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Abstract

Our goal is to improve upon the status quo for design-
ing image classification models trained in one domain that
perform well on images from another domain. Comple-
menting existing work in robustness testing, we introduce
the first dataset for this purpose which comes from an au-
thentic use case where photographers wanted to learn about
the content in their images. We built a new test set us-
ing 8,900 images taken by people who are blind for which
we collected metadata to indicate the presence versus ab-
sence of 200 ImageNet object categories. We call this
dataset VizWiz-Classification. We characterize this dataset
and how it compares to the mainstream datasets for evalu-
ating how well ImageNet-trained classification models gen-
eralize. Finally, we analyze the performance of 100 Ima-
geNet classification models on our new test dataset. Our
fine-grained analysis demonstrates that these models strug-
gle on images with quality issues. To enable future exten-
sions to this work, we share our new dataset with evalua-
tion server at: https://vizwiz.org/tasks-and-
datasets/image-classification.

1. Introduction

A common approach for designing computer vision so-
lutions is to leverage large-scale datasets to train algorithms.
Yet, for many real-world applications, it is not only ineffi-
cient to curate such training datasets but also challenging or
infeasible. To address this problem, robustness testing was
recently introduced with the focus of improving the perfor-
mance of models trained for one domain on a test set in a
different domain. In this paper, we focus on robustness test-
ing for the image classification problem.

To date, progress with classification robustness testing
has been possibly largely because of numerous publicly-
available test datasets with distribution shifts from the orig-
inal domain. While such datasets have been beneficial in
catalyzing progress, they are limited in that they originate

from contrived settings. For example, ImageNet-C [15]
consists of real images with synthetically generated corrup-
tions to assess model robustness for corrupted images. Yet,
as shown in prior work [3], images curated from contrived
settings can lack the diversity of challenges that emerge in
real-world applications. A consequence of this lack of di-
versity in test datasets is that algorithm developers do not
receive feedback about whether their methods generalize to
the range of plausible real-world vision challenges.

We address the above gap for robustness testing by intro-
ducing a new test set for image classification. It consists of
8,900 images taken by people who are blind who were au-
thentically trying to learn about images they took with their
mobile phone cameras. For each image, we asked crowd-
workers to indicate which from 200 object categories were
present. We call the resulting dataset VizWiz-Classification.
Examples demonstrating how labelled images in our new
dataset compare to those in a related robustness testing
dataset are shown in Figure 1. We next analyze how our
dataset compares to six existing robustness testing datasets
and benchmark the performance of 100 modern image clas-
sification models on this dataset to highlight challenges and
opportunities that emerge for the research community.

Success on our new dataset could benefit real-world ap-
plications today. Already, a growing number of blind people
are sharing their images with services such as Microsoft’s
Seeing AI, Google’s Lookout, and TapTapSee, which rec-
ognize a small number of object categories. Success could
broaden such benefits to a longer tail of categories includ-
ing those underrepresented in the developing world where it
can be laborious/infeasible to collect large, labeled datasets,
especially from such a specific population as people who
are blind. More generally, our new dataset challenge will
encourage developing algorithms that handle a larger diver-
sity of real-world challenges. This could benefit applica-
tions with similar challenges such as robotics and wearable
lifelogging. Finally, image classification is a precursor for
many downstream tasks and so we expect progress on our
dataset to enable progress on downstream tasks such as ob-
ject detection, segmentation, and tracking.
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Figure 1. Example labelled images from our new VizWiz-Classification dataset, ImageNet [7], and ImageNet-C [15], where each has the
label of “Table lamp”. When comparing our dataset to these prior works, (1) our images were taken by blind people who wanted to learn
about their environment, whereas ImageNet images were collected from the Internet and ImageNet-C images consist of ImageNet images
that were synthetically corrupted and (2) our images can have multiple labels (e.g. also includes a “Lampshade”), while ImageNet and
ImageNet-C permit only a single label, which can lead to issues for prediction models when multiple categories are present in an image.

2. Related Works

Domain Adaptation. Research with domain adaptation
datasets [15, 21, 26, 27, 35] centers on the development of
domain adaptation models [11, 12, 32, 33] that use the data
from the target domain (in a supervised or unsupervised
fashion) to learn how to generalize to the data of that target
domain. Our work, in contrast, is focused on testing models
without permitting any training of models on images in our
new robustness testing dataset.

