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Abstract

Face forgery detection becomes increasingly crucial due
to the serious security issues caused by face manipula-
tion techniques. Recent studies in deepfake detection have
yielded promising results when the training and testing face
forgeries are from the same domain. However, the problem
remains challenging when one tries to generalize the de-
tector to forgeries created by unseen methods during train-
ing. Observing that face manipulation may alter the re-
lation between different facial action units (AU), we pro-
pose the Action-Units Relation Learning framework to im-
prove the generality of forgery detection. In specific, it con-
sists of the Action Units Relation Transformer (ART) and
the Tampered AU Prediction (TAP). The ART constructs
the relation between different AUs with AU-agnostic Branch
and AU-specific Branch, which complement each other and
work together to exploit forgery clues. In the Tampered
AU Prediction, we tamper AU-related regions at the image
level and develop challenging pseudo samples at the feature
level. The model is then trained to predict the tampered
AU regions with the generated location-specific supervi-
sion. Experimental results demonstrate that our method can
achieve state-of-the-art performance in both the in-dataset
and cross-dataset evaluations.

1. Introduction
The success of the generative model, e.g., Generative

Adversarial Networks (GAN) [21], rapidly improves the
quality of face forgery, which provokes researchers to pur-
sue antithetical counter-detection methods to deal with po-
tential social security issues. Though recent works have
demonstrated their effectiveness in identifying forgery im-
ages from known forging methods that are used in train-
ing [4,10,29,39,43], the generalization on unknown forgery
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Figure 1. The average correlation intensity (y-axis) between an
AU (x-axis) and other AUs under different data volume (top-
20% and bottom-80% samples from FF++ [42], respectively).
More details and results can be found in the supplementary. It can
be observed that the average correlation intensity between an AU
and other AUs is weakening after manipulation.

methods is not guaranteed [9, 17, 27, 52].
Some recent works [6, 31, 45, 49, 50, 55] have noticed

this imminent problem and attempted to capture more in-
trinsic forgery clues to improve the generalization of identi-
fication methods. In particular, these works can be roughly
categorized into two branches, 1) data modification which
applies carefully selected augmentations [50] or manually
generates forgery images [31, 45, 55] with only real im-
ages to enlarge training data diversity meanwhile avoiding
overfitting to specific defects, 2) auxiliary task integrat-
ing which defines an affinitive loss to help the model learn
underlying differences between real and fake faces [6, 55].
Despite their success, it is noticed that the relations between
face units that are general in biology research for under-
standing human facial characteristics are less explored, in-
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hibiting the further improvement of model generalization.
In this work, we aim to construct a face forgery detection

framework that unifies the data modification and auxiliary
task integrating schemes with relation clues of facial action
units. Our insight is motivated by the theory in the Facial
Action Coding System [18], which represents human faces
through a set of facial muscle movements called facial Ac-
tion Units (AU). More specifically, in facial morphology,
a muscle controls different AUs. When showing a certain
emotion, a group of AUs would be activated simultaneously,
indicating that there are underlying relations between AUs.
Therefore, a direct intuition is that relations among AUs
may be different in real and manipulated faces, since de
facto methods modify the entire face using graphical meth-
ods, or generate the individual facial regions by GAN. This
hypothesis is evidenced by our experiments in Fig. 1, which
shows that an AU in real face presents stronger average cor-
relation intensity to other AUs (the stars), whereas that in
forgery face are weaker (the triangles).

To explore these clues, we focus on relations between
local regions associated with AUs and propose the Action
Units Relation Learning framework to improve the robust-
ness and generalization of the forgery detector. The pro-
posed framework is comprised of AU Relation Transformer
(ART) and Tampered AU Prediction (TAP). ART, explic-
itly learning the relations between AUs, works as a dual
network. In specific, it consists of an AU-specific Branch
for learning relations among AU-aligned regions and an
AU-agnostic Branch for learning relations among image-
patch regions. The AU-specific Branch extracts embed-
dings aligned with individual AU and builds their relations
by attention mechanism. The AU-agnostic Branch is a stan-
dard Vision-Transformer block [16] that is designed to con-
struct relations between different image patches. These two
branches complement each other for building a detailed and
global view of the input face image. From another perspec-
tive, TAP formulates an auxiliary task to enhance the ability
of the model to sense local forgery defects. In particular,
it constructs a Partial Face Mask by randomly removing
AU-related regions from the facial area. The mask is uti-
lized to modify data in the remaining regions at both image
and feature levels to generate challenging fake counterparts.
The model is then trained to predict the manipulated regions
with the help of Local Tampering Supervision. By doing so,
the networks are more sensitive to AU-related regions that
have been manipulated, which is beneficial for identifying
forgery images. Notably, the proposed Action Units Re-
lation Learning framework absorbs the advantages of both
data modification and auxiliary task integrating schemes.

