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“in the forest” “on the moon” The Starry Night”

“a black cat with a red
sweater and a blue jeans”

“an astronaut”
“a horse”

“a black horse”
“a red full moon”

“in an empty room” “on a snowy day” “at the beach”

“a canvas with a painting
of a Corgi dog”

“a metallic yellow robot”

“a mouse”
“boxing gloves”

“a black punching bag”

“a lion”
“a book”

Figure 1. Samples of generated images from input text and our proposed spatio-textual representations. Each pair consists of an (i)
input global text (top left, black), a spatio-textual representation describing each segment using free-form text prompts (left, colored text
and sketches), and (ii) the corresponding generated image (right). As can be seen, SpaText is able to generate high-quality images that
correspond to both the global text and spatio-textual representation content. (The colors are for illustration purposes only, and do not affect
the actual inputs.)

Abstract

Recent text-to-image diffusion models are able to gener-
ate convincing results of unprecedented quality. However,
it is nearly impossible to control the shapes of different re-
gions/objects or their layout in a fine-grained fashion. Pre-
vious attempts to provide such controls were hindered by
their reliance on a fixed set of labels. To this end, we present
SpaText — a new method for text-to-image generation using
open-vocabulary scene control. In addition to a global text
prompt that describes the entire scene, the user provides a
segmentation map where each region of interest is anno-
tated by a free-form natural language description. Due to
lack of large-scale datasets that have a detailed textual de-
scription for each region in the image, we choose to lever-
age the current large-scale text-to-image datasets and base
our approach on a novel CLIP-based spatio-textual repre-
sentation, and show its effectiveness on two state-of-the-art
diffusion models: pixel-based and latent-based. In addi-

tion, we show how to extend the classifier-free guidance
method in diffusion models to the multi-conditional case
and present an alternative accelerated inference algorithm.
Finally, we offer several automatic evaluation metrics and
use them, in addition to FID scores and a user study, to
evaluate our method and show that it achieves state-of-the-
art results on image generation with free-form textual scene
control.

1. Introduction

Imagine you could generate an image by dipping your
digital paintbrush (so to speak) in a “black horse” paint,
then sketching the specific position and posture of the horse,
afterwards, dipping it again in a “red full moon” paint and
sketching it the desired area. Finally, you want the entire
image to be in the style of The Starry Night. Current state-
of-the-art text-to-image models [51, 59, 72] leave much to
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be desired in achieving this vision.
The text-to-image interface is extremely powerful — a

single prompt is able to represent an infinite number of pos-
sible images. However, it has its cost — on the one hand,
it enables a novice user to explore an endless number of
ideas, but, on the other hand, it limits controllability: if the
user has a mental image that they wish to generate, with
a specific layout of objects or regions in the image and
their shapes, it is practically impossible to convey this in-
formation with text alone, as demonstrated in Figure 2. In
addition, inferring spatial relations [72] from a single text
prompt is one of the current limitations of SoTA models.

Make-A-Scene [22] proposed to tackle this problem by
adding an additional (optional) input to text-to-image mod-
els, a dense segmentation map with fixed labels. The user
can provide two inputs: a text prompt that describes the en-
tire scene and an elaborate segmentation map that includes a
label for each segment in the image. This way, the user can
easily control the layout of the image. However, it suffers
from the following drawbacks: (1) training the model with
a fixed set of labels limits the quality for objects that are not
in that set at inference time, (2) providing a dense segmenta-
tion can be cumbersome for users and undesirable in some
cases, e.g., when the user prefers to provide a sketch for
only a few main objects they care about, letting the model
infer the rest of the layout; and (3) lack of fine-grained con-
trol over the specific characteristic of each instance. For ex-
ample, even if the label set contains the label “dog”, it is not
clear how to generate several instances of dogs of different
breeds in a single scene.

In order to tackle these drawbacks, we propose a differ-
ent approach: (1) rather than using a fixed set of labels to
represent each pixel in the segmentation map, we propose
to represent it using spatial free-form text, and (2) rather
than providing a dense segmentation map accounting for
each pixel, we propose to use a sparse map, that describes
only the objects that a user specifies (using spatial free-
form text), while the rest of the scene remains unspecified.
To summarize, we propose a new problem setting: given
a global text prompt that describes the entire image, and
a spatio-textual scene that specifies for segments of inter-
est their local text description as well as their position and
shape, a corresponding image is generated, as illustrated in
Figure 1. These changes extend expressivity by providing
the user with more control over the regions they care about,
leaving the rest for the machine to figure out.

