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Abstract

This paper studies the potential of distilling knowledge
from pre-trained models, especially Masked Autoencoders.
Our approach is simple: in addition to optimizing the pixel
reconstruction loss on masked inputs, we minimize the dis-
tance between the intermediate feature map of the teacher
model and that of the student model. This design leads to a
computationally efficient knowledge distillation framework,
given 1) only a small visible subset of patches is used, and
2) the (cumbersome) teacher model only needs to be par-
tially executed, i.e., forward propagate inputs through the
first few layers, for obtaining intermediate feature maps.

Compared to directly distilling fine-tuned models, distill-
ing pre-trained models substantially improves downstream
performance. For example, by distilling the knowledge
from an MAE pre-trained ViT-L into a ViT-B, our method
achieves 84.0% ImageNet top-1 accuracy, outperforming
the baseline of directly distilling a fine-tuned ViT-L by 1.2%.
More intriguingly, our method can robustly distill knowl-
edge from teacher models even with extremely high mask-
ing ratios: e.g., with 95% masking ratio where merely TEN
patches are visible during distillation, our ViT-B competi-
tively attains a top-1 ImageNet accuracy of 83.6%; surpris-
ingly, it can still secure 82.4% top-1 ImageNet accuracy by
aggressively training with just FOUR visible patches (98%
masking ratio). The code and models are publicly available
at https://github.com/UCSC-VLAA/DMAE.

1. Introduction
Following the success in the natural language processing

[10, 27], the Transformer architecture is showing tremen-
dous potentials in computer vision [2, 11, 25, 26, 33], es-
pecially when they are pre-trained with a huge amount of
unlabelled data [3] with self-supervised learning techniques
[1, 14]. Masked image modeling, which trains models to
predict the masked signals (either as raw pixels or as se-
mantic tokens) of the input image, stands as one of the most
powerful ways for feature pre-training. With the most re-

cent representative work in this direction, masked autoen-
coder (MAE) [13], we are now able to efficiently and effec-
tively pre-train high-capacity Vision Transformers (ViTs)
with strong feature representations, leading to state-of-the-
art solutions for a wide range of downstream visual tasks.

In this paper, we are interested in applying knowledge
distillation [17], which is one of the most popular model
compression techniques, to transfer the knowledge from
these strong but cumbersome ViTs into smaller ones. In
contrast to prior knowledge distillation works [17, 21, 34],
the teacher considered here is a pre-trained model whose
predictions do not necessarily reveal the fine-grained re-
lationship between categories; therefore, typical solutions
like aligning the soft/hard logits between the teacher model
and the student model may no longer remain effective.
Moreover, after distilling the pre-trained teacher model,
these student models need an extra round of fine-tuning to
adapt to downstream tasks. These factors turn distilling pre-
trained models seemingly a less favorable design choice in
terms of both performance and computational cost.

Nonetheless, surprisingly, we find by building upon
MAE, the whole distillation framework can efficiently yield
high-performance student models. There are two key de-
signs. Firstly, we follow MAE to let the encoder exclusively
operate on a small visible subset of patches and to employ
a lightweight decoder for pixel reconstruction. Whereas
rather than using the “luxury” setups in MAE, we show ag-
gressively simplifying pre-training from 1600 epochs to 100
epochs and pushing masking ratio from 75% to 95% suffice
to distill strong student models. Secondly, instead of align-
ing logits, we alternatively seek to match the intermediate
feature representation; this enables the cumbersome teacher
model to only forward propagate inputs through the first few
layers, therefore, reducing computations. We note applying
L1 norm for distance measure is essential recipe for ensur-
ing a successful intermediate feature alignment.

