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Abstract

Cross-modal training using 2D-3D paired datasets, such
as those containing multi-view images and 3D scene scans,
presents an effective way to enhance 2D scene under-
standing by introducing geometric and view-invariance pri-
ors into 2D features. However, the need for large-scale
scene datasets can impede scalability and further improve-
ments. This paper explores an alternative learning method
by leveraging a lightweight and publicly available type of
3D data in the form of CAD models. We construct a 3D
space with geometric-aware alignment where the similarity
in this space reflects the geometric similarity of CAD mod-
els based on the Chamfer distance. The acquired geometric-
aware properties are then induced into 2D features, which
boost performance on downstream tasks more effectively
than existing RGB-CAD approaches. Our technique is not
limited to paired RGB-CAD datasets. By training exclu-
sively on pseudo pairs generated from CAD-based recon-
struction methods, we enhance the performance of SOTA
2D pre-trained models that use ResNet-50 or ViT-B back-
bones on various 2D understanding tasks. We also achieve
comparable results to SOTA methods trained on scene scans
on four tasks in NYUv2, SUNRGB-D, indoor ADE20k,
and indoor/outdoor COCO, despite using lightweight CAD
models or pseudo data. Please visit our page: https:

//GeoAware2dRepUsingCAD.github.io/

1. Introduction

Recent 2D visual representation learning approaches,
such as contrastive learning [3, 6, 10, 17, 28] or masked au-
toencoder [20], are widely used to tackle various problems
in computer vision due to their ability to encode rich vi-
sual features. While these methods have shown exceptional
results on 2D image classification, they still have shortcom-
ings in other 2D understanding tasks that involve instance-
level reasoning. Prior research [25] also shows that models
pre-trained using image augmentations [8,21] or supervised
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Figure 1. Overview concept of our solution. We leverage CAD
models to train a joint 2D-3D space such that images of objects
with similar shapes, based on the Chamfer distance, are attracted
to each other, while images with different shapes are separated.
This results in a continuous geometric-aware space where the dis-
tance between two points reflects their geometric similarity, which
could be utilized for downstream 2D object understanding tasks.

labels [13] could not deliver satisfactory results when ap-
plied to downstream tasks such as semantic segmentation,
instance segmentation, and object detection [12, 42].

To alleviate this, Hou et al. [25] proposed to learn 3D
geometric priors, such as view-invariance, from 3D data
and transfer the learned priors to 2D representations. In
particular, their model is first pre-trained on ScanNet [12],
a database of multi-view RGB-D scans, using contrastive
learning and later used as initialization for fine-tuning net-
works on downstream tasks. Chen et al. [5] further extend
this work by utilizing additional priors through learning to
group nearby points that refer to the same object part from
3D scenes.

The key concept of their introduced new paradigm is to
share useful 3D priors from 3D data with 2D representa-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21371



tions. However, previous studies have investigated mostly
3D priors related to viewpoint invariance from 3D scene
datasets, which are often limited in size and scene varia-
tions due to the laborious data collecting and labeling pro-
cess [24]. This scarcity of large-scale 3D data also limits
the number of available 3D priors for learning the invari-
ance, hence hindering further performance gains. This pa-
per questions whether there are other effective 3D priors for
2D downstream tasks and whether they can be learned from
other forms of 3D data that are lighter and easier to obtain.

We begin our exploration by considering how to learn
an embedding space that maps together images with the
same or similar geometries. One solution is to learn from
images that share the same 3D model, which inspires our
interest in CAD models. Unlike 3D scenes, CAD mod-
els are lightweight, publicly available, and can be easily
aligned with RGB images via web scraping or human an-
notation [2]. There exist studies that jointly learn 2D and
3D CAD representation for other CAD-related tasks, e.g.,
3D classification [1,27]. However, their 2D features, which
are derived from augmentation-based CAD features, are in-
sufficient to be directly applied to 2D object understanding
tasks—they can group images with similar geometries but
struggle to learn the distinctions between object categories.

We argue that useful geometric-aware representations
should account for both similarities and differences in ob-
ject geometry. Our key idea is to acquire such features
by imitating the Chamfer distance between 3D objects in
our embedding space and inducing this derived geometric
awareness in our learned 2D representation. In particular,
we learn our space by attracting the encoded features of ge-
ometrically similar CAD models in the mini-batch based on
the Chamfer distance and repelling those with lower simi-
larities. In contrast to other methods trained on supervised
discrete signals like object labels or through 3D augmenta-
tions, our method produces a continuous 3D space that bet-
ter captures the similarity and difference in geometry (see
Section 5.1). In addition, we employ augmentation-based
contrastive learning [6] to learn other useful visual feature
properties, such as translation and color invariances. This
results in a 2D representation in a 2D-3D space that contains
rich visual information and strong geometric-aware proper-
ties, as shown in Fig. 1, which can be leveraged to improve
2D object understanding tasks.