Acquiring a large-scale dataset that contains free-form
textual descriptions for each segment in an image is pro-
hibitively expensive, and such large-scale datasets do not
exist to the best of our knowledge. Hence, we opt to extract
the relevant information from existing image-text datasets.
To this end, we propose a novel CLIP-based [49] spatio-
textual representation that enables a user to specify for each

“at the beach” SpaText Stable Diffusion DALL·E 2

“a white Labrador” “a white Labrador at the beach puts its
“a blue ball” right arm above a blue ball without

touching, while sitting in the bottom
right corner of the frame”

Figure 2. Lack of fine-grained spatial control: A user with a
specific mental image of a Labrador dog holding its paw above a
blue ball without touching, can easily generate it with a SpaText
representation (left) but will struggle to do so with traditional text-
to-image models (right) [52, 56].

segment its description using free-form text and its posi-
tion and shape. During training, we extract local regions
using a pre-trained panoptic segmentation model [69], and
use them as input to a CLIP image encoder to create our
representation. Then, at inference time, we use the text de-
scriptions provided by the user, embed them using a CLIP
text encoder, and translate them to the CLIP image embed-
ding space using a prior model [51].

In order to assess the effectiveness of our proposed rep-
resentation SpaText, we implement it on two state-of-the-
art types of text-to-image diffusion models: a pixel-based
model (DALL·E 2 [51]) and a latent-based model (Stable
Diffusion [56]). Both of these text-to-image models em-
ploy classifier-free guidance [33] at inference time, which
supports a single conditioning input (text prompt). In order
to adapt them to our multi-conditional input (global text as
well as the spatio-textual representation), we demonstrate
how classifier-free guidance can be extended to any multi-
conditional case. To the best of our knowledge, we are the
first to demonstrate this. Furthermore, we propose an ad-
ditional, faster variant of this extension that trades-off con-
trollability for inference time.

Finally, we propose several automatic evaluation metrics
for our problem setting and use them along with the FID
score to evaluate our method against its baselines. In addi-
tion, we conduct a user-study and show that our method is
also preferred by human evaluators.

In summary, our contributions are: (1) we address a new
scenario of image generation with free-form textual scene
control, (2) we propose a novel spatio-textual representa-
tion that for each segment represents its semantic proper-
ties and structure, and demonstrate its effectiveness on two
state-of-the-art diffusion models — pixel-based and latent-
based, (3) we extend the classifier-free guidance in diffusion
models to the multi-conditional case and present an alter-
native accelerated inference algorithm, and (4) we propose
several automatic evaluation metrics and use them to com-
pare against baselines we adapted from existing methods.
We also evaluate via a user study. We find that our method
achieves state-of-the-art results.
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2. Related Work

Text-to-image generation. Recently, we have witnessed
great advances in the field of text-to-image generation. The
seminal works based on RNNs [13, 34] and GANs [25]
produced promising low-resolution results [54, 71, 73, 74]
in constrained domains (e.g., flowers [45] and birds [68]).
Later, zero-shot open-domain models were achieved using
transformer-based [67] approaches: DALL·E 1 [52] and
VQ-GAN [20] propose a two-stage approach by first train-
ing a discrete VAE [37,53,66] to find a rich semantic space,
then, at the second stage, they learn to model the joint distri-
bution of text and image tokens autoregressively. CogView
[18, 19] and Parti [72] also utilized a transformer model for
this task. In parallel, diffusion based [15, 17, 32, 44, 60]
text-to-image models were introduced: Latent Diffusion
Models (LDMs) [56] performed the diffusion process on a
lower-dimensional latent space instead on the pixel space.
DALL·E 2 [51] proposed to perform the diffusion process
on the CLIPimg space. Finally, Imagen [59] proposed to
utilize a pre-trained T5 language model [50] for condition-
ing a pixel-based text-to-image diffusion model. Recently,
retrieval-based models [3,8,12,57] proposed to augment the
text-to-image models using an external database of images.
All these methods do not tackle the problem of image gen-
eration with free-form textual scene control.

Scene-based text-to-image generation. Image gen-
eration with scene control has been studied in the past
[21, 30, 31, 35, 40, 48, 55, 61–63, 75], but not with gen-
eral masks and free-form text control. No Token Left Be-
hind [46] proposed to leverage explainability-based method
[10, 11] for image generation with spatial conditioning us-
ing VQGAN-CLIP [16] optimization. In addition, Make-
A-Scene [22] proposed to add a dense segmentation map
using a fixed set of labels to allow better controllability. We
adapted these two approaches to our problem setting and
compared our method against them.

Local text-driven image editing. Recently, various
text-driven image editing methods were proposed [1,3,6,7,
9,14,23,24,28,36,38,39,47,58,65] that allow editing an ex-
isting image. Some of the methods support localized image
editing: GLIDE [43] and DALL·E 2 [51] train a designated
inpainting model, whereas Blended Diffusion [4, 5] lever-
ages a pretrained text-to-image model. Combining these
localized methods with a text-to-image model may enable
scene-based image generation. We compare our method
against this approach in the supplementary.