We name this distilling MAE framework as DMAE.
Compared to the traditional knowledge distillation frame-
work where the teacher is a fine-tuned model, DMAE is
more efficient and can train much stronger student models
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Figure 1. Illustration of the distillation process in DMAE. There are two key designs. Firstly, following MAE, we hereby only take
visible patches as inputs and aims to reconstruct the masked ones. Secondly, knowledge distillation is achieved by aligning the intermediate
features between the teacher model and the student model. Note the gray blocks denote the dropped high-level layers of the teacher model
during distillation.

at different capacities. For example, by setting ViT-B as the
student model, while the baseline of distilling a fine-tuned
ViT-L achieves 82.8% top-1 ImageNet accuracy, DMAE
substantially boosts the performance to 84.0% (+1.2%) top-
1 ImageNet accuracy, at a even lower training cost (i.e., 195
GPU hours vs. 208 GPU hours, see Table 9). More intrigu-
ingly, we found that DMAE allows for robust training with
extremely highly masked images—even with TEN visible
patches (i.e., 95% masking ratio), ViT-B can competitively
attain a top-1 ImageNet accuracy of 83.6%; this masking ra-
tio can further be aggressively pushed to 98% (FOUR vis-
ible patches) where DMAE still help ViT-B secure 82.4%
top-1 ImageNet accuracy. We hope this work can benefit
future research on efficiently unleashing the power of pre-
train models.

2. Related Work
Knowledge distillation (KD) is a popular model compres-
sion technique that allows models to achieve both strong
performances of large models and fast inference speed of
small models. The first and seminal KD approach, pro-
posed in [17], transfers the “dark knowledge” via mini-
mizing the KL divergence between the soft logits of the
teacher model and that of the student model. From then
on, many advanced KD methods have been developed,
which can be categorized into two branches: logits distil-
lation [8, 12, 21, 30, 34, 35] and intermediate representation
distillation [15, 16, 18, 23, 24]. Our DMAE belongs to the
second branch, as it minimizes the distance between la-
tent features of the teacher model and those of the student
model.

The first feature-based distillation method is Fit-
Nets [23]. In addition to aligning logits, FitNets requires the
student model to learn an intermediate representation that is

predictive of the intermediate representations of the teacher
network. Heo et al. [15] re-investigates the design of fea-
ture distillation and develops a novel KD method to create
a synergy among various aspects, including teacher trans-
form, student transform, distillation feature position, and
distance function. CRD [24] incorporates contrastive learn-
ing into KD to capture correlations and higher-order output
dependencies. Unlike these existing works, our DMAE is
the first to consider applying KD to extra information from
self-supervised pre-trained models.

Masked image modeling (MIM) helps models to acquire
meaningful representations by reconstructing masked im-
ages. The pioneering works are built on denoising autoen-
coders [28] and context encoders [22]. Following the suc-
cess of BERT in natural language [10], and also with the
recent trend of adopting Transformer [27] to computer vi-
sion [11], there have emerged a set of promising works
on applying MIM for self-supervised visual pre-training.
BEiT [3] first successfully adopts MIM to ViT pre-training
by learning to predict visual tokens. MaskFeat [29] finds
that learning to reconstruct HOG features enables effec-
tive visual representation learning. SimMIM [31] and
MAE [13] both propose to directly reconstruct the pixel val-
ues of the masked image patches. Our work is built on MAE
and finds that MAE enables the whole distillation frame-
work to be efficient and effective.

3. Approach
3.1. Masked Autoencoders

Our method is built upon MAE, a powerful autoencoder-
based MIM approach. Specifically, the MAE encoder first
projects unmasked patches to a latent space, which are then
fed into the MAE decoder to help predict pixel values of
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masked patches. The core elements in MAE include:

Masking. MAE operates on image tokens, i.e., the im-
age needs to be divided into non-overlapping patches. A
random small subset of those patches will be kept for the
MAE encoder, and the rest will be set as the predicting
target of the MAE decoder. Typically, a high masking ra-
tio (e.g.,75%) is applied, preventing models from taking
shortcuts (e.g., simply extrapolating missing pixels based
on neighbors) in representation learning.

MAE encoder. The MAE encoder is a standard ViT ar-
chitecture except that it only operates on those unmasked
patches. This design largely reduces the computation cost
of encoders.

