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Abstract

Generative adversarial network (GAN) is formulated

as a two-player game between a generator (G) and a

discriminator (D), where D is asked to differentiate whether

an image comes from real data or is produced by G. Under

such a formulation, D plays as the rule maker and hence

tends to dominate the competition. Towards a fairer game in

GANs, we propose a new paradigm for adversarial training,

which makes G assign a task to D as well. Specifically,

given an image, we expect D to extract representative

features that can be adequately decoded by G to reconstruct

the input. That way, instead of learning freely, D is

urged to align with the view of G for domain classification.

Experimental results on various datasets demonstrate the

substantial superiority of our approach over the baselines.

For instance, we improve the FID of StyleGAN2 from 4.30

to 2.55 on LSUN Bedroom and from 4.04 to 2.82 on LSUN

Church. We believe that the pioneering attempt present in

this work could inspire the community with better designed

generator-leading tasks for GAN improvement. Project

page is at https://ezioby.github.io/glead/.

1. Introduction

Generative adversarial networks (GANs) [18] have sig-

nificantly advanced image synthesis, which is typically

formulated as a two-player game. The generator (G) aims

at synthesizing realistic data to fool the discriminator (D),

while D pours attention on distinguishing the synthesized

samples from the real ones. Ideally, it would come to

an optimal solution where G can recover the real data

distribution, and D can hardly tell the source of images

anymore [18].

However, the competition between G and D seems to be
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Figure 1. Concept diagram of our proposed generator-leading

task (bottom), as complementary to the discriminator-leading task

in the original formulation of GANs (upper). D is required to

extract representative features that can be adequately decoded by

G to reconstruct the input.

unfair. Specifically, on the one hand, D acts as a player

in this adversarial game by measuring the discrepancy

between the real and synthesized samples. But on the

other hand, the learning signals (i.e., gradients) of G are

only derived from D, making the latter naturally become a

referee in the competition. Such a formulation easily allows

D to rule the game. Massive experimental results could

serve as supporting evidence for the theoretical analysis.

For instance, in practice, D can successfully distinguish

real and fake samples from a pretty early stage of training

and is able to maintain its advantage in the entire training

process [63]. Accordingly, the capability of the discrimi-

nator usually determines the generation performance more

or less. For instance, a discriminator that has over-fitted

the whole training set always results in synthesis with

limited diversity and poor visual quality [33]. Following

this philosophy, many attempts [28, 29, 38, 40, 56, 70] have

been made for discriminator improvement.

This work offers a different perspective on GAN im-

provement. In particular, we propose a new adversarial

paradigm where G is assigned a new role, i.e., playing as the

referee as well to guide D. Recall that producing realistic

images usually requires G to generate all-level concepts
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adequately. Nevertheless, due to the asymmetrical status

of G and D, D is able to tell apart the real and synthesized

data merely from limited discriminative regions [63]. We,

therefore, would like to encourage D to extract as much

information from an image as possible, such that the

features learned by D could be rendered back to the input

with a frozen G, as in Fig. 1. That is, D is enforced to align

with the view of G (i.e. focusing on the entire image region)

instead of learning freely for domain classification.

Our method is termed as GLeaD because we propose

to assign D a generator-leading task. In particular, given a

real or synthesized image, the discriminator would deliver

extra spatial representations and latent representations that

are then fed into a frozen generator to reproduce the original

image. Reconstruction loss (perceptual loss is adopted in

practice) penalties the difference between the input image

and the reconstructed image and derives gradients from

updating the parameters of the discriminator. Moreover,

comprehensive experiments are then conducted on various

datasets, demonstrating the effectiveness of the proposed

method. Particularly, our method improves Frechet Incep-

tion Distance (FID) [23] from 4.30 to 2.55 on LSUN Bed-

room and 4.04 to 2.82 on LSUN Church. We also manage

to improve Recall [39] largely (56%) from 0.25 to 0.39 on

LSUN Bedroom. In addition, thorough ablation studies also

suggest that applying generator-leading tasks to require D to

reconstruct only real or fake images could boost synthesis

quality. While a larger improvement would be gained if

both real and synthesized images were incorporated. Last

but not least, experimental results in Sec. 4 reveal that our

method can indeed boost the fairness between G and D as

well as improve the spatial attention of D.