3. Method

We aim to provide the user with more fine-grained con-
trol over the generated image. In addition to a single global
text prompt, the user will also provide a segmentation map,
where the content of each segment of interest is described

using a local free-form text prompt.
Formally, the input consists of a global text prompt tglobal

that describes the scene in general, and a H×W raw spatio-
textual matrix RST , where each entry RST [i, j] contains
the text description of the desired content in pixel [i, j], or ∅
if the user does not wish to specify the content of this pixel
in advance. Our goal is to synthesize an H×W image I that
complies with both the global text description tglobal and the
raw spatio-textual scene matrix RST .

In Section 3.1 we present our novel spatio-textual rep-
resentation, which we use to tackle the problem of text-
to-image generation with sparse scene control. Later, in
Section 3.2 we explain how to incorporate this represen-
tation into two state-of-the-art text-to-image diffusion mod-
els. Finally, in Section 3.3 we present two ways for adapting
classifier-free guidance to our multi-conditional problem.

3.1. CLIP-based Spatio-Textual Representation

Over the recent years, large-scale text-to-image datasets
were curated by the community, fueling the tremendous
progress in this field. Nevertheless, these datasets cannot
be naı̈vely used for our task, because they do not contain lo-
cal text descriptions for each segment in the images. Hence,
we need to develop a way to extract the objects in the image
along with their textual description. To this end, we opt to
use a pre-trained panoptic segmentation model [69] along
with a CLIP [49] model.

CLIP was trained to embed images and text prompts into
a rich shared latent space by contrastive learning on 400
million image-text pairs. We utilize this shared latent space
for our task in the following way: during training we use
the image encoder CLIPimg to extract the local embeddings
using the pixels of the objects that we want to generate (be-
cause the local text descriptions are not available), whereas
during inference we use the CLIP text encoder CLIPtxt to
extract the local embeddings using the text descriptions pro-
vided by the user.

Hence, we build our spatio-textual representation, as de-
picted in Figure 3: for each training image x we first extract
its panoptic segments {Si ∈ [C]}i=N

i=1 where C is the num-
ber of panoptic segmentation classes and N is the number of
segments for the current image. Next, we randomly choose
K disjoint segments {Si ∈ [C]}i=K

i=1 . For each segment Si,
we crop a tight square around it, black-out the pixels in the
square that are not in the segment (to avoid confusing the
CLIP model with other content that might fall in the same
square), resize it to the CLIP input size, and get the CLIP
image embedding of that segment CLIPimg(Si).

Now, for the training image x we define the spatio-
textual representation STx of shape (H,W, dCLIP) to be:

STx[j, k] =

{
CLIPimg(Si) if [i, k] ∈ Si
#»
0 otherwise

(1)
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Figure 3. Spatio-textual representation: During training (left) — given a training image x, we extract K random segments, pre-process
them and extract their CLIP image embeddings. Then we stack these embeddings in the same shapes of the segments to form the spatio-
textual representation ST . During inference (right) — we embed the local prompts into the CLIP text embedding space, then convert them
using the prior model P to the CLIP image embeddings space, lastly, we stack them in the same shapes of the inputs masks to form the
spatio-textual representation ST .

where dCLIP is the dimension of the CLIP shared latent
space and

#»
0 is the zero vector of dimension dCLIP.

During inference time, to form the raw spatio-textual
matrix RST , we embed the local prompts using CLIPtxt
to the CLIP text embedding space. Next, in order to mit-
igate the domain gap between train and inference times,
we convert these embeddings to CLIPimg using a designated
prior model P . The prior model P was trained separately to
convert CLIP text embeddings to CLIP image embeddings
using an image-text paired dataset following DALL·E 2.
Finally, as depicted in Figure 3 (right), we construct the
spatio-textual representation ST using these embeddings at
pixels indicated by the user-supplied spatial map. For more
implementation details, please refer to the supplementary.

3.2. Incorporating Spatio-Textual Representation
into SoTA Diffusion Models

The current diffusion-based SoTA text-to-image mod-
els are DALL·E 2 [51], Imagen [59] and Stable Diffu-
sion [56]. At the time of writing this paper, DALL·E 2
[51] model architecture and weights are unavailable,
hence we start by reimplementing DALL·E 2-like text-to-
image model that consists of three diffusion-based mod-
els: (1) a prior model P trained to translate the tuples
(CLIPtxt(y),BytePairEncoding(y)) into CLIPimg(x) where
(x, y) is an image-text pair, (2) a decoder model D that
translates CLIPimg(x) into a low-resolution version of the
image x64×64, and (3) a super-resolution model SR that up-
samples x64×64 into a higher resolution of x256×256. Con-
catenating the above three models yields a text-to-image
model SR ◦D ◦ P .