We evaluate our framework following cross-dataset pro-
tocol and cross-manipulation protocol. In the cross-dataset
evaluation, our approach performs favorably against other
state-of-the-art detectors and achieves the AUC scores of
92.77%, 99.22%, 73.82%, 86.16%, 81.45% on CDF [36],
DFD [1], DFDC [13], DFDCP [14], and FFIW [57]
datasets, respectively. In the cross-manipulation evalua-

tion, our approach achieves the AUC of 99.98%, 99.60%,
99.89%, and 98.38% on DF [2], F2F [48], FS [3] and
NT [47], respectively. Experimental results demonstrate the
effectiveness and generalization of our framework.

Our contributions can be summarized as follows:

• We propose the Action Units Relation Trans-
former (ART) to effectively build correlations among
different AU-related regions and eventually improve
the performance of the forgery detection.

• We propose the Tampered AU Prediction (TAP) as an
auxiliary task to strengthen the model capability of
sensing local forgery regions.

• Experimental results on in-dataset and cross-dataset
evaluation protocols demonstrate the effectiveness and
generalization of our framework.

2. Related Work
2.1. Conventional Deepfake Detection

Face forgery detection is a classical topic in computer
vision. Earlier studies concentrate on hand-crafted features,
e.g., eye blinking [26, 34], inconsistent head poses [53]
and visual artifacts [5, 35]. With the rapid progress of
deep learning, recent methods based on deep neural net-
works achieved better performance. [10, 54] apply the at-
tention mechanism to highlight the manipulated regions.
In addition to focusing on the spatial domain, [20] notices
the artifacts information hidden in the frequency domain.
Subsequently, many works [30, 37, 38, 40] leverage fre-
quency clues as the supplement to RGB information. Re-
cently, due to the remarkable representation capability of
Transformer [16], FTCN-TT [56], ICT [15] have also ex-
tended transformer to deepfake detection tasks. Although
the aforementioned methods achieve promising results in
the intra-domain, the performance of them suffer consider-
able drops in the cross-dataset scenario.

2.2. General Deepfake Detection
Recent works focusing on general face forgery detection

have been proposed. FWA [35] focuses on a quality differ-
ence between GAN-generated faces and natural faces, and
reproduces it by blurring facial regions on real images. [49]
argues that the lack of generalizability is a result of over-
fitting to visual artifacts, and proposes a dynamic data ar-
gumentation scheme. [50] found that, with careful pre- and
post-processing and data augmentation, a standard image
classifier is able to generalize surprisingly well to unseen
datasets. Face X-ray [31] generates training data using only
real images and focuses on predicting the blending bound-
aries in fake faces. PCL [55] also creates blended faces from
pairs of two pristine images and performs pair-wise self-
consistency learning on generated data. SBI [45] synthe-
sizes fake images by blending pseudo source and target im-
ages from a single image. Despite the promising improve-
ments, it is observed that these methods mainly focus on

24710



data manipulation, lacking a module to explore the general
and intrinsic facial representation. To this end, we construct
a framework that absorbs advantages of data modification
meanwhile learns AU relations to model facial information.

3. Methods
3.1. Overview

As depicted in Fig. 2, our proposed Action Units Rela-
tion Learning framework consists of Action Units Relation
Transformer (ART) and Tampered AU Prediction (TAP).
The ART explores clues about relations between AU-related
regions to boost forgery identification. The TAP tampers
AU-related regions and provides Local Tampering Supervi-
sion to improve the generalization ability.