To match our geometric-aware CAD features with cor-
responding 2D features, a paired RGB-CAD dataset, such
as Pix3D [45], is required. However, by leveraging recent
techniques [19, 31] that can reconstruct a CAD model from
an input image, it is possible to generate pseudo CAD mod-
els for any images and use them to learn our method with-
out a paired dataset. Adapting this pseudo-pair generation
to other techniques that rely on scene scans is significantly
harder, as synthesizing full 3D scenes with reasonable detail

remains harder than reconstructing individual objects.
We demonstrate the effectiveness of our geometric-

aware 2D representation in Fig. 2. Our features can group
and differentiate objects based on their categories or subcat-
egories, leading to improved performance on multiple 2D
object understanding tasks using both ResNet-50 [23] and
ViT-B [29] backbones. Our method trained on a pseudo-
pair dataset also yields superior results over DINO [3] and
MAE [20]. Remarkably, we also surpass a state-of-the-
art method, Pri3D [25] without using any 3D scene scans
in the following tasks: (i) semantic segmentation using
NYUv2 [42] and indoor ADE20k [54]; (ii) object detection
and instance segmentation using NYUv2 and in/outdoor
COCO [35]; (iii) object retrieval using Pix3D [45].

To summarize, our contributions are as follows.
• We present a simple yet effective approach to inducing

geometric-aware properties in 2D representation using
lightweight CAD models. These can be either ground
truth from RGB-CAD datasets or generated pseudo
CAD pairs based on 2D-only data.

• We propose training objectives to learn a 2D-3D em-
bedding space where feature similarity reflects geo-
metric similarity based on the Chamfer distance.

• We enhance the performance of SOTA 2D representa-
tion learning techniques on four 2D object understand-
ing tasks and achieve competitive results to SOTA that
require 3D scene scans across five datasets, in both set-
tings that use real or pseudo-RGB-CAD datasets.

2. Related works
2D Representation Learning. Contrastive learning [49]

has continuously shown improvements in various down-
stream tasks. Its main concept is to maximize a similar-
ity score between two different views (e.g., two different
augmentations of the same instance [6, 9, 10, 17, 21], two
instances with the same label [28], or two different en-
coders [3, 7]). Meanwhile, learning representation in au-
toencoder fashion [20] also has recently demonstrated a per-
formance boost from contrastive learning works.

This paper shows that these 2D representation learn-
ing methods could not provide geometric-aware properties,
which are critical in object understanding tasks.

3D Representation Learning requires specific network
architecture for extracting features based on an input’s data
structure (e.g., rendered images [44], point clouds [39, 46],
or meshes [15, 16]). These architectures can encode geo-
metric information of each 3D shape into representations
with a deep understanding of shape structure. Later, con-
trastive learning in 3D, such as point cloud augmenta-
tion [52], or multiple modalities [1, 53], showed their im-
provement in 3D classification, retrieval, and part segmenta-
tion problems. Concurrently, 3D reconstruction techniques
[11, 14, 37] also deliver promising results in similar tasks.
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Figure 2. Visualization of the pairwise cosine similarity between the learned representations of objects from each method. The bright
color indicates higher similarity. The first row shows the similarity scores of all validation images in Pix3D [45] dataset, sorted by object
category and subcategory (i.e., object models). The second row zooms in on a single category (Sofa) from the first row. Our method shows
a better grouping of the same sofa than others, especially SimCLR [6] and SupCon [28], which can hardly differentiate between each sofa
type. CrossPoint [1] and SupCon (fine), unlike others, can group the same sofa but fail to separate sofas from other categories in the first
row. Surprisingly, MAE [20] also delivers visual features without subcategory awareness. Compared to SimCLR, Ours (pseudo) provides
distinguishable features (with darker colors) between each sofa type. Additional studies on Ours (pseudo) are provided in Appendix B.

In this paper, we adapt the encoded 3D features with rich
geometric information to share the ability to recognize geo-
metric similarities in each object to 2D representations.