MAE decoder. In addition to the encoded features of un-
masked patches (from MAE encoder), the MAE decoder re-
ceives mask tokens as input, a learned vector shared across
all missing positions. The mask token is only used during
pre-training, allowing independent decoder design. Partic-
ularly, MAE adopts a lightweight decoder for saving com-
putations.

Reconstruction. Different from BEiT [3] or MaskFeat
[29], MAE directly reconstructs image pixel values. The
simple mean squared error is applied to masked tokens for
calculating loss.

Note that, other than distillation-related operations, the
whole pre-training and fine-tuning process in this paper ex-
actly follow the default setup in MAE, unless specifically
mentioned. Interestingly, compared to MAE, our DMAE
robustly enables a much more efficient pre-training setup,
e.g., 100 (vs. 1600) training epochs and 95% (vs. 75%)
masking ratio.

3.2. Knowledge Distillation

MAE demonstrates extraordinary capabilities in learn-
ing high-capacity models efficiently and effectively. In this
work, we seek to combine knowledge distillation with the
MAE framework, to efficiently acquire small and fast mod-
els with similar performance as those powerful yet cum-
bersome models. The most straightforward approach is
directly applying existing knowledge distillation methods,
like the one proposed in DeiT [25], to a fine-tuned MAE
model. However, we empirically find that this approach
hardly brings in improvements. In addition, this approach
fails to leverage the special designs in MAE for reducing
computations, e.g., only feeding a small portion of the input
image to the encoder. To this end, we hereby study an alter-
native solution: directly applying knowledge distillation at
the pre-training stage.

Since there are no categorical labels in MAE pre-
training, distilling logits can hardly help learn semantically
meaningful representations. We, therefore, resort to distill-
ing the intermediate features. This idea is first developed in

FitNets [23], and inspired a set of followups for advancing
knowledge distillation [15, 16, 18, 24]. Concretely, we first
extract the features from the specific layers of the student
model; after feeding such features into a small project head,
the outputs will be asked to mimic the features from the
corresponding layers of the teacher model. In practice, the
projection head is implemented by simple fully connected
layer, which addresses the possible feature dimension mis-
match between teacher models and student models.

Formally, let x ∈ R3HW×1 be the input pixel RGB val-
ues and y ∈ R3HW×1 be the predicted pixel values, where
H denotes image height and W denotes image width. The
MAE reconstruction loss LMAE can be written as

LMAE =
1

Ω (xM )

∑
i∈M

(yi − xi)
2
. (1)

where M denotes the set of masked pixels, Ω(.) is the num-
ber of elements, and i is the pixel index.

Let zSl , z
T
l ∈ RLC×1 be the features extracted from the

lth layer of the student model and the teacher model, respec-
tively, where L denotes the patch numbers, and C denotes
the channel dimension. We use σ() to denote the projection
network function. Our feature alignment distillation loss
LDist can be written as

LDist =
∑
l

1

Ω
(
zTl

) ∑
i

∥∥σ (
zSl

)
i
− zTl,i

∥∥
1
. (2)

The final loss used in pre-training is a weighted sum-
mation of MAE reconstruction loss LMAE and the feature
alignment distillation loss LDist, controlled by the hyper-
parameter α:

L = LMAE + α× LDist. (3)

The framework of DMAE is summarized in Figure 1.
Following MAE, DMAE also takes masked inputs and per-
forms the pretext task of masked image modeling. Be-
sides, the corresponding features are aligned between the
teacher model and the student model. It is worthy of high-
lighting that DMAE is an efficient knowledge distiller: 1)
it only operates on a tiny subset of visible patches i.e., a
high masking ratio is applied; and 2) aligning intermediate
layer features reduce the computation cost of (cumbersome)
teacher model. In the next section, we extensively com-
pare our method with three baselines: the original MAE
without any distillation, DeiT-style distillation, and feature
alignment distillation in the supervised setting.