3.2. Action Units Relation Transformer
In the Action Units Relation Transformer (ART), the in-

put images are processed through backbone to extract fea-
tures. Three ART encoders are stacked to fully exploit
relation between AU-related regions. Each encoder con-
sists of an AU-specific Branch and an AU-agnostic Branch.
The AU-specific Branch extracts features aligned with spe-
cific AU and builds their relations by attention mechanism.
The AU-agnostic Branch is designed to construct relations
between image patches, where a patch contains both AU-
related regions and other potentially useful face clues. The
details of the ART encoder are shown in Fig. 3.

AU-specific Branch. In this branch, the attention maps
related to AUs are first generated. Let F ∈ RC×H×W de-
note the output feature maps of the backbone. An atten-
tion module is utilized to estimate AU regions MAU ∈
RK×H×W , which corresponds to K AU-related regions.
The attention module consists of two 3 × 3 convolutional
layers, a 1 × 1 convolution layer with K filters, and a sig-
moid activation function. To target relevant AU regions
more precisely, we perform supervision on the predicted at-
tention maps as follows:

LAtt = Lδ(MAU −YAtt), (1)

where LAtt is a Huber loss function with the parameter δ =
0.5, and YAtt ∈ RK×H×W is the ground-truth attention
map for K AU-related regions, which is estimated during
pre-processing.

We then extract the AU embeddings EAU ∈ RK×C ,
which are aligned with individual AU as follows:

EAU
i = GAP(Conv(F⊙Mi + F)), i = 1, · · · ,K, (2)

where Conv represents a 3 × 3 convolutional layer, GAP
is a global average pooling layer, and ⊙ is the Hadamard
product. After acquiring AU embeddings, we obtain the
correlation matrix A ∈ RK×K by calculating the correla-
tion between the different AU embeddings as follows:

ai,j = f(EAU
i ,EAU

j ), i, j = 1, · · · ,K, (3)

where f is the dot-product similarity function. We then ob-
tain the importance factor W ∈ RK×1×1 based on the as-
sociation of one embedding with other embeddings:

Wi =
∑
j

aij

/∑
i

∑
j

aij (4)

With the learned factor W, we aggregate MAU and
strengthen the important AU-related regions in the origi-
nal feature map. Concretely, the AU regions are reweighted
and aggregated to generate the important AU region MI ∈
R1×H×W by an element-wise maximum operation:

MI = MAX{W ⊙MAU}. (5)

Finally, we multiply MI with the original feature map F to
gain enhanced facial action unit features FS ∈ RC×H×W

using an element-wise production.
AU-agnostic Branch. In this branch, the Transformer

encoder [16] is utilized to capture rich relations among lo-
cal image patches. A projection module is developed to
transform 2D sequence input to 1D. Concretely, a 1 × 1
convolution layer is first applied to project the input fea-
ture maps F ∈ RC×H×W to Fi

p ∈ RC′×H×W . Note that
every c′ × 1 vector can be considered as a representation of
a corresponding patch in the input image. We then slice the
feature maps Fi

p along the channel dimension and realign
them as a sequence of feature vectors xi

p ∈ RC′×(H·W ). A
learnable class token xi

c ∈ RC′×1 is also appended to get
the input sequences xi ∈ RC′×(1+H·W ).

The output sequences xo ∈ RC′×(1+H·W ) of the stan-
dard Transformer encoder are obtained by:

x′ = LN(xi+MSA(xi)), xo = LN(x′+FFN(x′)), (6)

where LN, MSA, and FFN are the layer normalization,
multi-head self-attention, and feed-forward network, re-
spectively. We then split output sequences xo back into
a class token xo

c and patch tokens xo
p, accordingly. The

patch tokens xo
p are reshaped back to a 2D feature map

Fo
p ∈ RC′×H×W , and are then projected to the output

FA ∈ RC×H×W with a 1× 1 convolution layer.
Feature Integration. After the AU-specific branch and

AU-agnostic branch, we acquire features FS and FA, which
present rich relation information. On the one hand, we ex-
tract the AU-aligned embeddings and construct rich correla-
tions between individual AUs. On the other hand, the trans-
former encoder extracts global relations between groups of
AUs from AU-agnostic image patches. To combine these
features, we integrate FS and FA by the element-wise ad-
dition and two 3× 3 convolution layers:

Fout = Conv(FS + FA), (7)

where Fout is the output of the ART encoder. After integra-
tion, these features containing relation information from the
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Figure 2. The overview of the Action Units Relation Learning framework. Our proposed framework consists of Action Units Relation
Transformer (ART) and Tampered AU Prediction (TAP), shown in the orange and purple boxes, respectively

Figure 3. The details of our proposed ART Encoder.

detailed and global perspectives are complementary with
each other to learn valuable forgery cues.

