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Abstract

Optimal transport (OT) has become exceedingly popu-
lar in machine learning, data science, and computer vision.
The core assumption in the OT problem is the equal to-
tal amount of mass in source and target measures, which
limits its application. Optimal Partial Transport (OPT) is
a recently proposed solution to this limitation. Similar to
the OT problem, the computation of OPT relies on solving
a linear programming problem (often in high dimensions),
which can become computationally prohibitive. In this pa-
per, we propose an efficient algorithm for calculating the
OPT problem between two non-negative measures in one
dimension. Next, following the idea of sliced OT distances,
we utilize slicing to define the Sliced OPT distance. Finally,
we demonstrate the computational and accuracy benefits of
the Sliced OPT-based method in various numerical exper-
iments. In particular, we show an application of our pro-
posed Sliced OPT problem in noisy point cloud registration
and color adaptation. Our code is available at Github Link.

1. Introduction
The Optimal Transport (OT) problem studies how to

find the most cost-efficient way to transport one probabil-
ity measure to another, and it gives rise to popular prob-
ability metrics like the Wasserstein distance. OT has at-
tracted abundant attention in data science, statistics, ma-
chine learning, signal processing, and computer vision
[1, 12, 13, 21, 24, 31, 37, 39, 47, 49]

A core assumption in the OT problem is the equal to-
tal amount of mass in the source and target measures (e.g.,
probability measures). Many practical problems, however,
deal with comparing non-negative measures with varying
total amounts of mass, e.g., shape analysis [9, 46], do-
main adaptation [17], color transfer [10]. In addition, OT
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distances are often not robust to outliers and noise, as
transporting outliers could be prohibitively expensive and
might compromise the distance estimation. To address
these issues, many variants of the OT problem have been
recently proposed, for example, the optimal partial trans-
port (OPT) problem [6, 18, 19], the Hellinger–Kantorovich
distance [9, 36], unnormalized optimal transport [22], and
Kantorovich–Rubinstein norm [25,35]. These variants were
subsequently unified under the name “unbalanced optimal
transport” [11, 36].

The computational complexity of linear programming
for balanced and partial OT problems is often a bottleneck
for solving large-scale problems. Different approaches have
been developed to address this issue. For instance, by en-
tropic regularization, the problem becomes strictly convex
and can be solved with the celebrated Sinkhorn–Knopp al-
gorithm [14,45] which has been extended to the unbalanced
setting [10]. This approach can still be computationally ex-
pensive for small regularization levels. Other strategies ex-
ploit specific properties of ground costs. For example, if the
ground cost is determined by the unique path on a tree, the
problem can be efficiently solved in the balanced [33, 41]
and the unbalanced setting [44]. In particular, balanced 1-
dimensional transport problems with convex ground costs
can be solved by the northwest corner rule, which essen-
tially amounts to sorting the support points of the two input
measures.

Based on this, another popular method is the sliced OT
approach [5, 30, 43], which assumes the ground cost is
consistent with the Euclidean distance (in 1-dimensional
space). Furthermore, it has been shown [30, 32, 44] that the
OT distance in Euclidean space can be approximated by the
OT distance in 1-dimensional Euclidean space. Inspired by
these works, in this paper, we propose the sliced version of
OPT and an efficient computational algorithm for empiri-
cal distributions with uniform weights, i.e., measures of the
form

∑n
i=1 δxi

, where δx is the Dirac measure. Our contri-
butions in this paper can be summarized as follows:

• We propose a primal-dual algorithm for 1-dimensional
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OPT with a quadratic worst-case time complexity and
linear or quadratic complexity in practice.

• In d-dimensional space, we propose the Sliced-OPT
(SOPT) distance. Similar to the sliced OT distance, we
prove that it satisfies the metric axioms and propose
a computational method based on our 1-dimensional
OPT problem solver.

• We demonstrate an application of SOPT in point cloud
registration by proposing a SOPT variant of the iter-
ative closest point (ICP) algorithm. Our approach is
robust against noise. Also, we apply SOPT to a color
adaptation problem (see the supplementary material).

2. Related Work
Linear programming. In the discrete case, the Kan-
torovich formulation [27] of OT problem is a (high-
dimensional) linear program [28]. As shown in [6], OPT
can be formulated as a balanced OT problem by introduc-
ing reservoir points, thus it could also be solved by linear
programming. However, the time complexity is prohibitive
for large datasets.
Entropy Regularization. Entropic regularization ap-
proaches add the transport plan’s entropy to the OT objec-
tive function and then apply the Sinkhorn-Knopp algorithm
[14, 45]. The algorithm can be extended to the large-scale
stochastic [23] and unbalanced setting [2, 10]. For moder-
ate regularization these algorithms converge fast, however,
there is a trade-off between accuracy versus stability and
convergence speed for small regularization.
Sliced OT. Sliced OT techniques [5, 30, 32, 38, 43] rely
on the closed-form solution for the balanced OT map in
1-dimensional Euclidean settings, i.e., the increasing re-
arrangement function given by the north-west corner rule.
The main idea behind these methods is to calculate the ex-
pected OT distance between the 1-dimensional marginal
distributions (i.e., slices) of two d-dimensional distribu-
tions. The expectation is numerically approximated via
a Monte Carlo integration scheme. Other extensions of
these distances include the generalized and the max-sliced
Wasserstein distances [15, 29]. In the unbalanced setting,
and for a particular case of OPT, [4] propose a fast (primal)
algorithm, which has quadratic worst-case time complexity,
and often linear complexity in practice. In particular, Bon-
neel et al. [4] assume that all the mass in the source measure
must be transported to the target measure, i.e., no mass de-
struction happens in the source measure.
Other computational methods. When the transportation
cost is a metric, network flow methods [25, 40] can be ap-
plied. For metrics on trees, an efficient algorithm based on
dynamic programming with time complexity O(n log2 n)
is proposed in [44]. However, in high dimensions existence