Multimodal Representation Learning gains attrac-
tion due to its ability to share modality-specific contexts.
CLIP [40] facilitates various vision-language tasks by con-
trastive learning on text-image data. Similarly, 2D-3D rep-
resentation learning transfers geometric information from
3D to 2D features [5, 25, 36]. Pri3D [25] introduces a con-
trastive learning method on multi-view RGB frames and 3D
scene scans [12]. These modal pairs allow them to learn
view and 3D priors in 2D features and achieve impressive
2D indoor scene understanding performance. Later, Set-
InfoNCE [5] improves upon Pri3D by fine-tuning the Pri3D
pre-trained model using additional 3D priors, e.g., sets of
nearby points referring to the same object part, generated
from training scans. While these studies have focused on
scene scans, this paper demonstrates that geometric priors
from CAD models can achieve comparable or better object
understanding than learning on 3D scenes.

Some studies, e.g., CrossPoint [1, 27], have been con-
ducted to share visual context to guide CAD features (2D
→ 3D). Their learned 2D features, on the other hand, fail
to discriminate object categories, resulting in poor object
understanding results. We then investigate a more efficient
method of learning and sharing modality-specific context
from CAD to RGB without hurting 2D task performance.

2D-3D Object Matching has been studied for searching
or generating a 3D model of objects appearing in a given
image. [19, 30–32] use existing CAD databases to train an
RGB-CAD retrieval and alignment module in a multi-task
learning fashion using a given set of ground truths (e.g.,
camera intrinsic, depth map, mask, or pose parameters).
[26, 34] utilize category labels to guide a joint RGB-CAD

space for 2D-3D retrieval tasks. Another approach is to re-
construct a 3D model from the image directly [16, 18, 47].
However, the generated 3D may be less realistic than re-
trieving human-designed 3D from the databases.

We utilize these works to generate CAD pairs for our
pre-training RGB images. Learning representation on just
pseudo-RGB-CAD pairs can surpass SOTA competitors.

3. Proposed method

Our goal is to construct a pre-trained model that can pro-
vide a 2D representation zI

i of an input image Ii with useful
geometric priors to enhance 2D object understanding. Un-
like prior works [5, 25], we aim to learn the representations
without 3D scene scans using other efficient alternatives.

We propose a novel approach that can obtain such geo-
metric priors from a lightweight and publicly available type
of 3D data in the form of CAD models, while retaining dis-
criminative representations for 2D tasks. Given an image Ii
and its associated CAD model Gi, our solution constructs
a 2D-3D embedding space with strong geometric-aware
properties by learning CAD features zG

i = f G(Gi) along
with rich visual information from 2D features zI

i = f I(Ii).
We show that the acquired 2D representations, where their
feature similarity reflects geometric similarity, are more ef-
fective than solely relying on standard augmentation in-
variant CAD features and perform almost as effectively as
3D priors from scene scans on common 2D understanding
tasks. The overview of our proposed framework is shown
in Fig. 3.

An extension to training our model on generated RGB-
CAD pairs is further introduced in order to learn geometric-
aware representations using just RGB training data.
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Figure 3. Our pre-training strategy. We learn 2D representations on a joint 2D-3D space from RGB-CAD pairs based on three loss
functions. LGEO focuses on learning CAD features from two similar CAD models mined from Chamfer distance, LIMG focuses on learning
visual differences between two image augmentations, and LCROSS shares geometric awareness from CAD features to 2D representation.

3.1. Training objectives

The core idea of our training objective is to share
two modality-specific contexts, i.e., strong geometric-aware
properties from zG

i ∈ zG and rich visual information from
zI
i ∈ zI, in the joint 2D-3D embedding space by training

on RGB-CAD pairs (I,G). To achieve this objective, we
use three loss functions: LGEO, LIMG, and LCROSS. The first
loss LGEO helps the 3D encoder f G(·) construct a geometric-
aware embedding space, such that CAD models in G with
similar shapes, based on the Chamfer distance, are located
near each other. The second loss LIMG helps the 2D en-
coder f I(·) learn useful visual representation properties,
e.g., translation and color invariance from I . The third loss
LCROSS enforces the consistency between zG

i and zI
i for each

(Ii, Gi) pair. Finally, the multi-task loss function is

L = LGEO + LIMG + LCROSS. (1)

Detailed explanations of the three components are given in
the following subsections.