3.3. Tampered AU Prediction
In addition to building an effective model, we further

formulate an auxiliary task, i.e., Tampered AU Predic-
tion (TAP), to enhance the ability of the model to sense
local forgery defects. As illustrated in the purple boxes
in Fig. 2, this task includes AU-related Region Modifi-
cation (ARM) and Local Tampering Supervision (LS). In
the ARM, given an authentic face, the Image-level Tamper-
ing is first performed on the AU-related regions to obtain
the authentic face and its fake counterparts. The Feature-
level Mixing then develops more challenging fake features
by mixing the statistical features of real features into those
of fake features. With the authentic and tampered faces, the
model is trained to predict the location-specific manipulated
regions under the Local Tampering Supervision (LS).

AU-related Region Modification. As shown in Fig. 2,
we first generate a Partial Face Mask Mp for the Image-
level Tampering and the Feature-level Mixing. Given a real

image I ∈ R3×H×W , a landmark detector is first applied
to I for predicting 68 facial landmarks. The convex hull
of these facial landmarks is calculated to obtain the facial
mask Mf . We randomly select several AU-related regions
R from the pre-defined action unit masks. These selected
areas are removed from the facial mask Mf , and then we
obtain the Partial Face Mask Mp after Gaussian Blur.

The Image-level Tampering is then performed on real
images. As proposed in [45], the pseudo target and source
images It, Is are created from a single real image I through
different augmentation pipelines:

It, Is = Φ1(I),Φ2(I), (8)

where Φ1, Φ2 both randomly perform color transformations
and frequency transformations. By blending the source im-
age Is and the target image It with the mask Mp, we get
the pseudo image If as

If = Is ⊙Mp + It ⊙ (1−Mp). (9)

Note that the background and the removed AU regions R
remain unchanged during the blending.

Moreover, we implement the Feature-level Mixing on
the AU-related regions in the Partial Face Mask Mp, which
is detailed in Fig. 4. The feature space has more dimensions
than the input space, so that more diverse and challenging
samples can be obtained for forgery detection. Without loss
of generality, we take features in layer i as an example. Let
Fr,Ff ∈ RCi×Hi×W i

represent real feature and fake fea-
ture, respectively, which are corresponding to the activa-
tions of real and fake images. Let M′

p ∈ R1×Hi×W i

be the
resized Partial Face Mask. We first calculate the channel-
wise mean and standard deviation µr, µf , σr, σf ∈ RCi

:

µ{r,f} =

∑
h,w

(F{r,f} ⊙M′
p)∑

h,w

M′
p

, (10)
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Figure 4. The pipeline of the Feature-level Mixing (FM).

σ{r,f} =

√√√√√√
∑
h,w

[(F{r,f} − µ{r,f})
2 ⊙M′

p]∑
h,w

M′
p

+ ε. (11)

Note that the mean and standard deviation are only calcu-
lated on the tampering region with the aid of mask M′

p.
Subsequently, we normalize the features in the tampering
region and gain the normalized region features F̄r

b , F̄f
b :

F̄
{r,f}
b =

(F{r,f} − µ{r,f})⊙M′
p

σ{r,f} . (12)

We then mix the statistical features of real features into
those of the fake features, and obtain the scale σs, bias µs

and the synthesized normalized features F̄s
b:

µs = λ1µ
f + (1− λ1)µ

r, (13)

σs = λ2σ
f + (1− λ2)σ

r, (14)

F̄s
b = λ3F̄

f
b + (1− λ3)F̄

r
b , (15)

where λ1, λ2, λ3 ∈ [0, 1] are sampled from a beta distribu-
tion. The synthesized normalized feature F̄s

b is affined with
the scale and bias to get the synthesized region feature F̂s

b:

F̂s
b = σs ⊙ F̄s

b + µs ⊙M′
p. (16)

Subsequently, we add the synthesized region feature F̂s
b

back to the original fake feature as follows:

F̂f = Ff ⊙ (1−M′
p) + F̂s

b. (17)

In the whole pipeline of Feature-level Mixing, only the
tampering regions of the fake feature are modified, while

real features as well as other regions of the fake feature re-
main unchanged. In each training step, the Feature-level
Mixing is performed at a randomly chosen layer to enrich
fake samples.