2. Related Work

Generative adversarial networks. As one of the popular

paradigms for generative models, generative adversarial

networks (GANs) [18] have significantly advanced image

synthesis [9, 15, 21, 31, 34±37, 44, 49], as well as various

tasks like image manipulation [22, 47, 54, 60, 66, 75], image

translation [11, 27, 42, 59, 62, 77], image restoration [2, 20,

46, 64], 3D-aware image synthsis [10, 19, 55, 68, 74], and

talking head generation [24,65,71]. In the traditional setting

of GAN training, D serves as the referee of synthesis quality

and thus tends to dominate the competition. As a result, in

practice D can always tell the real and fake samples apart

and the equilibrium between G and D turns out hard to be

achieved as expected [5, 18]. Some earlier work [5, 7, 17]

tries to boost GAN equilibrium to stabilize GAN training

and improve synthesis quality. Recently, EqGAN-SA [63]

proposes to boost GAN equilibrium by raising the spatial

awareness of G. Concretely, the spatial attention of D is

utilized to supervise and strengthen G. While our method

forces D to fulfill a reconstruction task provided by G

without improving the capacity of G for the first time. To

learn useful feature representations with weak supervision,

BiGAN [14] proposes to learn an encoder, to project real

samples back into GAN latent space in addition to the

original G and D. And D is required to discriminate samples

jointly in data and latent space. In this way, the well-

trained encoder could serve as a feature extractor in a weak-

supervised training manner. Differently, we directly adopt

D to extract features of both real and synthesized samples

to reconstruct them with G for a fairer setting instead of

representation learning.

Improving GANs with the enhanced discriminator. Con-

sidering D largely dominates the competition with G, many

prior works attempt to boost synthesis quality by improving

D. Jolicoeur employs a relativistic discriminator [29] to

estimate the probability that the given real data is more

realistic than fake data for better training stability and

synthesis quality. Yang et al. [70] propose to improve D

representation by additionally requiring D to distinguish

every individual real and fake image. Kumari et al. [38]

propose to ensemble selected backbones pre-trained on

visual understanding tasks in addition to the original D

as a strengthened D. The effect of various capacity of

discriminator on training a generator is also investigated

in [69]. Based on the finding of OASIS [58] that dense

supervision such as segmentation labels could improve the

representation of D in conditional synthesis, GGDR [40]

leverages the feature map of G to supervise the output fea-

tures of D for unconditional synthesis. However, different

from the discrimination process, G does not backward any

gradient to D in this work. Contrasted with GGDR, our

method aims at a fairer setting rather than gaining more

supervision for D. Also, our D receives gradients from G,

leading to fairer competition.

Image reconstruction with GANs. GAN inversion [67]

aims to reconstruct the input image with a pre-trained

GAN generator. Mainstream GAN inversion methods

include predicting desirable latent codes corresponding to

the images through learning an encoder [3,48,51,61,76] or

optimization [1, 12, 20, 45, 50, 52]. Most work chooses to

predict latent codes in the native latent space of StyleGAN

such as Z , W or W+. Recently there are also some

work [6, 30] extending the latent space or fine-tuing [4, 13]

the generator for better reconstruction. Note that although

our method could achieve image reconstruction with the

well-trained D and G, our motivation lies in boosting

generative quality by making G assign the generator-leading

reconstruction task to D, instead of the reconstruction

performance. Another significant difference lies in that we

adopt D to extract representative features for reconstruction,

which is simultaneously trained with G, while in GAN

inversion the feature extractor (namely the encoder) is

learned based on a pre-trained G.
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Figure 2. Illustration of how a generator-leading task is incorporated into GAN training from the perspective of discriminator

