [26] 23.2 0.30 3.31 0.30 22.77
GeoTrans [52] 54.4 0.27 13.8 0.27 25.50

SpinNet [1] 87.6 7.12 52.8 7.12 1.41
Ours 91.2 0.24 64.5 0.24 0.92

Table 5. Results of generalization from KITTI to 3DMatch.

Method RTE RRE Success Time #Param.
(cm)↓ (◦)↓ (%)↑ (s)↓ (M)↓

FCGF [10] 6.13 0.80 39.55 0.17 8.76
D3Feat [5] 4.04 0.60 98.18 - 14.08

Predator [26] 7.88 0.87 71.95 0.38 22.77
GeoTrans [52] 8.01 0.89 93.55 0.27 25.50

SpinNet [1] 3.63 0.62 99.44 7.10 1.41
Ours 3.85 0.57 99.86 0.26 0.92

Table 6. Results of generalization from KITTI to ETH.

formance of the whole framework. Notably, our BUFFER
achieves the highest RR of 91.2% when being directly gen-
eralized to the unseen 3DMatch, which even surpasses those
strong baselines (such as Predator and YOHO) trained on
the 3DMatch. This further demonstrates the strong general-
ization ability of our BUFFER as well as its potential utility.

From Outdoor KITTI to Outdoor ETH. As shown in
Table 6, compared to the generalization experiments from
3DMatch to ETH, the point-wise methods such as GeoTrans
and D3Feat have a significant performance improvement
under this experimental setting. This is because both KITTI
and ETH datasets merely contain the same SO(2) rotations
and the domain gap between the two datasets is not large.
Though this generalization experiment is indeed in favor of
point-wise methods which are sensitive to rotations and do-
main gap, our BUFFER still achieves the best success rate.

4.4. Ablation Studies

To demonstrate the efficacy of the proposed Equivariant
Fully Convolutional Network, we conduct a series of abla-
tive experiments on the 3DMatch dataset. Next, we con-
duct extensive ablative experiments to systematically eval-
uate the contribution of each component in our BUFFER.

Ablation of Learned Orientation. To investigate the
impact of different settings on the repeatability of orienta-
tion, we conduct the following 3 ablation studies.
(1) Replacing our learned orientation by handcrafted
methods. In this setting, the orientations are computed
by handcrafted methods i.e., normal [11], SHOT [56],
FLARE [47], and SpinNet [2].
(2) Replacing the proposed equivariant convolution by
KPConv [54]. In this setting, the ablated model is invariant
to translations but not equivariant to rotations.
(3) Replacing the proposed equivariant convolution by
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(a) Comparisons with handcrafted methods (b) Comparisons with learned methods
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Figure 3. Histogram of the orientation repeatability on the
3DMatch dataset, where the errors denote the deviation angles of
estimated orientations between the ground-truth point pairs.

No. LO PK IG 3DMatch 3DLoMatch Generalized to ETH
RR(%)↑ RR(%)↑ Success(%)↑

1 ✗ ✗ ✗ 89.9 66.4 90.74
2 ! ✗ ✗ 90.1 67.8 93.69
3 ✗ ! ✗ 90.6 68.9 94.95
4 ! ! ✗ 90.9 69.3 95.93
5 ✗ ✗ ! 90.9 70.7 97.05
6 ! ! ! 92.9 71.8 98.88

Table 7. The quantitative results of all ablated models. Note that,
all methods are only trained on the indoor 3DMatch dataset.

vector neuron (VN) [13]. In this setting, the ablated model
is equivariant to rotations but not invariant to translations.

Figure 3 shows the quantitative results of the orienta-
tion errors of all ablated models on the 3DMatch dataset.
It can be seen that: 1) Compared with the handcrafted tech-
niques, our method is more repeatable and robust for real-
world point clouds. This is primarily because the proposed
EFCN can learn robust deep equivariant features, while
hand-crafted methods only rely on low-level geometrical at-
tributes to compute orientations. 2) If the neural network is
not equivariant to rotations or invariant to translations, it
is hopeless to estimate repeatable and robust orientations.
This is reasonable because the network can only memorize
orientations brutely, which undoubtedly fails for new data.
We can also find that the proposed EFCN is significant for
equivariant feature learning and orientation estimation, and
has great potential to be extended to more tasks.

Ablation of BUFFER Framwork. Our BUFFER in-
troduces three key components: learned orientation (LO),
predicted keypoint (PK), and inliers generator (IG). To in-
vestigate the impact of each module, we therefore conduct
the following 6 ablation studies to demonstrate the effec-
tiveness of each component. In particular, we train all ab-
lated models on the 3DMatch dataset, and then directly test
them on the 3DMatch, 3DLoMatch, and ETH datasets.

Table 7 shows the quantitative results of all ablated
networks. We can see that: 1) Without using any of
the proposed components, the baseline (Mini-SpinNet [1])
achieves the lowest registration recall on both indoor
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Figure 4. Qualitative results of the ablated model (No. 5), where
green lines and red lines denote inliers and outliers.

3DMatch and 3DLoMatch datasets, and the worst general-
ization ability on the outdoor ETH dataset. 2) When the pro-
posed LO or PK is utilized (Nos. 2 and 3), the registration
accuracy and generalization capability of the entire frame-
work are improved. When both LO and PK are adopted
(No. 4), the ablated model significantly surpasses the base-
line by 2.9% recall on the 3DLoMatch dataset and 5.19%
success rate on the ETH dataset, respectively. This clearly
demonstrates that the proposed Point-wise Learner not only
can improve the registration accuracy, but also is beneficial
to the generalization of the model. 3) When the proposed
IG is only employed (No. 5), the registration performance
of the whole framework is still greatly improved. This is
because the proposed IG can effectively prune a number of
outliers from the initial correspondences (the qualitative re-
sults are shown in Fig. 4), making it easier to solve for the
correct pose in the subsequent hypothesis generation stage.

5. Conclusion
In this paper, we proposed a new deep learning frame-

work termed BUFFER for point cloud registration. The pro-
posed BUFFER introduces an efficient and general feature
learning architecture and a correspondence search mech-
anism. The extensive experiments demonstrate that our
method achieves the best trade-off between accuracy, effi-
ciency, and generalizability, outperforming the state-of-the-
art by a large margin. In the future, we will investigate the
integration of overlap estimation and outlier rejection.
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