Local Tampering Supervision. Recently transformer-
based face forgery detectors normally utilize class tokens
that aggregate global information to identify face forgery.
However, this strategy neglects the role of other tokens that
encode rich information on their respective local image ar-
eas. In Local Tampering Supervision, we assign each patch
token with individual location-specific supervision indicat-
ing the existence of the tampering operation on the corre-
sponding image area.

Fig. 2 provides an intuitive interpretation. Given an im-
age I, we denote the output of the last transformer block as
[xc,x1, · · · ,xn], where xc and x1, · · · ,xn correspond to
the class token and n patch tokens, respectively. To utilize
the local information inside the patch tokens, we first gen-
erate individual location-specific supervision based on the
Partial Face Mask Mp ∈ RH×W . Specifically, the mask
Mp is downsampled to the size of (

√
n ×

√
n) and is then

reshaped to get the coarse version y′ ∈ Rn. The token label
ytoken ∈ Rn is generated as follow:

ytokeni =

{
1 y′i > t
0 y′i ≤ t

i = 1, · · · , n (18)

with the parameter t = 0.5. The cross-entropy loss is cal-
culated between each patch token and the corresponding
aligned token label as an auxiliary loss at the training phase.
The token labeling objective can be defined as:

Ltoken =
1

n

n∑
i=1

H(fc(xi), yi
token), (19)

where H is the softmax cross-entropy loss and fc is a
shared full-connected layer performed on each patch token.
During inference, the prediction is calculated based on the
output class token and patch tokens. More details are pro-
vided in the supplementary.

The total loss function can be written as:

Ltotal = λcLcls + λtLtoken + λaLatt (20)

where Lcls is the original image-level loss function, Ltoken

is the token labeling objective, Latt is the Huber loss func-
tion mentioned in Equ. 1. λc, λt, λa are the balancing
weights for these terms. By default, we set λc = 1, λt = 30,
λa = 0.5 in our experiments.

4. Experiments
4.1. Implementation Details

Pre-processing. For each video frame, face crops are
detected by using RetinaFace [12] and landmarks are de-
tected by the public toolbox Dlib [28]. All face crops are
resized to 224×224. To acquire ground-truth attention map
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Method Testing Set (AUC (%))

DF F2F FS NT FF++

MIL [51] 99.51 98.59 94.86 97.96 97.73
XN-avg [42] 99.38 99.53 99.36 97.29 98.89
Face X-ray [31] 99.12 99.31 99.09 99.27 99.20
S-MIL-T [33] 99.84 99.34 99.61 98.85 99.41
PCL+I2G [55] 100.00 99.57 100.00 99.58 99.79
SOLA [19] 100.00 99.67 100.00 99.82 99.87

Ours 100.00 99.86 99.98 99.71 99.89

Table 1. In-dataset evaluation on FF++ (raw). Bold and under-
lined values correspond to the best and second-best values, respec-
tively. Our approach achieves competitive performance.

YAtt, landmarks specific to each action unit are defined
similarly to [32, 44]. We fit ellipses to landmarks as the ini-
tial regions of each action unit, smooth the image (Gaussian
with σ = 3), and then obtain 15 action unit masks. These
masks are concatenated in the channel direction to obtain
the ground-truth map YAtt. Note that the landmarks and
the YAtt are not needed during inference; hence we only
use RetinaFace to crop faces at the inference time.

Training. We adopt the part of Xception [8] up to
block11 as our backbone. The Xception is initialized with
weights pre-trained on ImageNet [11]. Given an input im-
age I ∈ R3×H×W , we first feed it into backbone, and fea-
tures F ∈ RC×H′×W ′

after the block11 layer of Xception
are extracted for further calculations, where H ′ = H/16
and W ′ = W/16. We train the model for 100 epochs with
the SGD [41] optimizer. The batch size and learning rate
are set to 32 and 0.001, respectively. We sample only eight
frames per video for training. Each batch consists of real
images and their corresponding generating images.