optimization. Given an image (i.e., either real or synthesized) as the input, D is asked to extract representative features from the input

in addition to predicting a realness score. These features including spatial features f and global latent codes w are sent to the fixed G to

reconstruct the inputs of D. The perceptual loss is adopted to penalize the difference between the reconstruction and inputs. The sub-figure

on the right demonstrates the specific architecture of our D. A decoder h composed of a series of 1 × 1 convolution layers is attached to

the original backbone Denc to extract f and w. This training process is described in detail in Sec. 3.2.

3. Method

As mentioned before, it seems to be unfair that a

discriminator (D) competes against a generator (G) since

D does not only join the two-player game as a player but

also guides the learning of G, namely serves as a referee

for G. Sec. 3.1 presents the vanilla formulation. To chase a

fairer game, Sec. 3.2 introduces a new adversarial paradigm

GLeaD that assigns a new generator-leading task for D

which in turn is judged by G.

3.1. Preliminary

GAN usually consists of two components: a generator

G(·) and a discriminator D(·). The former aims at mapping

a random latent code z to an image, while the latter learns to

distinguish the synthesized image G(z) from the real one x.

These two networks compete with each other and are jointly

optimized with the learning objectives as follows:

LG = −Ez∈Z [log(D(G(z)))], (1)

LD = −Ex∈X [log(D(x))]− Ez∈Z [log(1−D(G(z)))],
(2)

where Z and X denote a pre-defined latent distribution and

data distribution respectively.

Ideally, the optimal solution is that G manages to

reproduce the realistic data distribution while D is not

able to tell the real and synthesized samples apart [18].

However, during the iterative training of the generator and

discriminator, there exists an unfair competition since D

plays the player and referee roles simultaneously. Thus the

ideal solution is hard to be achieved in practice [16, 63].

3.2. Generator-leading Task

Considering the unfair division of labor in this two-

player game, we turn to assign a new role to G that

could supervise the learning of D in turn. Recall that the

target of generation is to produce realistic samples which

usually requires all concepts well-synthesized. However,

it is suggested [63] that the most discriminative regions of

given real or synthesized images are sufficient for domain

classification. Therefore, we propose a generator-leading

task that enforces D to extract as many representative

features as possible to retain adequate information that

could reconstruct a given image through a frozen generator,

as described in Fig. 2 and Algorithm 1. Note that we

empirically validate that requiring D to extract spatial

representations is essential to improve synthesis quality

in Sec. 4.3. Taking StyleGAN2 [37] as an example, we

will introduce the detailed instantiations in the following

context.

Extracting representations through D. The original D of

StyleGAN is a convolutional network composed of a series

of downsampling convolution layers. To make it conve-

nient, the backbone network of the original D (namely,

parts of D except the final head predicting realness score)

is denoted as Denc in the following statement. In order to

predict the representative features of a given image while re-

taining various information from low-level to high-level, we

additionally affiliate Denc with a decoder h(·) to construct

our new D with a multi-level feature pyramid [41]. Based

on such feature hierarchy ending with a convolutional head,

spatial representations f and latent representations w are

predicted respectively. In particular, the newly-attached

parts over the backbone adopt convolution layers with the

kernel size of 1 × 1. This is because the crucial part in

D that influences the synthesis quality of G is the backbone
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Algorithm 1 GAN training with the proposed generator-leading

task.

Input: G and our D (including h) that are initialized with random

parameters. Training data {xi}.

Hyperparameters: T : maximum number of training iterations.

1: for t = 1 to T do

2: Sample z ∼ P(Z) ▷ Begin training of G.

3: Update G with Eq. (1)

4: Sample z ∼ P(Z) ▷ Begin training of D.