Robustness Benchmarks. There has been a recent surge
of interest in characterizing model robustness on new test
sets [15,17,20,23,31]. For example, ImageNet-C [15] sup-
ports benchmarking model robustness to image corruptions,
and was created by synthetically corrupting images in Im-
ageNet’s validation set. In ImageNetV2 [23], the authors
replicated the data collection process taken by the authors
of the original ImageNet dataset in order to create new test
datasets. ImageNet-A [17] consists of adversarially filtered
images for which classifiers predicted a wrong label with
high confidence. ImageNet-O [17] is an out-of-distribution
dataset that includes adversarially filtered images by ex-
cluding ImageNet-1k images from ImageNet-22k. Object-
Net [2] consists of images taken by crowdworkers who were
hired to photograph objects in pre-defined poses, view-
points, and backgrounds. ImageNet-R [14] consists of ren-
ditions of ImageNet categories such as cartoons, paintings,
and graffiti. Complementing existing datasets, we introduce
the first classification robustness testing benchmark based
on pictures taken in real-world scenarios where blind people
wanted to know about the content. In addition, our dataset
is the first to include images that are naturally corrupted [3].

Model Robustness. Recent work has evaluated the per-
formance of many models for classification robustness,
mostly on images sharing the same semantic categories
as ImageNet [8, 14, 17, 23, 31, 34]. We similarly bench-
mark many models on our new dataset that reflect a variety
of aspects, including their architectures [19, 39] and train-
ing methods such as usage of data augmentation [5, 6, 16],
adversarial attacks [4, 10, 28, 29, 36, 38], and model pre-
training [25, 38]. For our analysis, we categorize the mod-
els into three groups: standard models, robust models, and
models trained with more data. We then measure and com-
pare the robustness of each group. We also conduct fine-
grained analysis to understand how model performance re-
lates to quality issues in our new dataset.

3. Dataset

We now describe our new dataset for classification ro-
bustness testing, which we call “VizWiz-Classification” or
“VW-C”. We begin in Section 3.1 by describing our process
for creating the dataset, which consists of two key parts.
Specifically, we first use automation to identify 15,567 can-
didate images that likely contain the ImageNet categories of
interest from an initial collection of over 39,000 images. We
describe this candidate image and category selection pro-
cess in Section 3.1.1. Then, we leverage human annotation
to produce our high-quality labeled dataset. We describe
this manual data annotation process in Section 3.1.2. We
then characterize our new dataset and how it compares to
existing robustness testing datasets in Section 3.2.
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3.1. Dataset Creation

3.1.1 Candidate Image and Category Selection

Image Source. We use images taken by blind photogra-
phers who shared the pictures with remote humans in or-
der to get assistance in learning about their visual surround-
ings. We leverage the images with metadata that come from
two publicly-shared datasets: VizWiz-Captions [13] and
VizWiz-ImageQualityIssues [3]. In total, there are 39,189
images across the train, validation, and test splits. The
metadata consists of five captions as well as flags indicating
which of the following quality issues are observed for each
image: blur (BLR), underexposure/too dark (DRK), over-
exposure/too bright (BRT), poor framing (FRM), obstruc-
tions/obscured (OBS), rotated views (ROT), other flaws
(OTH), and no flaws (NON).1

Candidate Category Selection. Since we want to bench-
mark models trained on ImageNet, we need to identify
which ImageNet categories to include in our dataset. To do
so, we leverage the captions of each image of the VizWiz-
Captions dataset [13]. Using string matching, we detect
which of the 1000 ImageNet categories are present across
all images’ captions, which is a total of 505 categories. We
then identify which categories are found in captions of more
than 7 images, which left us with 250 ImageNet categories.
We then removed 58 of these categories, because the au-
thors deemed them to be either ambiguous (e.g., boxer can
refer to a dog and athletic) or non-obvious to lay audiences
(e.g., specific breeds of dogs and cats). Finally, we added
another 23 categories from classes of ImageNet found in
captions of less than or equal to 7 images, which the au-
thors deemed to be well-defined (e.g, Christmas stocking
and piggy bank). This left us with 218 categories candidate
categories for our dataset.