4. Experiments
4.1. Implementation Details

Following MAE [13], we first perform self-supervised
pre-training on ImageNet-1k [9]. Unless otherwise men-
tioned, the teacher models are public checkpoints released
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# of Layers Layer Location Student Aligned Layer Index ImageNet Top-1 Acc (%)

Single

Bottom 3 82.6

Middle
6 83.6
9 84.0

Top 12 83.4
Multiple Middle+Top 6+12 84.2

Table 1. The effects of feature alignment location. We hereby test with 5 different layer locations, where top layers refer to those closer
to network outputs. For single layer feature alignment, features from the 3

4
depth of the model leads to the best ImageNet top-1 accuracy.

This performance is even comparable to the setup of aligning multiple layers.

from the official MAE implementations1. For pre-training,
we train all models using AdamW optimizer [20], with a
base learning rate of 1.5e-4, weight decay of 0.05, and op-
timizer momentum β1, β2 = 0.9, 0.95. We use a total batch
size of 4096, and pre-train models for 100 epochs with a
warmup epoch of 20 and a cosine learning rate decay sched-
ule. We by default use the masking ratio of 75%; while the
ablation study shows that our method can robustly tackle ex-
tremely high masking ratios. After pre-training, the teacher
model is dropped, and we exactly follow the default setups
in MAE to fine-tune the student model on ImageNet.

For feature alignments, we choose to align the features
from the 3

4 depth of both the student model and the teacher
model, which we find delivers decent results for all model
sizes tested. For example, with a 24-layer ViT-L as the
teacher model and a 12-layer ViT-B as the student model,
features from the 9th layer of ViT-B are aligned with the
features from the 18th layer of ViT-L. We set α = 1 in
Eq. 3 to balance the tradeoff between MAE reconstruction
loss LMAE and the feature alignment distillation loss LDist

in pre-training.

4.2. Analysis

We first provide a detailed analysis of how to set
distillation-related parameters in DMAE. Specifically, we
set the teacher model as an MAE pre-trained ViT-L (from
MAE official GitHub repository, attaining 85.9% top-1 Ima-
geNet accuracy after fine-tuning), and set the student model
as a randomly initialized ViT-B. We analyze the following
six factors:

Where to align. In Table 1 we first check the effect of
feature alignment location on model performance. We ob-
serve that shallower features are less favored: e.g., the 3rd
layer alignment under-performs all other settings. We spec-
ulate this is due to the learning process of ViTs—images
are much noisier and less semantic than texts, ViTs will first
group the raw pixels in the bottom layers (closer to the in-
put), which is harder to transfer. While features from 3

4
depth (i.e., the 9th layer in ViT-B) achieves the best perfor-
mance, a simple rule-of-thumb which we find fits all model
scales in our experiments. We adopt this design choice in all

1https://github.com/facebookresearch/mae

Teacher Layer (relative position) ImageNet Top-1 Acc (%)
Middle 84.0
Top 83.3
Bottom 82.1

Table 2. The analysis of aligning order on ImageNet classifica-
tion top-1 accuracy (%).

Projection Head ImageNet Top-1 Acc (%)
Linear 84.0
2-layer MLP 84.0
3-layer MLP 83.8

Table 3. Projection Head. A simple fully-connected layer works
the best. We choose this as the default setting.

other experiments. It is also worth mentioning that simply
aligning multiple layers has no clear advantage over align-
ing features from 3

4 depth (84.2% vs. 84.0%); we, therefore,
stick to the 3

4 depth setting, which is more efficient.

Aligning order. We next test the importance of alignment
ordering on model performance. Specifically, by fixing the
layer location in the student model (i.e., the middle layer
in our experiment), we then align it to different layers of
the teacher model. As shown in Table 2, we observe that
when the aligned layers are in the same relative position
(e.g., middle to middle), the student model can achieve the
best performance.