5: Reconstruct G(z) with Eq. (4) and Eq. (6)

6: Sample x ∼ {xi}
7: Reconstruct x with Eq. (3) and Eq. (5)

8: Discriminate images by D(G(z)) and D(x)
9: Update D with Eq. (2), Eq. (7), and Eq. (9)

10: end for

Output: G with best training set FID.

.

while introducing too many parameters for h will encourage

the optimization to focus on this reconstruction branch

(decoder). Moreover, considering the residual architecture

of G, the spatial representation f consists of a low-level

feature and a high-level one in total. More details are

available in Supplementary Material. Therefore, given one

real image x or a synthesized one G(z), the corresponding

representative features could be obtained by:

freal,wreal = h(Denc(x)), (3)

ffake,wfake = h(Denc(G(z))). (4)

Reconstructing images via a frozen G. For a fair compar-

ison, the generator of the original StyleGAN2 is adopted

without any modification, which stacks a series of con-

volutional ªsynthesis blocksº. Notably, the StyleGAN2

generator is designed with a residual architecture, which

synthesizes images progressively from a lower resolution to

the higher one. For instance, the 16× 16 synthesized result

of the synthesis block corresponding to a lower resolution is

firstly upsampled to 32×32, and then the 32×32 synthesis

block only predicts the residual between the upsampled

result and the desirable 32 × 32 image. As mentioned

before, our predicted spatial representations indeed contain

two features that could serve as the basis and the residual

respectively. And the latent representation is sent to the

synthesis blocks to modulate the features to generate the

final output just as in [36, 37]. Such that, the reconstructed

images could be derived from:

x
′
real = G(freal,wreal), (5)

x
′
fake = G(ffake,wfake), (6)

where G is fully frozen.

Reconstruction loss. After gathering the reconstructed

real and synthesized images, we could easily penalize the

differences between the original images and reconstructed

ones. Here, perceptual loss [73] Lper is adopted as the loss

function:

Lrec = λ1Lper(x,x
′
real) + λ2Lper(G(z),x′

fake), (7)

where λ1 and λ2 denote the weights for different terms.

Note that setting one weight as zero is identical to disabling

the reconstruction tasks on real/synthesized images, which

may deteriorate the synthesis performance to some extent.

Our final algorithm is summarized as in Algorithm 1.

Full objective. With the updated D architecture and the

generator-leading task, the discriminator and generator are

jointly optimized with

L
′
G = LG, (8)

L
′
D = LD + Lrec. (9)

4. Experiments

We conduct extensive experiments on various bench-

mark datasets to demonstrate the effectiveness of the pro-

posed method and the superiority of the specific settings.

The subsections are arranged as follows: Sec. 4.1 introduces

our detailed experiment settings. In Sec. 4 we demonstrate

the qualitative and quantitative superiority of GLeaD .

Sec. 4.3 includes comprehensive ablation studies of the

designed components. Then we visualize the realness

score curves of D to validate the improvement of fairness

in Sec. 4.4. At last, we provide qualitative reconstruction

results and validate the improvement of D’s spatial attention

respectively in Sec. 4.5 and Sec. 4.6.

4.1. Experimental Setup

Datasets. We conduct experiments on FFHQ [36] con-

sisting of 70K high-resolution portraits for face synthesis.

We also adopt the training set of LSUN Bedroom and

Church [72] respectively for indoor and outdoor scene

synthesis, which respectively contains about 126K and 3M

256× 256 images.

Evaluation. We mainly adopt the prevalent Frechet Incep-

tion Distance (FID) [23] for evaluation. Precision & Recall

(P&R) [39] is also adopted as the supplement of FID for

more grounded evaluation. In particular, we calculate FID

and P&R between all the real samples and 50K synthesized

ones for experiments on FFHQ and LSUN Church. While

for LSUN Bedroom we calculate FID and P&R between

50K real samples and 50K synthesized ones because feature

extracting of 3M samples is rather costly.