Candidate Image Selection. Having finalized our candi-
date categories, we then filtered our initial image set to only
include those for which our chosen categories appeared in
at least two of the five associated captions. This resulted in
a total of 15,567 candidate images for our dataset.

3.1.2 Manual Data Annotation

Annotation Tasks. We designed our task interface in
Amazon Mechanical Turk (AMT). It showed an image on
the left with 10 object categories to the right of the image.
The instructions indicated to select all categories that are
observed in the image. For each image, we initially pro-
vided any categories and nouns that were found in the cap-

1We use quality flaw labels for each image based on if at least 2 of
the 5 crowdworkers provided the labels. Since we did not have access to
test annotations, we only have quality issues labels for a subset (i.e. 7,147
images) of our dataset.

tions of the image. We then included an additional task of
indicating whether additional objects beyond those 10 cat-
egories are present in the image in order to decide whether
we further review was needed to assess whether additional
ImageNet categories are present. Consequently, every task
(i.e. human intelligence task, also known as HIT) had 12
possible answers (Question 1 has 10 suggested categories
and one checkbox for “None of the above”, and question 2
has one option which can be “Yes” or “No”).

Annotation Collection. We recruited crowdworkers from
AMT who previously had completed over 500 HITs with at
least a 99% acceptance rate. Each prospective worker had
to pass a qualification test that we provided, which showed
five difficult annotation scenarios. The authors established
ground truth and then only accepted workers who had an
accuracy of more than 90% (i.e. at most 6 wrong answers
from 12× 5 possible answers). From the 100 workers who
took our qualification task, 38 workers passed it. Before
permitting them to contribute to our dataset annotation, we
provided feedback to each worker based on their perfor-
mance on the qualification task.

We then completed a subsequent round of worker filter-
ing with 1, 000 of our candidate images. We hired 2 workers
to annotate each image. We then reviewed all annotated im-
ages in this step and only permitted workers (31 workers)
to continue on our data annotation task if they more than
90% of their submitted answers were correct (i.e. 12 × all
his or her submitted HITs ). For workers invited to continue
annotating for our task, we again provided feedback to each
one individually based on their performance.

For all remaining data collection, we had three different
workers annotate each image. We then assigned final cate-
gory labels using the majority vote; i.e. assign a category to
an image only if at least two workers indicate it is present.
Additionally, when at least two crowdworkers indicated that
additional objects were present in the image beyond the 10
categories, the authors reviewed the image and checked for
the presence of additional ImageNet categories. To support
ongoing high-quality results throughout data collection, we
also conducted ongoing quality control on the workers’ re-
sults, as described in the Supplementary Materials.

Dataset Finalization. After annotating for the presence
of the 218 candidate categories in all 15,567 candidate im-
ages, we focused only on categories found in at least 4 im-
ages and images with those categories. After conducting
this final round of filtering, our final dataset includes 200
categories and 8,900 images.

3.2. Dataset Analysis

In this section, the VizWiz-Classification dataset is ana-
lyzed and compared to other popular ImageNet test datasets.
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Dataset #Images #Classes Images/class Authentic Corrupted#Min #Max
ImageNet-A [17] 7500 200 3 100 ✗ ✗
ImageNet-C [15] 50000 1000 50 50 ✗ ✓
ImageNetV2 [24] 10000 1000 10 10 ✗ ✗
ImageNet-O [17] 2000 200 5 30 ✗ ✗
ImageNet-R [14] 30000 200 51 430 ✗ ✗
ObjectNet [2] 50000 313 (113) 11 284 ✗ ✗

Ours 8900 200 4 1311 ✓ ✓

Table 1. Characterization of our dataset and six related datasets with respect to five factors. Our dataset is the first to come from an
authentic use case and so to provide corruptions that are not contrived.

Characteristics of Datasets. We compare our dataset
with six mainstream robustness testing datasets for im-
age classification: ImageNet-A [17], ImageNet-C [15],
ImageNetV2 [24], ImageNet-O [17], ObjectNet [2], and
ImageNet-R [14]. For each dataset, we report how many
images are included, how many classes are supported, the
number of examples per class (i.e. minimum and maximum
values), whether images originate from a contrived versus
authentic use case, and whether labels are included with
the dataset indicating corruptions/quality issues. Results for
each dataset are shown in Table 1.