Now, in order to utilize the vast knowledge it has gath-
ered during the training process, we opt to fine-tune a pre-
trained text-to-image model in order to enable localized tex-
tual scene control by adapting its decoder component D.
At each diffusion step, the decoder performs a single de-
noising step xt = D(xt−1,CLIPimg(x), t) to get a less

noisy version of xt−1. In order to keep the spatial cor-
respondence between the spatio-textual representation ST
and the noisy image xt at each stage, we choose to con-
catenate xt and ST along the RGB channels dimensions,
to get a total input of shape (H,W, 3 + dCLIP). Now, we
extend each kernel of the first convolutional layer from
shape (Cin,KH ,KW ) to (Cin + dCLIP,KH ,KW ) by con-
catenating a tensor of dimension dCLIP that we initialize
with He initialization [27]. Next, we fine-tuned the de-
coder using the standard simple loss variant of Ho et al.
[32] Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt,CLIPimg(x0), ST, t)||2

]
where ϵθ is a UNet [42] model that predicts the added noise
at each time step t, xt is the noisy image at time step t and
ST is our spatio-textual representation. To this loss, we
added the standard variational lower bound (VLB) loss [44].

Next, we move to handle the second family of SoTA
diffusion-based text-to-image models: latent-based models.
More specifically, we opt to adapt Stable Diffusion [56], a
recent open-source text-to-image model. This model con-
sist of two parts: (1) an autoencoder (Enc(x), Dec(z)) that
embeds the image x into a lower-dimensional latent space z,
and, (2) a diffusion model A that performs the following de-
noising steps on the latent space zt−1 = A(zt,CLIPtxt(t)).
The final denoised latent is fed to the decoder to get the final
prediction Dec(z0).

We leverage the fact that the autoencoder
(Enc(x), Dec(z)) is fully-convolutional, hence, the
latent space z corresponds spatially to the generated
image x, which means that we can concatenate the
spatio-textual representation ST the same way we did
on the pixel-based model: concatenate the noisy latent
zt and ST along the channels dimensions, to get a total
input of shape (H,W, dim(zt) + dCLIP) where dim(zt)
is the number of feature channels. We initialize the
newly-added channels in the kernels of the first convo-
lutional layer using the same method we utilized for the
pixel-based variant. Next, we fine-tune the denosing model
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“a sunny day at the beach” (1) (2) (3) (4) (5)

“a brown horse” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0

Figure 4. Multi-scale control: Using the multi-scale inference (Equation (3)) allows fine-grained control over the input conditions. Given
the same inputs (left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the
generated image contains a horse with the correct color and posture, but not at the beach. Conversely, if we place all the weight on the
global text (5), we get an image of a beach with no horse in it. The in-between results correspond to a mix of conditions — in (4) we get a
gray donkey, in (2) the beach contains no water, and in (3) we get a brown horse at the beach on a sunny day.

by LLDM = Et,y,z0,ϵ

[
||ϵ− ϵθ(zt,CLIPtxt(y), ST, t)||2

]
where zt is the noisy latent code at time step t and y is
the corresponding text prompt. For more implementation
details of both models, please read the supplementary.

3.3. Multi-Conditional Classifier-Free Guidance

Classifier-free guidance [33] is an inference method
for conditional diffusion models which enables trading-off
mode coverage and sample fidelity. It involves training a
conditional and unconditional models simultaneously, and
combining their predictions during inference. Formally,
given a conditional diffusion model ϵθ(xt|c) where c is the
condition (e.g., a class label or a text prompt) and xt is the
noisy sample, the condition c is replaced by the null condi-
tion ∅ with a fixed probability during training. Then, during
inference, we extrapolate towards the direction of the con-
dition ϵθ(xt|c) and away from ϵθ(xt|∅):

ϵ̂θ(xt|c) = ϵθ(xt|∅) + s · (ϵθ(xt|c)− ϵθ(xt|∅)) (2)

where s ≥ 1 is the guidance scale.
In order to adapt classifier-free guidance to our setting,

we need to extend it to support multiple conditions. Given a
conditional diffusion model ϵθ(xt|{ci}i=N

i=1 ) where {ci}i=N
i=1

are N condition inputs, during training, we independently
replace each condition ci with the null condition ∅. Then,
during inference, we calculate the direction of each condi-
tion ∆t

i = ϵθ(xt|ci)−ϵθ(xt|∅) separately, and linearly com-
bine them using N guidance scales si by extending Eq. (2):

ϵ̂θ(xt|{ci}i=N
i=1 ) = ϵθ(xt|∅) +

i=N∑
i=1

si∆
t
i (3)

Using the above formulation, we are able to control each of
the conditions separately during inference, as demonstrated
in Figure 4. To the best of our knowledge, we are the first
to demonstrate this effect in the multi-conditional case.