Other settings. For all the baseline and our models, on

FFHQ we keep training the model until D has been shown

25M images with mirror augmentation. While models on

LSUN Church and Bedroom are trained until 50M images

have been shown to D for more sufficient convergence.

We adopt VGG [57] as the pre-trained feature extractor for
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Table 1. Comparisons on FFHQ [36], LSUN Bedroom and LSUN Church [72]. Our method improves StyleGAN2 [37] in large datasets

in terms of FID [23] and recall. P and R denote precision and recall [39]. Lower FID and higher precision and recall indicate better

performance. The bold numbers indicate the best metrics for each dataset. The blue numbers in the brackets indicate the improvements.

Method
FFHQ [36] LSUN Bedroom [72] LSUN Church [72]

FID↓ P↑ R↑ FID↓ P↑ R↑ FID↓ P↑ R↑

UT [8] 6.11 0.73 0.48 - - - 4.07 0.71 0.45

Polarity [25] - - - - - - 3.92 0.61 0.39

StyleGAN2 [37] 3.79 0.68 0.44 4.30 0.59 0.25 4.04 0.58 0.40

Ours 3.24 (−0.55) 0.69 0.47 2.55 (−1.75) 0.62 0.39 2.82 (−1.22) 0.62 0.43

GGDR [40] 3.25 0.66 0.51 3.71 0.62 0.33 2.81 0.61 0.46

Ours* 2.90 (−0.35) 0.69 0.50 2.72 (−0.99) 0.62 0.37 2.15 (−0.66) 0.61 0.48

perceptual loss calculation. As for the loss weights, we set

λ1 = 10 and λ2 = 3.

4.2. Main Results

Quantitative comparisons. In order to compare our

GLeaD against prior works, e.g., UT [8], Polarity [25], and

StyleGAN2 [37], we calculate the FID and Precision and

Recall [39] (P & R) to measure the synthesis. In particular,

Precision and Recall could reflect the synthesis quality

and diversity to some extent. Moreover, considering that

recent work GGDR [40] also leverages the G to enhance

the representations of D, we further incorporate it with our

method to check whether exists a consistent gain.

Tab. 1 presents the results. From the perspective of

FID, our direct baseline StyleGAN2 could be substantially

improved with the proposed GLeaD, outperforming other

approaches by a clear margin. These results strongly

demonstrate the effectiveness of our GLeaD. Moreover,

combined with GGDR (Ours* in the table), our GLeaD

could further introduce significant gains, achieving new

state-of-the-art performance on various datasets. Namely,

the proposed GLeaD could be compatible with the recent

work GGDR that also considers improving D through G.

Regarding Precision and Recall, clear gains are also

observed on multiple benchmarks. Importantly, the im-

provements mainly come from the Recall side, i.e., the

synthesis diversity is further improved. This matches our

motivation that the generator-leading task could further urge

D to extract more representative features rather than focus

on the limited discriminative regions. As a result, G has

to synthesize images with a variety of modes to fool D in

turn. Moreover, the diversity is significantly improved in

the LSUN bedrooms from 0.25 to 0.39 (56%). This may

imply that our GLeaD could continuously benefit from the

larger-scale reconstruction task, which we leave in future

studies.

Qualitative results. Fig. 3 presents the synthesized sam-

ples by our GLeaD. The models are respectively trained on

Table 2. Ablation studies on the loss weights λ1 and λ2. The

numbers in bold indicate the best FID in each sub-table.

λ1 λ2 FID

0 0 4.04

100 0 331

10 0 3.10

1 0 3.27

λ1 λ2 FID

0 10 3.32

10 10 3.15

10 3 2.82

10 1 2.85

Table 3. Ablation studies on the resolution of f . The upper line

indicates the resolution settings and the bottom line concludes the

corresponding FID performance. The number in bold indicates the

best FID in the table.