As shown, our dataset is the first to reflect images which
originate from a real-world application. In particular, im-
ages come from an authentic use case where blind people
wanted to learn about an image’s contents. In contrast, other
datasets leverage images that originate from contrived set-
tings such as downloading images from the Internet or hir-
ing workers to take pictures to support dataset creation.

Another unique characteristic of our dataset is it is one
of only two datasets that support robustness testing with
respect to image corruptions. By leveraging annotations
from prior work indicating what quality flaws are present
for each image in our dataset [3], our test dataset supports
fine-grained analysis of model performance with respect to
how models handle each. In addition, the distribution of
flaws in our dataset reflects a naturally-occurring distribu-
tion that arises for an authentic use case. The number of
images in our dataset with each quality flaw label is shown
in Figure 2. The other dataset with corruption labels is
ImageNet-C. However, those image corruptions are gener-
ated synthetically and the distribution of corruption labels
is artificially chosen.

We also characterize for our dataset how many object
labels are associated with each image. We report summa-
tive statistics across all images in our dataset in Table 2.
This analysis is provided to address the finding from [34]
that the performance of image classification models suffers
when cluttered images in ImageNet are classified using only
a single label. A further observation in [34] is that ImageNet
contains categories with synonymous meanings, leading to

#Classes 1 2 3 4 5
#Images 5731 2186 727 204 52

Table 2. Number of classes assigned per image. As shown, images
in our dataset often have more than one label.
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Figure 2. Number of images per each quality issue label. Clean
images include images with NON label. Corrupted images consist
of images with at least one label from FRM, ROT, BRT, BLR,
DRK, and OBS. 1,753 images do not have any labels because we
did not have access to their labels.

confusion for models. We aimed to minimize such errors
by permitting multiple labels per image.

Dataset Diversity. We now investigate the diversity of
images in robustness testing datasets. Inspired by a metric
introduced by [40], we claim that dataset A is more diverse
than dataset B if categories of dataset A have more diverse
images than dataset B. As a consequence, overall, it would
mean that images of dataset A that are in the same cate-
gory would represent a broader distribution. We calculate
the difference between a pair of images by calculating the
cosine distance between the feature vectors of images. The
larger the value of the distance is, the more diverse images
are. Then, in each category of a dataset, we calculate the
cosine distance between each pair of feature vectors of im-
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Figure 3. Distribution of mean distance between images of
common categories of ImageNet, ImageNetV2, ObjectNet, and
VizWiz-Classification. Our dataset has more diverse images than
ImageNet and ImageNetV2.

ages. The mean of the distances between all possible image
pairs in each category gives us the expected value of the dis-
tances of images in the category. We did this to reduce the
error that could happen in the annotation process of images
(e.g. images that are wrongly annotated for a class).

For our experiment, we choose to compare the diver-
sity of images for the 73 categories which were in com-
mon among the following four datasets: ImageNet, Ima-
geNetV2, ObjectNet, and VizWiz-Classification. We ex-
cluded ImageNet-O since it is an out-of-distribution dataset.
We also excluded datasets with synthesized images, specif-
ically ImageNet-C which includes images with generated
corruptions and ImageNet-R which includes renditions of
the categories such as paintings and embroidery. We did not
include ImageNet-A in our experiment because it only con-
tains 17 common object categories with selected datasets.

We choose AlexNet [18], VGG11 [30], ViT [9], and
CLIP [22] for extracting feature vectors. The ’fc7’ layer
of AlexNet and the ’fc2’ layer of VGG11 were selected
for extracting the feature vector because we assume that a
simpler feature vector enables us to compare images based
on attributes such as color and quality rather than seman-
tic information. Also, we use penultimate layer features of
ViT [9] and CLIP [22] in order to generate feature vectors
that are more robust to occlusions, texture bias, etc [1].