(and identification) of an appropriate metric tree remains
challenging.

3. Background of Optimal (Partial) Transport
We first review the preliminary concepts of the OT and

the OPT problems. In what follows, given Ω ⊂ Rd, p ≥ 1,
we denote by P(Ω) the set of Borel probability measures
and by Pp(Ω) the set of probability measures with finite
p’th moment defined on a metric space (Ω, d).
Optimal transport. Given µ, ν ∈ P(Ω), and a lower semi-
continuous function c : Ω2 → R+, the OT problem between
µ and ν in the Kantorovich formulation [27], is defined as:

OT(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Ω2

c(x, y) dγ(x, y), (1)

where Γ(µ, ν) is the set of all joint probability measures
whose marginal are µ and ν. Mathematically, we denote as
π1#γ = µ, π2#γ = ν, where π1, π2 are canonical projec-
tion maps, and for any (measurable) function f : Ω2 → Ω,
f#γ is the push-forward measure defined as f#γ(A) =
γ(f−1(A)) for any Borel set A ⊂ Ω. When c(x, y) is the
p-th power of a metric, the p-th root of the induced optimal
value is the Wasserstein distance, a metric in Pp(Ω).
Optimal Partial Transport. The OPT problem, in addi-
tion to mass transportation, allows mass destruction on the
source and mass creation on the target. Here the mass de-
struction and creation penalty will be linear. Let M+(Ω)
denote the set of all positive Radon measures defined on Ω,
suppose µ, ν ∈ M+(Ω), and λ1, λ2 ≥ 0, the OPT problem
is:

OPTλ1,λ2
(µ, ν) := inf

γ∈M+(Ω2)
π1#γ≤µ,π2#γ≤ν

∫
c(x, y) dγ (2)

+ λ1(µ(Ω)− π1#γ(Ω)) + λ2(ν(Ω)− π2#γ(Ω))

where the notation π1#γ ≤ µ denotes that for any Borel set
A ⊆ Ω, π1#γ(A) ≤ µ(A), and we say π1#γ is dominated
by µ, analogously for π2#γ ≤ ν; the notation µ(Ω) denotes
the total mass of measure µ. We denote the set of such
γ by Γ≤(µ, ν). When the transportation cost c(x, y) is a
metric, and λ1 = λ2, OPT(·, ·) defines a metric onM+(Ω)
(see [11, Proposition 2.10], [42, Proposition 5], [34, Section
2.1] and [7, Theorem 4]). For finite λ1 and λ2 let λ =
λ1+λ2

2 and define:

OPTλ(µ, ν) :=OPTλ,λ(µ, ν) (3)
=OPTλ1,λ2

(µ, ν)−Kλ1,λ2
(µ, ν)

where,

Kλ1,λ2
(µ, ν) =

λ1 − λ2

2
µ(Ω) +

λ2 − λ1

2
ν(Ω).
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Since for fixed µ and ν, Kλ1,λ2 is a constant, then without
loss of generality, in the rest of the paper, we only consider
OPTλ(µ, ν). The case where λi’s are not finite is discussed
in Section 4.1.

Various equivalent formulations of OPT (3) have ap-
peared in prior work, e.g., [18, 19, 42], which were later
unified as a special case of unbalanced OT [11, 36]. We
provide a short summary of these formulations and their re-
lationship with unbalanced OT in the supplementary mate-
rial. OPT has several desirable theoretical properties. For
instance, by [42, Proposition 5], minimizing γ exists and
they are concentrated on c-cyclical monotone sets. More
concretely, we have the following proposition.

Proposition 3.1. Let γ∗ be a minimizer in (3), then the sup-
port of γ∗ satisfies the c-cyclical monotonicity property: for
any n ∈ N, any {(xi, yi)}ni=1 ⊂ supp(γ∗) and any permu-
tation σ : [1 : n]→ [1 : n] we have

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)).

In particular, in one dimension, for c(x, y) = f(|x − y|)
where f : R → R+ is an increasing and convex function,
c-cyclical monotonicity is equivalent to

(x1, y1), (x2, y2) ∈ supp(γ∗),

⇒ [x1 ≤ x2 and y1 ≤ y2] or [x1 ≥ x2 and y1 ≥ y2].