3.1.1 Geometric-aware CAD features

We first explain how LGEO provides geometric awareness
to our features. Given (Ii, Gi), we use Gi to train f G(·)
for extracting a geometric context zG

i of each pair. We
process each Gi by converting it to a point cloud and use
DGCNN [46] as f G(·) to capture local and global point
cloud structure information, resulting in an encoded feature
zG
i .

To learn the space, we follow a common contrastive
learning strategy by maximizing the similarity between zG

i

and the encoded feature z+ of each positive term in a mini-
batch. However, instead of selecting z+ based on object
labels or augmentations as is commonly done, we select z+

based on a geometric-based similarity function, the Cham-
fer distance.

We calculate pairwise Chamfer distances across a mini-
batch and select K point clouds with the lowest distances to
be the positive terms for each Gi in the loss function. We
call this process Chamfer mining. The set of encoded pos-
itive terms is referred to as P (zG

i ). Finally, the contrastive
loss is given as

LGEO =
1

NK

N∑
i=1

∑
z+∈P (zG

i )

− log
exp(zG

i · z+/τ)∑
z-∈zG\{zG

i}
exp(zG

i · z-/τ)
,

(2)
where N is the batch size and τ is a tunable temperature
parameter. Using z+ based on the Chamfer distance better
captures the similarity and difference in 3D geometry and
benefits 2D representation than other choices, e.g., 3D aug-
mentation or category labels, which will be discussed later
in Section 5.5 and Appendix B.

3.1.2 Learning to discriminate 2D visual features

Translation and color invariance are crucial in many vision
problems [17]. Learning them along with geometric-aware
properties potentially yields better results.

To acquire these invariances, we define the second func-
tion LIMG by following a common practice in 2D represen-
tation learning. In particular, we use SimCLR [6] and learn
to discriminate between two different augmentations of Ii
(i.e., Ii and I+i ):

LIMG = lIMG(z
I, zI+) + lIMG(z

I+, zI),

lIMG(z
I, zI+) =

1

2N

N∑
i=1

− log
exp(zI

i · zI+
i /τ)∑

z-∈zI∪zI+\{zI
i}

exp(zI
i · z-/τ)

,

(3)

where zI+
i ∈ zI+ is an encoded feature of I+i .
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3.1.3 Cross-modal sharing the properties on the joint
2D-3D space

The third function LCROSS aligns the geometric-aware fea-
tures zG with the 2D features zI by constructing a common
2D-3D space for the two encoders, f G(·) and f I(·). To this
end, we use cross-modal contrastive learning loss as a train-
ing objective as follows:

LCROSS = lCROSS(z
I, zG) + lCROSS(z

G, zI),

lCROSS(z
I, zG) =

1

2N

N∑
i=1

− log
exp(zI

i · zG
i /τ)∑

z-∈zG\{zG
i}

exp(zI
i · z-/τ)

.

(4)

Sharing zG from LGEO with zI from LIMG on LCROSS using
L results in a f I(·) that can produce 2D representation with
useful geometric and visual priors that show superior fine-
tuning performance in the experimental section.

3.2. Learning geometric-aware representation on
non-paired RGB datasets

Training a model to induce geometric-aware properties
in 2D representation using Eq. (2) and Eq. (4) requires
RGB-CAD pairs (I,G). However, obtaining such paired
datasets is a cumbersome problem in every cross-modal
learning framework. To address this, we propose to utilize
2D-3D object matching techniques, e.g., [16,19,30,31,47],
to generate pseudo-pair of images and its associated 3D
models, (Ii, G′

i), which can be used for training instead of
the real pairs. Our experiments show that these pseudo pairs
still help induce geometric-aware properties in our repre-
sentations, resulting in better performance on 2D object un-
derstanding tasks, compared to state-of-the-art 2D represen-
tation learning approaches.

4. Experimental setup
4.1. Pre-training details

We use ResNet-50 [23] or ViT-B [29] initialized with
supervised pre-trained ImageNet weights for the 2D en-
coder and use DGCNN [46] for the 3D encoder. We choose
τ = 0.07 for all equations and K = 3 in Eq. (2). Modality-
specific projection heads are used for both 2D and 3D en-
coders to produce feature vectors z IMG and zGEO used in
Eq. (1). Each head consists of two linear layers of sizes
1024 and 512, where the first one has ReLU activation. We
pre-trained the model on the NVIDIA A100 GPU with a
batch size of 256, then neglected the projection heads and
retained only the 2D encoder for fine-tuning with down-
stream tasks. More details are given in Appendix A.