Masking ratio. MAE reveals that the masking ratio in
masked image modeling could be surprisingly high (75%).
The hypothesis is that by learning to reason about the gestalt
of the missing objects and scenes, which cannot be done by
extending lines or textures because of the high masking ra-
tio, the model is also learning useful representations. Inter-
estingly, we find that when combining MAE and knowledge
distillation, an even much higher masking ratio is possible,
as shown in Figure 2.

Firstly, it is interesting to note that, compared to the typ-
ical 75% masking ratio setting, further raising the masking
ratio to 90% comes at no performance drop, i.e., both attain
84.0% top-1 ImageNet accuracy. Next, even with an ex-
tremely large masking ratio like 98% (only FOUR visible
patches), DMAE still beats the 100-epoch MAE baseline
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Figure 2. DMAE allows an extremely high masking ratio. From left to right, we increase the masking ratio from the basic 75% to
the extreme 99%. We note that our DMAE competitively attains 83.6% top-1 ImageNet accuracy with 95% masking ratio (TEN visible
patches), and still secures 82.4% top-1 ImageNet accuracy even by learning with FOUR visible patches (98% masking ratio).

Decoder Depth ImageNet Top-1 Acc (%)
2 83.7
4 83.8
8 84.0

Table 4. Decoder Depth. A deeper decoder (slightly) improves
the pre-trained representation quality.

Loss Design ImageNet Top-1 Acc (%)

Loss Choice
L1 with α = 1 84.0
L2 with α = 1 83.3

L1 with α = 0.5 83.9

Loss Ratio
L1 with α = 1 84.0
L1 with α = 2 84.0
L1 with α = 4 84.0

Table 5. Loss Function. From the first block, we can observe
that L1 distance yields significantly higher performance than L2
distance. From the second block, we can observe that the hyper-
parameter α has little influence on the representation quality of
DMAE.

that uses a masking ratio of 75% (second row in Table 6),
by a non-trivial-margin (82.4% vs. 81.6%). These results
suggest that, with the assistance of distilled knowledge from
the teacher model, the student model can make better use of
visible patches, even at a very limited amount, for represen-
tation learning.

Projection head. The goal of the proposed feature align-
ment distillation is to encourage the student model to learn
features that are predictive of features from a stronger
teacher model. To that end, a small projection head is em-
ployed on features from the student model, to 1) project
them onto a space of the same dimension as the hidden di-
mension of the teacher model, and 2) provide extra flexibil-
ity for feature alignment. We ablate the choice of this pro-

jection network, as shown in Table 3. We can observe that
applying a simple fully connected layer already performs
the best among other choices.

Decoder depth. In Table 4 we analyze the effect of decoder
depth. Similar to MAE [13], the final performance gets
(slightly) increased with a deeper decoder. We choose a de-
coder depth of 8 as the default setting as in [13]. Note that a
decoder depth of 2 is also a competitive choice—compared
to an 8-depth decoder, it significantly reduces the computa-
tion cost while only marginally sacrificing the accuracy by
0.3%.

Loss designs. Table 5 ablates the loss design. While Sim-
MIM [31] shows that L1 distance and L2 distance lead to
similar performance, ours suggests that L1 distance exhibits
a clear advantage over L2 distance, i.e., +0.7% improve-
ment. Furthermore, we note DMAE is quite robust to the
specific value of the hyperparameter α, which controls the
relative importance of the distillation loss over the recon-
struction loss. Based on these results, we choose L1 in Eq. 2
for distance measure and set α = 1 in Eq. 3 for the rest ex-
periments.

4.3. Comparison with Baselines.

In Table 6, we compare the performance of our DMAE
with various baselines:

MAE. The MAE baselines are presented in the first block
of Table 6. If MAE is also asked to pre-train for only 100
epochs, DMAE can substantially outperform this baseline
by 2.4% (from 81.6% to 84.0%). When comparing to a
much stronger but more computationally expensive MAE
baseline with 1600 pre-training epoch, we note DMAE still
beats it by 0.4%.