Datasets. Following the convention, we adopt the Face-
Forensics++ (FF++) [42] for training. FF++ is a large-scale
benchmark dataset containing 1000 original videos from
youtube and corresponding fake videos which are gener-
ated by four typical manipulation methods: i.e., Deepfakes
(DF) [2], Face2Face (F2F) [48], FaceSwap (FS) [3] and
NeuralTextures (NT) [47]. We split FF++ following the
official splits and use the HQ version by default or spec-
ify the version otherwise. To evaluate the generalization
of our method, we also conduct experiments on the recent
proposed face forensic dataset, i.e., Celeb-DF (CDF) [36],
DeepfakeDetection (DFD) [1], Deepfake Detection Chal-
lenge (DFDC) [13] and DFDC Preview (DFDCP) [14],
Wild-Deepfake (FFIW) [57]. We also follow the official
splits to construct testing sets.

4.2. In-dataset Evaluation

In the in-dataset evaluation, we train the ART on both
real and fake data from training split of FF++ [42], with-
out the proposed TAP. The results are shown in Table 1.
We provide more in-dataset evaluation results on CDF [36]
and DFDCP [14] in the supplementary material. Our model
achieves competitive performance on FF++ dataset. Spe-

Method Testing Set AUC (%)

DF F2F FS NT FF++

Face X-ray+BI [31] 99.17 98.57 98.21 98.13 98.52
PCL+I2G [55] 100 98.97 99.86 97.63 99.11
Xception+SBI [45] 99.99 99.90 98.79 98.20 99.22

Ours 99.98 99.60 99.89 98.38 99.46

Table 2. Cross-manipulation evaluation on FF++ (raw). Our
method achieves the best results on FS, NT, and the whole FF++.

cially, we achieve the best performance on the DF and
F2F. Although the performances of previous methods (e.g.,
SOLA [19], PCL+I2G [55]) tend to saturate on FF++, we
still obtain the best performance of 99.89%. Overall, the
ART obtains excellent results, proving that the AU relation
learning benefits face forgery detection.

4.3. Generalization Ability Evaluation
In real detection situations, defenders are generally un-

aware of the attacker’s forgery methods. For this reason,
we perform evaluations to verify the model generalization
to various forgery methods

Cross-Manipulation Evaluation. Following the evalu-
ation protocol used in [45], we evaluate our model on four
manipulation methods of FF++. Table 2 presents our cross-
manipulation evaluation result on FF++, where we only
used the real videos of FF++ for training. Our method out-
performs or nearly equals the similar existing methods on
four manipulations (99.98% on DF, 99.60% on F2F, 99.89%
on FS, and 98.38% on NT) and achieves the best perfor-
mance on the whole FF++ (99.46% vs. 99.22%). This result
shows that our method works well not only on deepfakes but
also on other face manipulations.

Cross-Dataset Evaluation. To show the generality of
our method, we further conduct a cross-dataset evaluation
where our framework is trained on the real images of FF++
and evaluated on other recently released datasets. Table
3 presents the cross-dataset evaluation results. As seen,
our method outperforms other models in all the cases and
achieves the overall best performance. Compared with
video-level methods, Our approach outperforms the state-
of-the-art transformer-based method FTCN [56] on CDF,
DFD, DFDC, DFDCP and FFIW by 5.87%, 4.82%, 2.82%,
12.16% and 6.98% points, respectively, and improves the
performance by 6.53% points on average (86.68% vs.
80.15%). One possible reason is that FTCN, trained on real
and fake videos, still focuses on a particular forgery pattern
of FF++, which hinders the performance of generalization.
LipForensics [24] targets high-level semantic irregularities
in the mouth region and leads to improved generalization
performance. However, their method may ignore the foren-
sic clues in other facial action units. This limitation may
explain why their performance is inferior to ours.