For the pre-train dataset, we use Pix3D [45] with the S1
train-test split [16]. This dataset consists of 10,069 paired
RGB images of indoor scene furniture (e.g., bed, chair,
sofa) and corresponding CAD models (subcategories) with

a total of 395 shapes. We preprocessed each CAD model by
uniform sampling random points to generate point clouds
consisting of N = 1024 and applied point translation, rota-
tion, and jittering to them. For RGB images, we applied the
same augmentation strategy as [6] by randomly cropping
an image into a size of 224× 224, then randomly applying
horizontal flipping, color jittering, grayscaling, and Gaus-
sian blurring to the images.

4.2. Pseudo-pair generation setup

We utilized a state-of-the-art 3D shape retrieval model,
ROCA [19], to generate a pseudo CAD model for any RGB
image in indoor scene domains. ROCA was trained on
Scan2CAD dataset [2] containing RGB-D frames of indoor
scenes and annotated CAD models for each object in each
frame. The Mask-RCNN [22] is employed to detect objects
in an input image and generate bounding boxes of those de-
tected ones. The feature of each bounding box will be fur-
ther used in the ROCA retrieval module for predicting its
associated CAD model listed in the ShapeNet [4] database.

The pairing for each RGB input was selected based on
a predicted CAD model of the largest detected bounding
box. See Appendix G for more ablation studies on pair gen-
eration. Later in the experiment section, we compare our
model trained on RGB images from Pix3D dataset [45] and
pseudo CAD pairs generated by ROCA with competitors.

4.3. Baseline competitors

All competitors except SupImg and Pri3D were initial-
ized using pre-trained ImageNet weights and subsequently
trained on Pix3D to ensure evaluation fairness.

Supervised ImageNet Pre-training (SupImg) [13] rep-
resents the base performance of a pre-trained model without
additional training on indoor scene datasets.

SimCLR [6] and SupCon [28] provide the results when
learning 2D representation on augmented RGB images
(SimCLR), object categories (SupCon), or subcategories
(SupCon (Fine)) in a CNN backbone.

CrossPoint [1] shows the performance of existing CAD-
RGB representation learning. Note that this work has not
been studied for solving 2D object understanding tasks.

Pri3D [25] and Set-InfoNCE [5] are state-of-the-art
geometric-aware 2D representation learning works trained
on multi-view RGB frames and 3D scans of ScanNet [12]
dataset. Note that Set-InfoNCE did not publicly share their
code, so we can only compare the results to their reported
statistics on ScanNet [12] and NYUv2 [42] datasets.

DINO [3] and MAE [20] are state-of-the-art 2D rep-
resentation learning models based on Vision Transformer
(ViT) [29] architectures.
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5. Experimental results
5.1. Properties of our learned features

Evaluating geometric-aware properties. Fig. 2 visual-
izes the pairwise cosine similarities between each encoded
feature of objects from the Pix3D validation split. The rep-
resentations were encoded with the 2D encoder (without a
projection head) of each approach.

Our representations have high similarity scores for im-
ages with the same geometry (intra-subcategory) and others
with the same object category (intra-category), while none
of the competitors could reflect two properties at the same
time. More visualizations from other categories and other
competitors are provided in Appendix B.

One interesting aspect is that our representations also
well capture the differences across inter-category and inter-
subcategory samples. We acquire better mean intra and
inter-category similarity scores than the self-supervised
baselines, as shown in Fig. 4. Furthermore, Ours (pseudo)
yields similar findings, particularly for inter-category. An
additional study in Appendix B also demonstrates that Ours
(pseudo) has better discrimination in inter-subcategory fea-
tures. These geometric-aware properties in our learned rep-
resentation lead to improved 2D object understanding per-
formance in further subsections.
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Figure 4. Distribution of pairwise cosine similarity score
among intra and inter-category samples. Our representations
learned by LGEO based on the Chamfer distance have the highest
mean score (vertical dashed lines) within intra-category samples
and also have the lowest score in the inter-category scenario.

Object localization. We study whether our model can
generalize to images with multiple objects, even though it
was trained on a dataset of single objects. Fig. 5 shows
that our learned features from the ViT-B backbone can be
used for roughly localizing patches associated with object
categories without fine-tuning. More details and results
are provided in Appendix C. This property may arise from
how our loss function encourages learning discriminative
part features, which are useful for classifying, localizing,
and segmenting multiple objects demonstrated in our sub-
sequent experiments. This similar behavior is also observed
in other 2D self-supervised models [3] trained on single-
object datasets (e.g., ImageNet [13]).

bed

bookcase

chair

desk
sofa
table
wardrobe

Ours DINO

Figure 5. We compute the feature similarity between each patch in
an unseen input image and the mean global feature of learned im-
ages in each category using models with a ViT-B backbone. With-
out fine-tuning, our model can identify the table and roughly lo-
calize patches associated with the chairs in the image by using the
category of the most similar mean global feature of each patch.