Results are shown in Figure 3. All models show a sim-
ilar order in terms of diversity in visual description and se-
mantic information. Based on our results, ObjectNet has
slightly more diverse images since the mean of all dis-
tances is higher than other datasets. Also, ImageNetV2
and ImageNet have similar distributions. The authors of
ImageNetV2 tried to reproduce the ImageNet dataset with
the same protocols; thus, for those datasets, the distribu-
tions of feature vectors match. Further, all models show
that our dataset is more diverse than ImageNet and Ima-
geNetV2. The more diversity in our images per category
with respect to visual and semantic descriptions can be be-
cause the source of images in our dataset is different from

ImageNet and ImageNetV2.

4. Algorithm Benchmarking
By benchmarking a wide variety of image classification

models on the VizWiz-Classification dataset, we explore
their robustness on our new test dataset. We perform anal-
ysis of the effect of quality issues and the distribution of
classes on the performance of models.

Models. We select 100 models for evaluation on our test
dataset. We leverage the test bed provided by [31] in order
to calculate accuracy on ImageNet and ImageNet-C and cat-
egorize models. Following their work, models are divided
into three subclasses: standard models that are trained on
ImageNet and do not benefit from any methods for increas-
ing robustness (30 models), models that are trained on a
larger set of training datasets such as ImageNet-21k [25] or
IG-1B-Targeted [38]) (10 models), and models that leverage
robustness intervention methods such as data augmentation
and adversarial attack methods (60 models). More details
are provided in the Supplementary Materials.

Evaluation Metrics. For benchmarking models on Im-
ageNet and ImageNet-C, we used the standard accuracy
top-1 metric. But for calculating model accuracies on our
dataset, we consider a prediction for an image correct if it
is in the set of labels of the image. Based on top-1 accu-
racy, the performance of models on multi-label images is
much inferior, and top-5 accuracy is optimistic [34]. On
this metric, [34] discover that the aforementioned perfor-
mance reduction vanishes, and models perform comparably
on single-object and multi-object images.

Effective Robustness. As described in [31], directly
comparing the accuracies of models is not an accurate met-
ric. By contrast, they called a model robust if the accuracy
of the model is above the linear trend that models follow.
We follow this notation for finding robust models. We fit a
linear polynomial to points by minimizing the squared error
for learning the linear trend of a set of points, as described
in more detail in the Supplementary Materials.

Performance Gap. We expect the performance of mod-
els does not change with distribution shifts, and we call the
area between the expected accuracy (y = x line) and the ac-
tual accuracy (the linear trend) the performance gap. Robust
models should be able to fill this gap and not experience an
accuracy drop when we test them on a new dataset.

4.1. The effect of different quality issues

We first test whether the models are robust to the real-
world corruptions of our dataset. We calculate accuracy
on images with corrupted, clean, and all images. Figure
4 shows the results of the 100 models.
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Figure 4. Model accuracies on clean and all images (x-axis) and
all corrupted images (y-axis) of VizWiz-Classification. The per-
formance gap increased when we compare corrupted images to
clean images rather than all images of our dataset.

Distribution shift PG ER
S R D

VW-C clean → VW-C corr. 10.3 -0.3 0.04 0.1
IN → VW-C 35.8 -1.3 0.1 3.7
IN-C → VW-C corr. 9.5 0.1 -0.2 4.6

Table 3. Describing performance gap (PG) and effective robust-
ness (ER) in different cases. S: Standard models. R: Robust
models. D: Models with more data. Corr.: corrupted. IN: Ima-
geNet. IN-C: ImageNet-C. We can observe the performance gap
in all cases. Also, the most robust models to distribution shifts are
models pre-trained on larger datasets. However, when comparing
clean images to corrupted images in our dataset, none of the mod-
els show effective robustness. All numbers are percentages.

We observe that none of those models are robust to cor-
ruption because the accuracies of all models are placed on
the linear fit to points. Only models that are trained on a
larger set of training data can make little effective robust-
ness and are slightly above the line. While the performance
of a robust model should be the same for corrupted, clean,
and all images, instead a performance gap can be seen be-
tween these cases. We notice that the range of accuracy
drops for comparing all images and corrupted images are
from 3.6% to 7.7% and the performance gap is 6.1%. The
range of accuracy drops is even larger than in the past case
if we compare clean images and corrupted images, which is
from 6.7% to 12.8%. The performance gap, in this case, is
10.3%. In conclusion, we find out that the quality of images
plays an important role in the performance of models, and,

as indicated in Table 3, none of the models can fill this gap.
We also compare accuracies of models with respect to

different quality issues and clean images. Figure 5 illus-
trates how these flaws affect the performance. The order
of performance gap based on the quality issue is as dark
(5.3%), blurred (6%), framing (7.5%), bright (11.1%), ro-
tated (14.6%), and obscured (17.5%). However, it is worth
mentioning that the number of dark, obscured, and bright
images in our dataset are 287, 169, and 320 sequentially,
which causes making a conclusion about them problematic.
Overall, we observe a performance gap for all quality flaws.