The main limitation of the above formulation is that
its execution time grows linearly with the number of con-
ditions, i.e., each denoising step requires (N + 1) feed-
forward executions: one for the null condition and N for

the other conditions. As a remedy, we propose a fast variant
of the multi-conditional classifier-free guidance that trades-
off the fine-grained controllability of the model with the
inference speed: the training regime is identical to the
previous variant, but during inference, we calculate only
the direction of the joint probability of all the conditions
∆t

joint = ϵθ(xt|{ci}i=N
i=1 ) − ϵθ(xt|∅), and extrapolate along

this single direction:

ϵ̂θ(xt|{ci}i=N
i=1 ) = ϵθ(xt|∅) + s ·∆t

joint (4)

where s ≥ 1 is the single guidance scale. This formulation
requires only two feed-forward executions at each denois-
ing step, however, we can no longer control the magnitude
of each direction separately.

We would like to stress that the training regime is identi-
cal for both of these formulations. Practically, it means that
the user can train the model once, and only during inference
decide which variant to choose, based on the preference at
the moment. Through the rest of this paper, we used the
fast variant with fixed s = 3. See the ablation study in Sec-
tion 4.4 for a comparison between these variants.

In addition, we noticed that the texts in the image-text
pairs dataset contain elaborate descriptions of the entire
scene, whereas we aim to ease the use for the end-user and
remove the need to provide an elaborate global prompt in
addition to the local ones, i.e., to not require the user to re-
peat the same information twice. Hence, in order to reduce
the domain gap between the training data and the input at
inference time, we perform the following simple trick: we
concatenate the local prompts to the global prompt at infer-
ence time separated by commas.

4. Experiments
For both the pixel-based and latent-based variants,

we fine-tuned pre-trained text-to-image models with 35M
image-text pairs, following Make-A-Scene [22], while fil-
tering out image-text pairs containing people.

In Section 4.1 we compare our method against the base-
lines both qualitatively and quantitatively. Next, in Sec-
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Automatic Metrics User Study Performance

Method Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local Inference ↓
distance distance IOU quality match match time (sec)

NTLB [46] 0.7547 0.7814 0.1914 36.004 91.4% 85.54% 79.29% 326
MAS [22] 0.7591 0.7835 0.2984 21.367 81.25% 70.61% 57.81% 76

SpaText (pixel) 0.7661 0.7862 0.2029 23.128 87.11% 80.96% 71.09% 52
SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - - 7

Table 1. Metrics comparison: We evaluated our method against
the baselines using automatic metrics (left) and human ratings
(middle). The results for the human ratings (middle) are reported
as the percentage of the majority vote raters that preferred our
latent-based variant of our method over the baseline, i.e., any value
above 50% means our method was favored. The inference time re-
ported (right) are for a single image.

tion 4.2 we describe the user study we conducted. Then,
in Section 4.3 we discuss the sensitivity of our method to
details in the mask. Finally, in Section 4.4 we report the
ablation study results.

4.1. Quantitative & Qualitative Comparison

We compare our method against the following baselines:
(1) No Token Left Behind (NTLB) [46] proposes a method
that conditions a text-to-image model on spatial locations
using an optimization approach. We adapt their method to
our problem setting as follows: the global text prompt tglobal
is converted to a full mask (that contains all the pixels in
the image), and the raw spatio-textual matrix RST is con-
verted to separate masks. (2) Make-A-Scene (MAS) [22]
proposes a method that conditions a text-to-image model
on a global text tglobal and a dense segmentation map with
fixed labels. We adapt MAS to support sparse segmentation
maps of general local prompts by concatenating the local
texts of the raw spatio-textual matrix RST into the global
text prompt tglobal as described in Section 3.3 and provide a
label for each segment (if there is no exact label in the fixed
list, the user should provide the closest one). Instead of a
dense segmentation map, we provided a sparse segmenta-
tion map, where the background pixels are marked with an
“unassigned” label.

In order to evaluate our method effectively, we need an
automatic way to generate a large number of coherent inputs
(global prompts tglobal as well as a raw spatio-textual matrix
RST ) for comparison. Naı̈vely taking random inputs is un-
desirable, because such inputs will typically not represent
a meaningful scene and may be impossible to generate. In-
stead, we propose to derive random inputs from real images,
thus guaranteeing that there is in fact a possible natural im-
age corresponding to each input. We use 30,000 samples
from COCO [41] validation set that contain global text cap-
tions as well as a dense segmentation map for each sample.
We convert the segmentation map labels by simply provid-
ing the text “a {label}” for each segment. Then, we ran-
domly choose a subset of those segments to form the sparse
input. Notice that for MAS, we additionally provided the

ground-truth label for each segment. For more details and
generated input examples, see the supplementary document.