5.2. 2D Semantic segmentation

Table 1 compares fine-tuning results in semantic seg-
mentation tasks with other competitors. Following [5, 25],
we train a U-Net [41] with residual connections for pre-
dicting segmentation masks with cross-entropy loss. The
encoder part of U-Net is ResNet-50, while the decoder is
conv layers with bi-linear interpolation. For ViT-B, we fol-
low [20] by using UPerNet [51] as a segmentation head.

We employ two variants of mean intersection-over-union
(mIoU) for the evaluation metric. The first mIoU, initially
implemented by Pri3D [25], does not include pixels that
were incorrectly predicted to be ignored classes (e.g., back-
ground) as a false positive in mIoU computation. In com-
parison, our revised mIoU includes these pixels to avoid
model cheating by predicting more ignored classes. The
experiments were conducted on NYUv2 [42], ScanNet [12],
indoor ADE20k [54], and indoor SUNRGB-D [43] datasets.
We filtered ADE20k to include only indoor scenes and ig-
nored previously omitted classes in an NYUv2 setting fol-
lowing the prior work [25] for SUNRGB-D. More details
on our split are provided in Appendix D.

When pre-trained on non-paired RGB datasets, Ours
(pseudo) outperforms all 2D competitors in both architec-
tures, including DINO [3] and MAE [20]. For 2D-3D com-
petitors, we win against Pri3D and achieve very compet-
itive results to Set-InfoNCE in NYUv2 by only -0.16 in
mIoU [25]. We also outperform Pri3D in ADE20k by +1.01
for the original and +0.79 for the pseudo version. The qual-
itative results are shown in Fig. 6 and Appendix E.

For ScanNet and SUNRGB-D datasets, Pri3D and Set-
InfoNCE perform better than ours. This might be because
their models were trained directly on ScanNet 3D scans.
Some images in SUNRGB-D also appear similar to those
in ScanNet, as both datasets sampled RGB-D frames from
recorded videos at a high frame-per-second rate. Nonethe-
less, even without 3D ScanNet, our method still achieves
comparable results to Pri3D (-0.17).

Additionally, in Appendix F, we present results obtained
by increasing the pre-training data, which allows us to sur-
pass Set-InfoNCE on NYUv2 without real 3D pairs.
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Table 1. Semantic segmentation results on four popular benchmark datasets. For both ResNet-50 (RN50) and ViT-B architectures, our
approaches have better mIoU than 2D representation learning baselines. (*) denotes scores from the methods that were directly pre-trained
on 2D and 3D data of ScanNet dataset. We win against Pri3D in NYUv2 and ADE20k without requiring 3D scene scans.

NYUv2 ScanNet indoor ADE20k SUNRGB-D
Arch. GT pair Method 3D mIoU mIoU [25] mIoU mIoU [25] mIoU mIoU [25] mIoU mIoU [25]

RN50

2D only

SupImg - 47.04 50.0 49.12 55.7 37.52 39.69 47.96 63.12
SimCLR - 47.94 53.32 49.91 56.34 38.19 39.56 48.51 63.00
SupCon - 48.49 54.16 50.59 56.57 37.96 40.13 48.13 65.01

SupCon (fine) - 47.34 53.45 49.81 56.22 37.87 39.92 48.05 63.13
pseudo Ours (pseudo) CAD 49.46 54.62 50.77 56.76 39.13 40.43 49.13 65.45

2D-3D

CrossPoint CAD 46.04 49.18 47.26 54.02 36.55 37.88 47.15 62.77
Pri3D scene 49.52 54.7 54.72* 61.7* 38.34 39.17 50.02 66.65

Set-InfoNCE scene - 55.4 - 63.1* - - - -
Ours CAD 49.77 55.24 51.03 57.12 39.35 40.86 49.85 65.95

ViT-B
2D only

SupImg - 49.44 55.59 63.93 59.72 42.78 44.38 51.26 66.45
DINO - 52.14 57.24 62.54 58.13 41.72 43.41 50.52 66.12
MAE - 50.10 55.66 62.23 58.95 42.96 44.96 52.22 67.87

pseudo Ours (pseudo) CAD 52.47 58.02 64.49 60.73 43.02 45.37 52.53 69.59
2D-3D Ours CAD 53.0 58.67 65.27 60.95 43.12 45.82 52.96 69.69

Input GT SimCLR SupCon Pri3D Ours Ours(Pseudo)

Figure 6. Qualitative results on NYUv2 [42] semantic segmentation. Our methods yield better segmentation results when labeling a
scene is challenging due to color or lighting. The geometric priors in our learned representations boost understanding of each scene.