Finally, we report about the five models with the best
accuracy on our dataset among all 100 models in Table 4.
Except for VOLO [39] that leverages a new architecture, all
models are trained on more data.

4.2. Measuring robustness of models

First, we aim to evaluate the robustness of 100 models
to distribution shifts. As we described in Section 3.2, shifts
can occur in the distribution of images and labels. We com-
pare the accuracy of the models on ImageNet to the accu-
racy of the models on corrupted, clean, and all images of
our dataset. Figure 6 shows our results in detail. Based on
our result, the range of accuracy drops for clean, corrupted,
and all images of our dataset are from 12.6% to 38.1%, from
19.3% to 49.6%, and from 15.7% to 42.3%. Also, the per-
formance gap for clean, corrupted, and all images of our
dataset are 31.6%, 41.9%, and 35.9%, which shows there
is a large performance gap even for clean images. In this
experiment, models trained on more data can produce ef-
fective robustness and are located above the fitted line. But,
models that use robust interventions provide no robustness
when they are tested on our dataset.

4.3. Can ImageNet-C track real-world corruptions?

ImageNet-C consists of 15 varieties of synthetically gen-
erated corruptions with five degrees of severity. We com-
pare this dataset to our dataset in three cases (two common
corruption types and all images). In this experiment, we
compare the performance of 90 models from our 100 mod-
els on the ImageNet-C and VizWiz-Classification datasets.

The first aspect is bright images. We use the bright-
ness subset of ImageNet-C and bright images of VizWiz-
Classification for our evaluation. The second case is blurred
images. ImageNet-C provided six forms of blur corruptions
(zoom blur, motion blur, glass blur, gaussian blur, and de-
focus blur) with five levels of severity. We calculate the
accuracy of models for all 30 mentioned sub-sets and then
use the mean of them to compare with blurred images of
VizWiz-Classification. In the end, we compare accuracies
for all images in ImageNet-C with all corrupted images in
VizWiz-Classification. Figure 7 depicts our results in detail.

The performance gap between these datasets exists. We
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Figure 5. Model accuracies on images with different quality issues (y-axis) and clean images (x-axis) of VizWiz-Classification. The order
of performance gap based on the image quality issues from the lowest to highest is dark, blurred, framing, bright, rotated, and obscured.

Network IN VizWiz-Classification
OBS DRK BLR BRT ROT FRM Corr. Clean All

VOLO-d5-512 [39] 87.0 40.8 55.4 56.9 53.1 49.6 54.7 51.8 59.7 57.2
ConvNeXt-b-IN22k [19] 85.8 39.6 50.2 52.7 44.4 44.2 50.0 46.9 56.0 53.5
ViT-large-p16-384 [9] 87.1 36.7 48.4 52.0 47.5 46.4 49.7 46.8 56.2 53.4
ResNeXt101-IG [37] 84.2 42.6 54.7 50.0 50.6 41.9 48.7 48.1 54.8 51.7
ViT-base-p16-384 [9] 86.0 34.3 48.1 49.2 45.3 42.4 48.0 44.6 54.9 51.6

Table 4. Top five models based on accuracy for all images in our dataset. IN shows the accuracy of models on ImageNet. Corr. shows
the accuracy of models on all corrupted images of our dataset. All models, except for VOLO [39] which uses a different architecture, have
been trained on a larger dataset.