Supervised model. The second block in Table 6 demon-
strates the effectiveness of DMAE compared with models
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Method
Pre-training

epochs
Supervised training /
fine-tuning epochs

ImageNet
Top-1 Acc (%)

MAE-B 100 100 81.6
MAE-B 1600 100 83.6
DeiT-B - 100 76.8
DeiT-B - 300 81.8
DeiT-B-Soft Distillation - 100 77.5
DeiT-B-Hard Distillation - 100 78.3
CRD [24] - 100 81.9
SRRL [32] - 100 82.2
Dear-KD [6] - 100 82.4
Supervised Feature Alignment - 100 82.8
DMAE-B 100 100 84.0

Table 6. DMAE shows stronger performance than all three kinds of baselines: MAE, supervised model, and other existing advanced
distillation strategies.

trained under the supervision of categorical labels, which
requires a much longer training time, i.e., +2.2% compared
to the DeiT 300 epochs supervised training.
Other distillation strategies. We next compare DMAE
with other distillation methods. We consider DeiT-style
logit-based distillation [25], CRD [24], SRRL [32], Dear-
KD [6], and feature alignment distillation. Note that for
these baselines, one significant difference from DMAE is
that the student model here directly distill knowledge from
a supervisely fine-tuned teacher model. Moreover, to make
these baselines more competitive, the teacher models will
first be MAE pre-trained and then fine-tuned on ImageNet-
1k.

The results are shown in the third block of Table 6.
Firstly, we can observe that the DeiT-style logit-based dis-
tillation, either soft or hard, even hurts the student models’
performance. This phenomenon potentially suggests that
such a distillation strategy may not fit teacher models of
ViT architectures. For other baselines, we note that fea-
ture alignment distillation performs the best; but this is still
worse than DMAE (82.8% vs. 84.0%), indicating the im-
portance and effectiveness of distilling knowledge from a
pre-trained teacher model.

4.4. Scaling to Different Model Sizes

We test DMAE with different model sizes, listed in Ta-
ble 7. For a fair comparison, both methods only pre-train
models for 100 epochs. DMAE shows consistent improve-
ment compared to MAE across different model sizes. With
only one middle layer feature alignment, DMAE brings an
additional improvement of +2.4% with ViT-B, +2.7% with
ViT-Small, and +3.4% with ViT-Tiny. In addition, we are
interested in the following two cases:
Same teacher model, different student model. As shown
in the first two lines in Table 7, we find that when using
ViT-L as the teacher model, both ViT-B and ViT-S benefit
from the distillation, demonstrating a clear advantage over

Student Model Teacher Model
ImageNet Top-1 Acc (%)
MAE DMAE

Base Large 81.6 84.0 (+2.4)

Small
Large 77.4 80.1 (+2.7)
Base 77.4 79.3 (+1.9)

Tiny Base 66.6 70.0 (+3.4)

Table 7. Across different model sizes, DMAE shows consistent
improvements compared with MAE.

the MAE baseline. We argue that the ability to effectively
generalize to cases where an even smaller student model
is desirable, especially for those computation-constrained
real-world applications.

Same student model, different teacher model. As shown
in Table 7, with a ViT-S as the student model, enlarging
the teacher model from ViT-B to ViT-L further boosts the
accuracy by 0.8% (from 79.3% to 80.1%). This result sug-
gests that DMAE can effectively distill knowledge from the
teacher models at different scales.

4.5. Limited Training Data

In certain real-world applications, data could be hard to
acquire because of high data collection and labeling costs
or due to privacy concerns. Leveraging models pre-trained
on large-scale unlabeled datasets for fine-tuning when only
a small dataset of downstream tasks is available becomes a
promising solution. Here we seek to test the potential of
our DMAE in this data-scarce scenario. We strictly fol-
low [5] to sample 1% or 10% of the labeled ILSVRC-12
training datasets in a class-balanced way. We set MAE
pre-trained ViT-L as the teacher model and a randomly
initialized ViT-B as the student model. In addition, we
compare DMAE with three kinds of baselines described
in Section 4.3: MAE, supervised model, and other dis-
tillation strategies, and similarly, set the teacher model to
be a ViT-L that first pre-trained with MAE and then fine-
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Method
Pre-training

epochs
Supervised training /
fine-tuning epochs

IN-1%
Top-1 Acc(%)