5.3. 2D Instance segmentation and object detection

Indoor scenes. We show how our features improve in-
stance segmentation and object detection results in Table 2.
Similar to [25], we use Mask-RCNN [22] with ResNet-50
encoder, implemented on Detectron2 [48] framework for
both tasks. For ViT-B, we resize input images to 224× 224
and follow [33] by using Mask-RCNN as the detection
head. All backbones were initialized by the pre-trained
weights of our model or competitors’. Following [5,25], we
use NYUv2 [42] dataset and a well-known detection bench-
mark, COCO dataset, with Average Precision (AP) as the
metric. We filtered COCO images to include only indoor
objects. Details on the selected classes are in Appendix D.

Our method outperforms state-of-the-art 2D and 2D-3D
competitors in all settings. Ours (pseudo) achieves compet-
itive scores against Pri3D and Set-InfoNCE in NYUv2 and

beats Pri3D in COCO without ground truth 3D pairs.
Outdoor scenes. We also pre-trained our model on PAS-

CAL3D+ [50] dataset, which contains objects such as vehi-
cles and furniture in both indoor and outdoor scenes, and
evaluated the model on another subset of COCO images
called outdoor COCO. Further dataset details are provided
in Appendix D. Our method leads to similar improvements
in AP as observed in the indoor-only settings.

5.4. Experiments on 2D retrieval

Table 3 shows the retrieval performance on Pix3D [45]
by fine-tuning the pre-trained model on coarse-grained (cat-
egory) and fine-grained (subcategory) labels of objects. The
2D encoder was fine-tuned along with an additional re-
trieval head, consisting of two linear layers of sizes 1024
and 512 with ReLU applied only to the first layer. All
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Table 2. Object detection and instance segmentation performance. We outperform competitors for all datasets.
NYUv2 indoor COCO outdoor COCO

Object Det. Instance segm. Object Det. Instance seg. Object Det. Instance seg.
Arch. Size GT pair Method 3D AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

RN50 480

2D only

SupImg - 29.9 17.3 16.8 25.1 13.9 13.4 41.78 24.21 23.70 39.16 23.35 22.61 46.09 26.98 28.08 42.45 23.34 23.92
SimCLR - 32.81 20.15 19.24 29.10 15.97 15.62 43.63 26.46 25.45 40.87 24.79 23.86 48.15 28.75 30.40 44.31 25.01 24.99
SupCon - 33.23 20.36 19.63 29.44 16.16 15.83 43.66 26.34 25.32 40.84 24.53 23.75 47.89 28.67 30.29 44.16 24.63 24.97

SupCon (fine) - 32.56 19.74 18.92 29.06 16.11 15.74 43.58 25.95 25.21 40.65 24.22 23.66 45.01 27.90 26.59 41.97 25.61 24.66
pseudo Ours (pseudo) CAD 34.45 20.27 19.72 29.64 16.24 16.13 43.74 26.47 25.48 40.92 24.77 23.91 - - - - - -

2D-3D

CrossPoint CAD 28.42 15.94 15.22 24.49 13.32 13.11 40.25 22.78 22.26 38.54 21.92 20.80 43.22 24.57 25.60 39.75 21.93 21.11
Pri3D scene 34.0 20.4 19.4 29.5 16.3 15.8 43.49 26.40 25.22 40.71 24.72 23.61 - - - - - -

Set-InfoNCE scene 34.6 20.5 19.7 29.7 16.3 16.5 - - - - - - - - - - - -
Ours CAD 34.85 20.89 20.12 30.03 16.51 16.84 44.11 26.78 25.69 41.02 24.91 24.08 49.03 29.80 31.62 45.23 25.90 25.85