Baseline 1× 1 8× 8 16× 16 32× 32 64× 64

4.04 4.68 3.27 3.01 2.82 2.88

FFHQ, LSUN Bedroom, and LSUN Church. Obviously,

all models could generate images with desirable quality and

coverage.

Computational costs. We evaluate the proposed model in

terms of parameter amount and inference time. The specific

results could be found in Supplementary Material.

4.3. Ablation Studies

Constraint strength. Here we ablate the specific target

of the proposed generator-leading task on LSUN Church.

Recall that we have λ1 and λ2 that respectively control

the constraint strength when reconstructing real and fake

images in Eq. (7). As shown in the left sub-table of Tab. 2,

we first set λ1 = λ2 = 0 to get the baseline performance.

Then we set λ2 as 0 and explore a proper λ1 for only

reconstructing real images. Experiments suggest that an

overlarge weight like 100 will make the proposed task

interfere with the adversarial training and the model cannot

converge. And 10 turns out to be a proper choice for λ1,
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Figure 3. Synthesized images by our models respectively trained on FFHQ [36], LSUN Bedroom and Church [72].
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Figure 4. Curves of realness scores that are predicted by various

discriminators during training. The corresponding settings are

labeled on the right. We separately visualize the realness scores

from the discriminators of StyleGAN baseline [37], GGDR [40],

and the proposed method.

improving FID from 4.04 to 3.10. The results incorporating

the reconstruction of fake images are demonstrated in the

sub-table on the right of Tab. 2. We first set λ1 = 0
and λ2 = 10 to validate that merely reconstructing fake

images benefits the synthesis quality. Then we try to find

an appropriate λ2 when the reconstruction of real images

has been incorporated in the task (λ1 = 10). Through the

aforementioned experiments, reconstructing both real and

fake images when λ1 = 10 and λ2 = 3 turns out to be the

best strategy.

Resolution of f . Recall that we require D to extract spatial

features f as the basis of the image reconstruction. And the

predicted latent codes w modulate the latter features of G

to generate the reconstructed image based on f . Here we

conduct ablation studies on the resolution of f on LSUN

Church. As in Tab. 3, extracting f whose resolution is

32 × 32 brings the best synthesis quality. And 1 × 1
in the table indicates the setting where D only predicts

latent codes w without spatial dimension. Notably, the

GGDR – Rec

Input

Fa
ke

Re
al

Rec Input Rec

Figure 5. Reconstruction results of real and synthesized input

images. ªInputº and ªRecº respectively denote the input images

and the reconstruction results by our D and G.

model performance under this setting is even inferior than

the baseline, suggesting the necessity of extracting spatial

features.

4.4. Validation of the Fairer Game

Recall that aiming to improve the synthesis quality

through a fairer setting between G and D, we provide

the generator-leading task for D to extract representative

features adequate for reconstruction. Thus we validate the

boosted fairness in this subsection through experiments.

Following [63], we visualize the mean score in terms of

realness extracted by discriminators throughout the training

process on LSUN Bedroom. Note that the curves are

smoothed with exponentially weighted averages [26] for

clearer understanding. The top of Fig. 4 describes the

visualization results for the real images while the bottom

includes score curves for the synthesized images. The

colors of the curves indicate various settings for training

GANs, as labeled on the right of Fig. 4. From the

aforementioned figure, it can be found that equipped with

our generator-leading task, the absolute score values of

our methods become smaller than the baseline. While

GGDR [40] (the red curve) just maintains and even enlarges

the gap between the absolute values and zero compared to

the baseline, though it can improve FID.

We can thus draw a conclusion that with the aid of the

generator-leading task, it becomes much more challenging

for D to distinguish the real and fake samples. In other
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words, GLeaD can improve the fairness between G and

D, as well as the synthesis quality. On the contrary, the

effectiveness of GGDR is not brought by the improvement

of fairness, which emphasizes the viewpoint that, in order

to boost fairness between G and D, it is necessary to pass

gradients of G to D like our method.