In order to evaluate the performance of our method nu-
merically we propose to use the following metrics that test
different aspects of the model: (1) FID score [29] to assess
the overall quality of the results, (2) Global distance to as-
sess how well the model’s results comply with the global
text prompt tglobal — we use CLIP to calculate the cosine
distance between CLIPtxt(tglobal) and CLIPimg(I), (3) Local
distance to assess the compliance between the result and
the raw spatio-textual matrix RST — again, using CLIP for
each of the segments in RST separately, by cropping a tight
area around each segment c, feeding it to CLIPimg and calcu-
lating the cosine distance with CLIPtxt(tlocal), (4) Local IOU
to assess the shape matching between the raw spatio-textual
matrix RST and the generated image — for each segment
in RST , we calculate the IOU between it and the segmen-
tation prediction of a pre-trained segmentation model [70].
As we can see in Table 1(left) our latent-based model out-
performs the baselines in all the metrics, except the local
IOU, which is better in MAS because our method is some-
what insensitive to the given mask shape (Section 4.3) —
we view this as an advantage. In addition, we can see that
our latent-based variant outperforms the pixel-based variant
in all the metrics, which may be caused by insufficient re-
implementation of the DALL·E 2 model. Nevertheless, we
noticed that this pixel-based model is also able to take into
account both the global text and spatio-textual representa-
tion. The rightmost column in Table 1 reports the inference
times for a single image across the different models com-
puted on a single V100 NVIDIA GPU. The results indicate
that our method (especially the latent-based one) outper-
forms the baselines significantly. For more details, please
read the supplementary.

In addition, Figure 5 shows a qualitative comparison be-
tween the two variants of our method and the baselines. For
MAS, we manually choose the closest label from the fixed
labels set. As we can see, the SpaText (latent) outperforms
the baselines in terms of compliance with both the global
and local prompts, and in overall image quality.

4.2. User Study

In addition, we conducted a user study on Amazon Me-
chanical Turk (AMT) [2] to assess the visual quality, as well
as compliance with global and local prompts. For each task,
the raters were asked to choose between two images gener-
ated by different models along the following dimensions:
(1) overall image quality, (2) text-matching to the global
prompt tglobal and (3) text-matching to the local prompts of
the raw spatio-textual matrix RST . For more details, please
read the supplementary.

In Table 1 (middle) we present the evaluation results
against the baselines, as the percentage of majority rates that
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Figure 5. Qualitative comparison: Given the inputs (top row), we generate images using the baselines (adapted to our task as described
in Section 4.1) and the two variants of our method. As we can see, SpaText (latent) outperforms the baselines in terms of compliance with
both the global and local texts, and in overall image quality.

preferred our method (based on the latent model) over the
baseline. As we can see, our method is preferred by hu-
man evaluators in all these aspects vs. all the baselines. In
addition, NTLB [46] achieved overoptimistic scores in the
CLIP-based automatic metrics — it achieved lower human
evaluation ratings than Make-A-Scene [22] in the global
and local text-matching aspects, even though it got better
scores in the corresponding automatic metrics. This might
be because NTLB is an optimization-based solution that
uses CLIP for generation, hence is susceptible to adversarial
attacks [26, 64].

4.3. Mask Sensitivity

During our experiments, we noticed that the model gen-
erates images that correspond to the implicit masks in the
spatio-textual representation ST , but not perfectly. This is

also evident in the local IOU scores in Table 1. Neverthe-
less, we argue that this characteristic can be beneficial, espe-
cially when the input mask is not realistic. As demonstrated
in Figure 6, given an inaccurate, hand drawn, general ani-
mal shape (left) the model is able to generate different ob-
jects guided by the local text prompt, even when it does not
perfectly match the mask. For example, the model is able to
add ears (in the cat and dog examples) and horns (in the goat
example), which are not presented in the input mask, or to
change the body type (as in the tortoise example). However,
all the results share the same pose as the input mask. One
reason for this behavior might be the downsampling of the
input mask, so during training some fine-grained details are
lost, hence the model is incentivized to fill in the missing
gaps according to the prompts.
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“a white cat” “a Shiba Inu dog” “a goat” “a tortoise” “a pig” “an avocado”

Figure 6. Mask insensitivity: We found that the model is relatively insensitive to errors in the input mask. Given a general animal shape
mask (left), the model is able to generate a diverse set of results driven by the different local prompts. It can add ears/horns, as in the cat,
dog and goat examples or change the body type, as in the tortoise example. However, all the results share the same pose as the input mask.