Compared with frame-level methods trained on real
and fake images (i.e., LRL [7], FRDM [38], DCL [46]),
our approach outperforms their methods on CDF by more
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Method Year Input Type Training Set Testing Set AUC (%)

Real Fake CDF DFD DFDC DFDCP FFIW

DAM [57] 2021 Video ! ! 75.30 - - 72.80 -
LipForensics [24] 2021 Video ! ! 82.40 - 73.50 - -
FTCN [56] 2021 Video ! ! 86.90 94.40† 71.00† 74.00 74.47†

RealForensics [23] 2022 Video ! ! 86.90 - - - -
FInfer [25] 2022 Video ! ! 70.60 - - 70.39 69.46

Face X-ray+BI [31] 2020 Frame ! % - 93.47 - 71.15 -
Face X-ray+BI [31] 2020 Frame ! ! - 95.40 - 80.92 -
LRL [7] 2021 Frame ! ! 78.26 89.24 - 76.53 -
FRDM [38] 2021 Frame ! ! 79.40 91.90 - 79.70 -
PCL+I2G [55] 2021 Frame ! % 90.03 99.07 67.52 74.37 -
ICT‡ [15] 2022 Frame % % 85.71 84.13 - - -
DCL [46] 2022 Frame ! ! 82.30 91.66 - 76.71 71.14
Xception+SBI [45] 2022 Frame ! % 90.27 96.21 70.77∗ 78.85 76.72

Ours 2022 Frame ! % 92.77 99.22 73.82 86.16 81.45

Table 3. Cross-dataset evaluation on CDF, DFD, DFDC, DFDCP, and FFIW. The results of prior methods are directly cited from the
original paper for a fair comparison. †:denotes experiments performed by [45]. ‡: ICT [15] is trained on MS-Celeb-1M [22]. *: we
experiment with the official code. Our method outperforms state-of-the-art methods and presents excellent generalization abilities.

Variants Testing Set AUC (%) Avg
CDF DFDCP FFIW

Backbone 88.10 80.99 74.45 81.18
ART w/o SPB. 90.39 83.68 78.13 84.07
ART w/o AGB. 90.60 84.11 77.10 83.94

TAP w/o Mp. 91.48 84.47 77.95 84.63
TAP w/o IT. 88.98 79.85 72.60 80.48
TAP w/o FM. 89.56 79.51 74.16 81.08
TAP w/o LS. 90.80 82.17 78.06 83.68

Ours 92.77 86.16 81.45 86.79

Table 4. Effect of each branch in ART and each process in TAP.
The absence of any block causes performance degradation.

than 10% in terms of AUC. Compared with similar ap-
proaches trained on real and synthesized images (i.e.,
Face X-ray+BI [31], PCL+I2G [55], Xception+SBIs [45]),
our method still exhibits better generalization perfor-
mance. Specially, we outperform the state-of-the-art Xcep-
tion+SBIs on CDF, DFD, DFDC, DFDCP and FFIW, by
about 2.50%, 3.01%, 3.05%, 7.31% and 4.73% in terms of
AUC, and improve the baseline by 4.12% points on aver-
age (86.68% vs. 82.56%). Our framework achieves bet-
ter performance, probably due to the elaborate Action Units
Relation Transformer, and the generation of richer forgery
samples in the image space and feature space.

4.4. Analysis
This section analyzes the effectiveness of each branch in

ART, each process in TAP, the hyper-parameter in LS. We
provide more analyses in the supplementary material.

Effect of Each Branch in ART. We compare our
method with the following variants under the proposed TAP.

(1) Backbone: the features after our backbone are extracted
and fed into the global average pooling and full-connected
layer. (2) w/o SPB: ART without the AU-specific branch.
(3) w/o AGB: ART without the AU-agnostic branch.

The experimental comparison is shown in Table 4. Both
the AU-specific Branch and the AU-agnostic Branch lead to
the performance improvements (2.89% and 2.76%, on av-
erage) over the backbone. This shows the effectiveness of
exploiting AU relation cues in face forgery detection. We
also observe that the model performs marginally better with
AGB (84.07%) than with SPB (83.94%). This may be at-
tributed to the usage of Transformer encoder, which mod-
els correlations between image patches and obtains com-
prehensive forensic clues. However, AGB ignores the local
information on the semantics of the face, which is beneficial
for deepfake detection. When we combine AGB and SPB,
the performance of our model is raised from 81.18% to
86.79%. This presents the effectiveness of simultaneously
considering the relation between different Action Units at
the AU-agnostic patches and the AU-specific regions.