IN-10%
Top-1 Acc(%)

MAE-B 100 100 33.9 65.0
MAE-B 1600 100 49.6 72.8
DeiT-B - 100 - -
DeiT-B-Soft Distillation 1600 100 36.0 66.4
DeiT-B-Hard Distillation 1600 100 37.3 67.3
Supervised Feature Alignment 1600 100 34.2 67.6
DMAE-B 100 100 50.3 73.4

Table 8. DMAE demonstrates much stronger performance than all other baselines when training data is limited. Note that the
DeiT-B baseline is unable to converge because of data insufficiency.

Model
Training Cost (GPU Hours) ImageNet

Pre-training Fine-tuning Overall Top-1 Acc(%)
MAE-B-100-epoch 78h 112h 190h 81.6
MAE-B-1600-epoch 1248h 112h 1360h 83.6
DeiT-B-Soft Distillation - 213h 213h 77.5
DeiT-B-Hard Distillation - 213h 213h 78.3
Supervised Feature Alignment - 208h 208h 82.8
DMAE-B 83h 112h 195h 84.0

Table 9. Computational cost comparisons among DMAE and other baselines. The training cost is measured by A5000 GPU hours.
We note the proposed DMAE maintains a similar (or even cheaper) training cost than others, while achieving much higher top-1 ImageNet
accuracy.

tuned on ImageNet-1k. Note that since DMAE has full ac-
cess to the 100% ImageNet dataset (without labels) during
pre-training, to ensure a fair and competitive comparison,
we initialize all the baselines as the 1600-epoch MAE pre-
trained model on ImageNet.

Table 8 shows that DMAE largely surpasses all other
baselines. For example, when only 10% ImageNet data
is available for supervised training or fine-tuning, DMAE
outperforms the MAE pre-trained baseline by 8.4% (i.e.,
73.4% vs. 65.0%). DMAE also significantly outperforms
other distillation strategies, with an improvement ranging
from 5.8% to 7.0%. We note this accuracy gap is even
larger when only 1% ImageNet is available, demonstrating
the data efficiency of DMAE.

4.6. Generalization to Other Methods

Lastly, we provide preliminary results of integrating
DMAE into other self-supervised training frameworks, in-
cluding DINO [4] and MoCo-V3 [7]. Unlike MAE, which
belongs to masked image modeling, DINO and MoCo-V3
are contrastive learning-based methods. Still, as shown in
Table 10, without further hyperparameter tuning, DMAE
effectively shows non-trivial improvements on top of both
DINO (+1.3%) and MoCo-v3 (+1.4%), demonstrating the
potential of distilling pre-trained models (rather than fine-
tuned models as in most existing knowledge distillation
frameworks).

w/o DMAE w/ DMAE
DINO 80.9 82.2 (+1.3)
MoCo-V3 81.1 82.5 (+1.4)

Table 10. DMAE effectively improves other self-supervised
pre-training frameworks (including DINO and MoCo-v3) on
ImageNet classification top-1 accuracy (%).

4.7. Generalization to Downstream tasks

Following ViT-Det [19], we conduct downstream fine-
tuning on the COCO dataset, where MAE/DMAE pre-
trained ViT-Base model is adopted as the plain backbone of
Mask-RCNN. We train the model on the train2017 split
and evaluate it on the val2017 split. We report results
on bounding box object detection (APbox) and instance seg-
mentation (APmask), shown in Table 11. Our observations
indicate that DMAE also demonstrates strong potential in
downstream tasks like detection and segmentation.

method APbox APmask

MAE 51.2 45.5
DMAE 53.4 46.9

Table 11. DMAE effectively improves the downstream tasks as
well, including object detection and segmentation.
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5. Discussion
In this section, we present a quantitative evaluation of the

computational cost of DMAE compared to baseline meth-
ods. Additionally, we conduct a standard deviation analysis
to assess the stability of our DMAE approach. Finally, we
propose an advanced fine-tuning recipe for applying DMAE
to smaller ViT models.