ViT-B 224
2D only

SupImg - 34.40 19.24 19.06 28.42 14.05 14.97 31.45 20.63 19.41 29.77 18.73 17.82 33.56 23.19 21.81 31.68 19.52 18.11
DINO - 33.03 18.62 17.91 26.82 14.56 14.73 27.70 16.24 15.87 25.78 14.86 14.76 32.57 22.13 20.61 29.86 18.07 17.66
MAE - 35.92 19.30 19.24 29.88 16.01 15.82 31.54 20.59 19.33 29.92 18.65 17.83 36.97 24.51 23.12 33.67 20.15 19.46

pseudo Ours (pseudo) CAD 36.24 19.78 19.72 30.10 15.94 16.05 31.78 20.74 19.46 30.01 19.07 17.94 - - - - - -
2D-3D Ours CAD 36.31 19.91 19.94 30.30 16.16 16.27 32.02 21.04 19.67 30.16 19.02 18.09 37.74 24.92 23.42 34.13 20.49 19.89

Table 3. Retrieval performance on Pix3D [45]. Our method
outperforms all competitors in all situations.

Arch. GT Pair Method 3D Coarse R@1 Fine R@1

RN50

2D only

SupImg - 78.85 51.18
SimCLR - 80.04 55.01
SupCon - 81.32 52.39

SupCon (fine) - 79.95 55.84
pseudo Ours (pseudo) CAD 81.74 56.71

2D-3D
CrossPoint CAD 75.97 48.09

Pri3D scene 79.72 51.63
Ours CAD 82.88 58.97

ViT-B
2D only

SupImg - 84.04 64.17
DINO - 84.59 65.48
MAE - 83.79 62.00

pseudo Ours (pseudo) CAD 86.16 66.40
2D-3D Ours CAD 86.32 67.23

Table 4. Effects on losses and positive mining choices. Train-
ing on three losses simultaneously yields the best performance in
mIoU. At the same time, choosing the Chamfer Distance (CD) as
a positive mining choice in LGEO also wins against the others.

LIMG LGEO LCROSS Pos. NYUv2 ADE20k

- ✓ ✓ CD 48.23 37.71
✓ - ✓ - 48.46 38.47
✓ - - - 47.94 38.19
- - ✓ - 47.02 37.43

✓ ✓ ✓ Sup 49.48 39.12
✓ ✓ ✓ Aug 49.14 38.65
✓ ✓ ✓ CD 49.77 39.35

retrieval models were trained using supervised contrastive
loss [28] with τ = 0.07. Our methods outperform all com-
petitors in all architectures.

5.5. Ablation studies

All ablation experiments are evaluated on NYUv2 and
ADE20k semantic segmentation tasks using our revised
mIoU metric on ResNet-50 architecture.

Effects on losses and positive mining choices Table 4
shows the effects of three loss choices (i.e., LIMG, LGEO,
and LCROSS) and three different choices of the positive point
cloud using in Eq. (2), including using object categories

(Sup), point cloud augmentation (Aug), and Chamfer dis-
tance (CD). We found that training three loss functions si-
multaneously notably improves mIoU from training single
or dual losses. While in the positive choice study, our se-
lected Chamfer distance achieves the best mIoU.

Effects on K selected positive point clouds. We stud-
ied the best number of K in Eq. (2). Fig. 7 reveals that
K = 3 can achieve the best mIoU among the others. Us-
ing a lower K leads to lower mIoU, similar to a higher K.
This is probably because higher K has more chance to se-
lect false positive samples due to higher Chamfer distances,
which means that the selected samples might have a much
different shape than the anchor zGi .

2 4 6 8 10
K

49

50

m
Io

U 49.44 49.77
49.35 49.27

48.69
NYUv2

Figure 7. Effect of varying K selected positive point clouds.
K = 3 has the best mIoU.

6. Limitations and Discussion
Using CAD models for inducing geometric-aware prop-

erties in 2D representation via Chamfer distance shows sig-
nificantly enhanced 2D object understanding results that are
almost as effective as 3D priors from scene scans. This
finding remains true when we train our model on gener-
ated pseudo-RGB-CAD pairs, allowing us to beat SOTA 2D
competitors without the need for paired datasets. However,
the performance of the pseudo-pair generator currently hin-
ders our results. As seen in Fig. 2 and 4, features trained
on pseudo pairs cannot clearly categorize intra-subcategory
images. We observe that this is due to an improper CAD
pair assignment; more information is given in Appendix B.
Nonetheless, generating or retrieving 3D models from a sin-
gle image is still more tractable than scene scans and shows
progressive performance improvement [38]. This enables
harnessing the massive-scale RGB data and generalizing
beyond domains with paired data (See Appendix F).
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