4.5. Reconstruction Results

Recall that we instantiate the generator-leading task

as a reconstruction task. In this subsection, we provide

reconstruction results of real and fake images with the well-

trained D and G. To explore the reconstruction ability of D

more accurately, we provide it with unseen real and synthe-

sized images to extract features. These features are then fed

into the corresponding G to reconstruct the images inputted

to D, as in the training stage. As mentioned in Sec. 4.1,

we train GANs on FFHQ for the face domain and training

set of LSUN Church for outdoor scenes. Thus, here we

randomly sample real images from CelebA-HQ [32, 43]

(another widely-used face dataset) and the validation set

of LSUN Church. Fake images are sampled with the

generators corresponding to the tested discriminators.

As shown in Fig. 5, though some out-of-domain objects

(e.g., crowds in Church) and high-frequency details (e.g.,

teeth of the child) are not perfectly well-reconstructed, our

well-trained discriminator manages to extract representative

features and reproduce the input real and fake images with

G. This indicates that our D could learn features aligned

with the domain of G, matching our motivation.

4.6. Spatial Attention Visualization for D

We also visualize the spatial attention of the well-

trained discriminators with the help of GradCAM [53]. As

mentioned in Sec. 1, we expect D to avoid focusing on

some limited regions or objects, by extracting spatial repre-

sentative features. Here, the discriminators of the baseline

and our method are chosen to validate the improvement in

terms of spatial attention. Considering the discriminators

have been fully trained, we pick some generated images

with unacceptable artifacts, expecting D aware of these

regions with artifacts. For fair comparison, G of GGDR is

adopted to synthesize the images rather than the baseline or

ours. The spatial attention maps are demonstrated in Fig. 6,

note that we pick the gradient map with a relatively higher

resolution (64×64) because it is more spatially aligned with

the original image than an abstract one (e.g., 8×8).

As in Fig. 6, the provided fake images contain various

kinds of unpleasant artifacts. The background of the portrait

is full of unidentified filamentous artifacts. And there is a

weird object on the bed in the bedroom picture. Compared

with the baseline D, our D pays much more attention to

the artifacts instead of focusing on the face and the bed,

which are well synthesized as the subject. Recall that

GGDR – Teaser

Input Ours Baseline

Figure 6. Attention heatmaps of the discriminators visualized by

GradCAM [53]. We feed our D and the baseline D with generated

images with artifacts and expect them to pour attention on these

regions. Please zoom in to view the artifacts more clearly.

under the generator-leading task, D is forced to extract

representative spatial features to faithfully reconstruct the

inputs. To achieve this additional task, the backbone of D

(namely Denc) is naturally forced to learn a much stronger

representation than only fulfilling the binary classification

task. Moreover, it is suggested that the strengthened

representation of D is strong enough to better detect the gen-

erated artifacts. In contrast, the red regions in the attention

map of the baseline are mainly distributed on the face or

bed, which means D pays more attention to the subject of

the training set, even though there are artifacts generated

by G. Naturally, D’s success in detecting and penalizing the

artifacts will improve the synthesis capability of G. And this

could serve as one of the reasons why GLeaD can boost the

synthesis quality of GANs.

5. Conclusion

Generative adversarial network (GAN) is formulated

as a two-player game between a generator (G) and a

discriminator (D). In order to establish a fairer game setting

between G and D, we propose a new adversarial paradigm

additionally assigning D a generator-leading task, which

is termed as GLeaD. Specifically, we urge D to extract

adequate features from the input real and fake images.

These features should be representative enough that G can

reconstruct the original inputs with them. As a result, D

is forced to learn a stronger representation aligned with

G instead of learning and discriminating freely. Thus the

unfairness between G and D could be alleviated. Massive

experiments demonstrate GLeaD can significantly improve

the synthesis quality over the baseline.
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