5.1. Computational Costs

In Table 9, we provide a quantitative evaluation on the
computational cost, which is tested on a single NVIDIA
A5000 GPU. We can observe that, without a significantly
increasing of training hours, DMAE substantially outper-
forms the MAE-100 baseline by +2.4% on ImageNet; this
result even exceeds the MAE-1600 baseline, which causes
∼7x GPU hours than MAE-100 baseline. We additionally
provide the actual GPU hours of other baselines, and find
that the proposed DMAE stands as the most efficient one,
meanwhile achieving the best top-1 ImageNet accuracy.

5.2. Standard Deviation Analysis

In the above experiments, we kept the same random
seed. Following MAE, we perform the statistical analysis
for DMAE by changing the random seeds. In Table 12,
from top to down, we show three aligning settings; and from
left to right, we show the results with the default seed, the
average accuracy with three randomly sampled seeds, and
their standard deviation, respectively. From these results,
we could conclude that our DMAE can bring in statistically
stable improvements.

Pos Acc(%) Avg Standard Deviation
Bottom (3th) 82.6 82.50 0.20
Mid (6th) 83.6 83.67 0.08
Top (9th) 84.0 84.03 0.10

Table 12. Standard deviation analysis for DMAE. From top to
bottom, we show three aligning settings, the model performance
with the default seed, the average performance with three ran-
domly sampled seeds, and their standard deviations, respectively.
’Pos’ denotes the student distillation position. Acc denotes Ima-
geNet Top-1 accuracy. ’Avg’ denotes the average value over three
times.

5.3. Smaller ViT Models.

Since the original MAE paper does not offer special-
ized recipes for ViT-Small and Tiny, we by default use the
recipe for ViT-Base to fine-tune these smaller ViTs. How-
ever, this recipe includes strong regularization and augmen-
tation techniques that might lead to over-regularization for
the smaller ViTs. To address this issue, we experiment with
a modified recipe with weaker augmentation and regular-
ization by removing MixUp, CutMix, and Stochatic Depth.

ViT-Tiny Top-1 Acc (%)
MAE 70.1
DeiT 74.5

DMAE 74.9
(a) ViT-Tiny

ViT-Small Top-1 Acc (%)
MAE 80.0
DeiT 81.2

DMAE 82.2
(b) ViT-Small

Table 13. Weaker augmentation and regularization helps
smaller ViT models, during finetuning for both MAE and DMAE
on ImageNet classification top-1 accuracy (%)

Results on ImageNet in Table 13 show that DMAE not only
maintains its advantage over MAE, but also outperforms
DeiT with this new recipe, highlighting its effectiveness.

6. Conclusion
Self-supervised pre-training has demonstrated great suc-

cess for those exponentially growing models in the natu-
ral language domain. Recently, the rise of MAE shows
that a similar paradigm also works for the computer vision
domain, and now the development of vision models may
embark on a similar trajectory as in the language domain.
Yet, it is often desirable to have a well-balanced model be-
tween performance and speed in real-world applications.
This work is a small step towards unleashing the potential of
knowledge distillation, a popular model compression tech-
nique, within the MAE framework. Our DMAE is a sim-
ple, efficient, and effective knowledge distillation method:
feature alignment during MAE pre-training. Extensive ex-
periments on multiple model scales demonstrate the effec-
tiveness of our approach. Moreover, an intriguing finding
is that it allows for a masking ratio even higher than the
already large one used in MAE (i.e., 75%). We have also
validated the effectiveness of our DMAE when in the small-
data regime. We hope this work can benefit future research
in knowledge distillation with pre-trained models.
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