40 60 80
ImageNet images

20

40

60

VW
-C

 c
le

an

40 60 80
ImageNet images

20

40

60

VW
-C

 a
ll 

co
rru

pt
ed

40 60 80
ImageNet images

20

40

60

VW
-C

 

Standard models Robust models Models trained w/ more data Linear fit x=y Performance gap

Figure 6. Model accuracies on clean, corrupted, and all images of VizWiz-Classification (y-axis) and ImageNet (x-axis). As shown, the
range of accuracy drops for clean, corrupted, and all images from 12.6% to 38.1%, 19.3% to 49.6%, and 15.7% to 42.3% respectively.

notice that the range of accuracy drops for bright images,
blurred images, and all images are from 16.2% to 41.1%,
from -2.8% to 27.3%, and from -0.1% to 24.2% respec-
tively. Also, the performance gap for bright images, blurred
images, and all images are 32%, 12%, and 9.5%. The per-
formance gap is reduced when we compare all images of
our dataset to all images of ImageNet-C. In addition, the
slope of the linear fit for bright images, blurred images, and
all corrupted images is 0.69, 0.42, and 0.56, which means
that the progress of the performance of models in ImageNet-

C does not guarantee a comparable increase in accuracy for
real images of VizWiz-Classification and it underestimates
quality issues that images may have in reality. Overall, al-
though models with lower accuracy on ImageNet-C have
similar performance on all corrupted images of ImageNet-C
and VizWiz-Classification datasets, the gap increases when
we compare models with higher accuracy on ImageNet-C.
In addition, based on Table 3, we observe that only mod-
els trained with more data could have effective robustness.
We hypothesize that because models that leverage robust-
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Figure 7. Model accuracies on bright, blurred, and all corrupted images of VizWiz-Classification (y-axis) and brightness, blurred, and all
corrupted images of ImageNet-C (x-axis) respectively. The performance of models with lower accuracy on ImageNet-C resembles their
performance on VizWiz-Classification, but improvements of models on ImageNet-C does not always yield a similar impact on our dataset.

Dataset #Images #Classes Images/class
#Min #Max

VW-C Rare 896 100 4 21
VW-C Common 5265 90 21 278
VW-C Frequent 5005 10 303 1311
VW-C All 8900 200 4 1311

Table 5. We split VizWiz-Classification into three groups. Images
of each group can overlap, but classes are distinct.

ness interventions are designed specifically based on the
ImageNet-C synthetic corruptions, they are over-optimized
for synthetic corruptions and cannot simulate real-world
quality issues.

4.4. The effect of the distribution of categories

In this section, we aimed to examine to which extent the
natural distribution of categories of our dataset affects the
performance of models. To do so, we split our dataset into
three groups with respect to the number of images per cat-
egory for frequent, common, and rare objects, as shown in
Table 5. The results for 40 tested standard models are shown
in Figure 8. We observe that predicting the label of im-
ages with frequent objects was easier for models than other
splits. However, model accuracies are similar on all images
of our dataset, images with common objects, and images
with rare objects. Because we split our dataset based on the
number of images per class, each split is more balanced than
our dataset. We also infer that the unbalanced distribution
of labels in our dataset is not an important factor for find-
ing the robustness of models because the performance of
models follows the same trend in each group. Thus, robust
models should be the same in each case.

5. Conclusion
We introduce a new test dataset for measuring the robust-

ness of models to a new distribution shift. Our dataset is the
first such dataset with images gathered from a real-world,
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Figure 8. Comparing model accuracies on different splits of our
dataset. Model accuracies are similar on all images, images with
common objects, and images with rare objects of our dataset.

authentic use case, specifically from people with visual im-
pairments. By benchmarking 100 models on our dataset,
we find out our dataset is challenging for current models.
Quality issues, which our images can have, affect largely
the performance of models and can decrease the accuracy of
models by 12.8% when compared to the accuracy of models
obtained on clean images of our dataset. Also, we examine
the effective robustness of models to distribution shift from
ImageNet to our dataset. Results indicate that the perfor-
mance gap is major between the two datasets and models
can experience even by 42.3% drop in accuracy, however,
models that are trained on a larger dataset are more robust
than other models because all of them are positioned above
the linear fit. Finally, we find that although the performance
of models with lower accuracy on ImageNet-C is compa-
rable to the performance of them on VizWiz-Classification,
the progress of models on ImageNet-C does not guarantee
similar progress on our dataset.

Our work contributes to ethics by providing a dataset that
acknowledges a population often marginalized in society:
people who are blind. As a result, it supports progress in
designing more inclusive technology.
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