Automatic Metrics User Study

Scenario Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local
distance distance IOU quality text-match text-match

(1) Binary 0.7457 0.7797 0.2973 7.6085 53.13% 50.3% 54.98%
(2) CLIPtxt 0.7447 0.7795 0.3092 7.025 58.6% 56.74% 48.53%
(3) Multiscale 0.7566 0.7794 0.2767 10.5896 53.61% 58.59% 55.57%

SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - -

Table 2. Ablation study: The baseline method that we used in this
paper achieves better FID score and visual quality than the ablated
cases. It is outperformed in terms of local IOU in (1) and (2),
and in terms of local text-match in (2). The results for the human
ratings (right) are reported as the percentage of the majority vote
raters that preferred our SpaText (latent).

4.4. Ablation Study

We conducted an ablation study for the following cases:
(1) Binary representation — in Section 3.1 we used the
CLIP model for the spatio-textual representation ST . Alter-
natively, we could use a simpler binary representation that
converts the raw spatio-textual matrix RST into a binary
mask B of shape (H,W ) by:

B[j, k] =

{
1 if RST [j, k] ̸= ∅
0 otherwise

(5)

and concatenate the local text prompts into the global
prompt. (2) CLIP text embedding — as described in Sec-
tion 3.2, we mitigate the domain gap between CLIPimg and
CLIPtxt we employing a prior model P . Alternatively, we
could use the CLIPtxt directly by removing the prior model.
(3) Multi-scale inference — as described in Section 3.3 we
used the single scale variant (Equation (4)). Alternatively,
we could use the multi-scale variant (Equation (3)).

As can be seen in Table 2 our method outperforms the ab-
lated cases in terms of FID score, human visual quality and
human global text-match. When compared to the simple
representation (1) our method is able to achieve better local
text-match determined by the user study but smaller local
IOU, one possible reason is that it is easier for the model to
fit the shape of a simple mask (as in the binary case), but
associating the relevant portion of the global text prompt
to the corresponding segment is harder. When compared
to the version with CLIP text embedding (2) our model

achieves slightly less local IOU score and human local text-
match while achieving better FID and overall visual qual-
ity. Lastly, the single scale manages to achieve better results
than the multi-scale one (3) while only slightly less in the
local CLIP distance.

5. Limitations and Conclusions

“a room with
sunlight” “on the grass”

“a wooden table”
“a blue bowl”
“a picture on

the wall”
“a clock”

“golden coins”

Figure 7. Limitations: In some cases, characteristics propagate
to adjacent segments, e.g. (left), instead of a blue bowl the model
generated a vase with a wooden color. In addition, the model tends
to ignore tiny masks (right).

We found that in some cases, especially when there are
more than a few segments, the model might miss some of
the segments or propagate their characteristics. For exam-
ple, instead of generating a blue bowl in Figure 7(left), the
model generates a beige vase, matching the appearance of
the table. Improving the accuracy of the model in these
cases is an appealing research direction.

In addition, the model struggles to handle tiny segments.
For example, as demonstrated in Figure 7(right), the model
ignores the golden coin masks altogether. This might be
caused by our fine-tuning procedure: when we fine-tune
the model, we choose a random number of segments that
are above a size threshold because CLIP embeddings are
meaningless for very low-resolution images. For additional
examples, please read the supplementary.

In conclusion, in this paper we addressed the scenario of
text-to-image generation with sparse scene control. We be-
lieve that our method has the potential to accelerate the de-
mocratization of content creation by enabling greater con-
trol over the content generation process, supporting profes-
sional artists and novices alike.
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and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 3

[14] Guillaume Couairon, Jakob Verbeek, Holger Schwenk,
and Matthieu Cord. Diffedit: Diffusion-based seman-
tic image editing with mask guidance. arXiv preprint
arXiv:2210.11427, 2022. 3

[15] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,
and Mubarak Shah. Diffusion models in vision: A survey.
arXiv preprint arXiv:2209.04747, 2022. 3

[16] Katherine Crowson, Stella Biderman, Daniel Kornis,
Dashiell Stander, Eric Hallahan, Louis Castricato, and Ed-
ward Raff. Vqgan-clip: Open domain image generation
and editing with natural language guidance. arXiv preprint
arXiv:2204.08583, 2022. 3

[17] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 3

[18] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image gen-
eration via transformers. Advances in Neural Information
Processing Systems, 34:19822–19835, 2021. 3

[19] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang.
Cogview2: Faster and better text-to-image generation via hi-
erarchical transformers. arXiv preprint arXiv:2204.14217,
2022. 3

[20] Patrick Esser, Robin Rombach, and Bjorn Ommer. Tam-
ing transformers for high-resolution image synthesis. In
Proc. CVPR, pages 12873–12883, 2021. 3

[21] Stanislav Frolov, Prateek Bansal, Jörn Hees, and Andreas
Dengel. Dt2i: Dense text-to-image generation from region
descriptions. arXiv preprint arXiv:2204.02035, 2022. 3