Effect of Each Process in TAP. We compare our meth-
ods with the following variants. (1) w/o Mp: the Partial
Face Mask Mp is replaced with the convex hull of facial
landmarks (i.e., facial mask Mf ). (2) w/o IT: we remove
Image-level Tampering from TAP. (3) w/o FM: the Feature-
level Mixing is removed from TAP. (4) w/o LS: we disable
Local Tampering Supervision in the pipeline of TAP.

The experimental comparison is shown in Table 4. Re-
placing the Mp with the facial mask Mf results in a drop
of 2.16% on average. This suggests that randomly remov-
ing AU regions from Mf is necessary for the whole pro-
cess. One reason is that the Partial Face Mask Mp provides
dynamically changing AU regions for subsequent tamper-
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Figure 5. Visual results on various manipulation methods. The images in the first, second, and third rows are input, ground truth, and
prediction, respectively. To detect the tampered area more accurately, we use images with the size of 384× 384 as input and obtain masks
with the size of 24× 24 to indicate the tampered area. It can be clearly seen that our framework well captures the manipulation regions.

Hyper-
Parameter

Testing Set AUC (%) Avg
CDF DFDCP FFIW

λt = 0 90.80 82.17 78.06 83.68
λt = 10 91.98 84.87 81.03 85.96
λt = 30 92.77 86.16 81.45 86.79
λt = 50 93.01 85.65 82.59 87.08
λt = 100 92.95 85.39 82.73 87.02

Table 5. Effect of Local Tampering Supervision. The perfor-
mance is considerably enhanced by the use of proper λt.

ing and prediction, which facilitates the diversity of forgery
samples and increases the difficulty of the auxiliary task.
We also observe that Image-level Tampering and Feature-
level Mixing reproduce important artifacts because of the
significant performance drop without them (from 86.79%
to 80.48% and 81.08%, respectively). Additionally, with-
out the Local Tampering Supervision, our approach suffers
a drop of 3.11%. This demonstrates that guiding the model
to learn additional location-specific forensic clues is actu-
ally effective for face forensic detection.

Effect of Local Tampering Supervision. In this sub-
section, the models are trained on real data of FF++ with
increasing λt. The results are shown in Table 5. We observe
that the models with Local Tampering Supervision (λt > 0)
outperform the model with the binary classification loss
alone (λt = 0). Especially, the model trained with param-
eter λt = 50 achieves a better AUC score (3.40%) than
trained with parameter λt = 0, on average. The results
validate that it is beneficial to use proper λt during train-
ing, which also suggests that the Local Tampering Supervi-
sion plays an important role in the success.

4.5. Qualitative Results
Our framework enhances the representation learning for

deepfake detection while also generating interpretable visu-
alizations clues about the modified region. To represent the
tampered regions, the 1D prediction results based on patch
tokens are converted into 2D masks. Figure 5 visualizes

some prediction results (the third row) along with the corre-
sponding input images (the first row) and ground truth (the
second row). When feeding an authentic image, in most
cases, the visualization is a pure blank image, indicating
that the input image has not been manipulated. When test-
ing a fake image, the predicted mask can adequately match
the ground truth. The results demonstrate that our frame-
work can capture the corresponding manipulation region
rather than simply segmenting the full-face part.

5. Conclusion
In this paper, we propose the Action Units Relation

Learning framework, which consists of the Action Units
Relation Transformer (ART) and the Tampered AU Predic-
tion (TAP). In ART, we model the relation between differ-
ent Action Units at the AU-agnostic patches and the AU-
specific regions. The two levels of relation learning com-
plement each other and work together to uncover forgery
clues. We also formulate an auxiliary task, i.e., the Tam-
pered AU Prediction, to implement Image-level Tamper-
ing and Feature-level Mixing in the AU-related regions and
enhance the capacity of the model to sense local forgery de-
fects with the Local Tampering Supervision. Experimental
results showed that our framework is competitive against
state-of-the-art methods on popular datasets, providing a
strong baseline for future research.
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