[22] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-
based text-to-image generation with human priors. arXiv
preprint arXiv:2203.13131, 2022. 2, 3, 5, 6, 7

[23] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 3

[24] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 3

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680,
2014. 3

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 7

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 4

[28] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 3

[29] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 6

[30] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Gener-
ating multiple objects at spatially distinct locations. In In-
ternational Conference on Learning Representations, 2018.
3

918378



[31] Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Semantic
object accuracy for generative text-to-image synthesis. IEEE
transactions on pattern analysis and machine intelligence,
2020. 3

[32] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Proc. NeurIPS, 2020. 3, 4

[33] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 2, 5

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 3

[35] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and
Honglak Lee. Inferring semantic layout for hierarchical text-
to-image synthesis. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7986–
7994, 2018. 3

[36] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. arXiv
preprint arXiv:2210.09276, 2022. 3

[37] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 2013. 3

[38] Chaerin Kong, DongHyeon Jeon, Ohjoon Kwon, and No-
jun Kwak. Leveraging off-the-shelf diffusion model for
multi-attribute fashion image manipulation. arXiv preprint
arXiv:2210.05872, 2022. 3

[39] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion
models already have a semantic latent space. arXiv preprint
arXiv:2210.10960, 2022. 3

[40] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang,
Xiaodong He, Siwei Lyu, and Jianfeng Gao. Object-driven
text-to-image synthesis via adversarial training. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12174–12182, 2019. 3

[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[42] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 4

[43] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. GLIDE: Towards photorealistic image gener-
ation and editing with text-guided diffusion models. arXiv
preprint arXiv:2112.10741, 2021. 3

[44] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In Proc. ICML,
pages 8162–8171, 2021. 3, 4

[45] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 3

[46] Roni Paiss, Hila Chefer, and Lior Wolf. No token left be-
hind: Explainability-aided image classification and genera-
tion. arXiv preprint arXiv:2204.04908, 2022. 3, 6, 7

[47] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2085–2094,
2021. 3

[48] Dario Pavllo, Aurelien Lucchi, and Thomas Hofmann. Con-
trolling style and semantics in weakly-supervised image gen-
eration. In European conference on computer vision, pages
482–499. Springer, 2020. 3

[49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 2, 3

[50] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Pe-
ter J Liu, et al. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res.,
21(140):1–67, 2020. 3

[51] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv preprint arXiv:2204.06125,
2022. 1, 2, 3, 4

[52] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.
2, 3

[53] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with VQ-VAE-2. Ad-
vances in neural information processing systems, 32, 2019.
3

[54] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In Proc. ICLR, pages 1060–
1069, 2016. 3

[55] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka,
Bernt Schiele, and Honglak Lee. Learning what and where
to draw. Advances in neural information processing systems,
29, 2016. 3

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2, 3, 4

[57] Robin Rombach, Andreas Blattmann, and Björn Om-
mer. Text-guided synthesis of artistic images with
retrieval-augmented diffusion models. arXiv preprint
arXiv:2207.13038, 2022. 3

[58] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. arXiv preprint arXiv:2208.12242, 2022. 3

[59] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

1018379



Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 1, 3, 4

[60] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proc. ICML, pages
2256–2265, 2015. 3

[61] Wei Sun and Tianfu Wu. Image synthesis from reconfig-
urable layout and style. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10531–
10540, 2019. 3

[62] Wei Sun and Tianfu Wu. Learning layout and style re-
configurable gans for controllable image synthesis. IEEE
transactions on pattern analysis and machine intelligence,
44(9):5070–5087, 2021. 3

[63] Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R Devon
Hjelm, and Shikhar Sharma. Object-centric image genera-
tion from layouts. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 2647–2655, 2021. 3

[64] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 7

[65] Dani Valevski, Matan Kalman, Yossi Matias, and Yaniv
Leviathan. Unitune: Text-driven image editing by fine tuning
an image generation model on a single image. arXiv preprint
arXiv:2210.09477, 2022. 3

[66] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 3

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3

[68] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 3

[69] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. 2019. 2, 3

[70] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 6

[71] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe
Gan, Xiaolei Huang, and Xiaodong He. AttnGAN: Fine-
grained text to image generation with attentional generative
adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1316–
1324, 2018. 3

[72] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv
preprint arXiv:2206.10789, 2022. 1, 2, 3

[73] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
GAN: Text to photo-realistic image synthesis with stacked

generative adversarial networks. In Proc. ICCV, pages 5907–
5915, 2017. 3

[74] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
GAN++: Realistic image synthesis with stacked generative
adversarial networks. IEEE transactions on pattern analysis
and machine intelligence, 41(8):1947–1962, 2018. 3

[75] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8584–8593, 2019. 3

1118380