See the supplementary material for proof. To further
simplify (3), we show in the following lemma that the sup-
port of the optimal γ does not contain pairs of (x, y) whose
cost exceeds λ.

Lemma 3.2. There exists an optimal γ∗ for (3) such that
γ∗(S) = 0 where S = {(x, y) : c(x, y) ≥ 2λ}.

4. Empirical Optimal Partial Transport
In Rd, suppose µ, ν are n and m-size empirical distribu-

tions, i.e., µ =
∑n
i=1 δxi

and ν =
∑m
j=1 δyj . The OPT

problem (3), denoted as OPT({xi}ni=1, {yj}mj=1) can be
written as

OPT({xi}ni=1, {yj}mj=1) := min
γ∈Γ≤(µ,ν)

∑
i,j

c(xi, yj)γij

+ λ(n+m− 2
∑
i,j

γij) (4)

where

Γ≤(µ, ν) := {γ ∈ Rn×m+ : γ1m ≤ 1n, γ
T 1n ≤ 1m}, 1

1The rigorous notation should be Π≤(1n, 1m). We would like to abuse
the notation in order to simplify the presentation.

and 1n denotes the n × 1 vector whose entries are 1 and
analogously for 1m. We show that the optimal plan γ for
the empirical OPT problem is induced by a 1-1 mapping.
A similar result is known for continuous measures µ and ν,
see [18, Proposition 2.4 and Theorem 2.6].

Theorem 4.1. There exists an optimal plan for
OPT({xi}ni=1, {yj}mj=1), which is induced by a 1-1
mapping, i.e., γij ∈ {0, 1},∀i, j and in each row and
column, at most one entry of γ is 1.

Combining this theorem and the cyclic monotonicity of
1D OPT, we can restrict the optimal mapping to strictly in-
creasing maps.

Corollary 4.2. For {xi}ni=1, {yj}mj=1 sorted point lists in
R, and a cost function c(x, y) = h(x − y) where h :
R → R is strictly convex, the empirical OPT problem
OPT({xi}ni=1, {yj}mj=1) can be further simplified to

OPT({xi}ni=1, {yj}mj=1) := min
L
C(L) (5)

where

C(L) :=
∑

i∈dom(L)

c(xi, yL[i]) + λ (n+m− 2 |dom(L)|) ,

and L : [1 : n] → {−1} ∪ [1 : m], dom(L) := {i :
L[i] 6= −1}, |dom(L)| is the cardinality of the set dom(L),
L|dom(L) : [1 : n] ↪→ [1 : m] is a strictly increasing map-
ping.2

For convenience, we call any mapping L : [1 : n] →
{−1}∪ [1 : m] a “transportation plan” (or “plan” for short).
Furthermore, since L can be represented by a vector, we
do not distinguish L(i), L[i] and Li. Of course, there is a
bijection between admissibleL and γ and we use this equiv-
alence implicitly in the sequel.

Importantly, the OPT problem is a convex optimisation
problem and therefore has a dual form which is given by the
following proposition.

Proposition 4.3. The primal problem (4) admits the dual
form

sup
Φ∈Rn,Ψ∈Rm

Φi+Ψj≤c(xi,yj) ∀i,j

n∑
i=1

min{Φi, λ}+

m∑
j=1

min{Ψj , λ}.

Moreover, the following are necessary and sufficient
conditions for γ ∈ Γ≤(µ, ν), Φ ∈ Rn and Ψ ∈ Rm

2Here, mapping a point to {−1} corresponds to destroying the point
in the source, while unmatched points in the target are created. Hence, L
uniquely represents the partial transport, and |dom(L)| is the cardinality
of dom(L).
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to be optimal for the primal and dual problems:

Φi + Ψj = c(xi, yj),∀(xi, yj) ∈ supp(γ)

Φi < λ⇒ [π1#γ]i = 1 Ψj < λ⇒ [π2#γ]j = 1

Φi = λ⇒ [π1#γ]i ∈ [0, 1] Ψj = λ⇒ [π2#γ]j ∈ [0, 1]

Φi > λ⇒ [π1#γ]i = 0 Ψi > λ⇒ [π2#γ]j = 0

4.1. A Polynomial Time Algorithm

Our algorithm finds the solutions γ, Φ, and Ψ to
the primal-dual optimality conditions given in Proposi-
tion 4.3. We assume that, at iteration k, we have
solved OPT({xi}k−1

i=1 , {yj}mj=1) in the previous iteration
(stored in L[1 : k − 1]) and we now proceed to solve
OPT({xi}ki=1, {yj}mj=1) in the current iteration. Recall that
we assume that {xi}ni=1 and {yj}mj=1 are sorted and that
L[i] is the index determining the transport of mass from xi,
i.e., if L[i] 6= −1 then xi is associated to yL[i]. For simplic-
ity we assume for now that all points in {xi}ni=1 are distinct,
and likewise for {yj}mj=1. Duplicate points can be handled
properly with some minor additional steps (see supplemen-
tary material). Let j∗ be the index of the most attractive
{yj}mj=1 for the new point xk under consideration of the
dual variables, i.e., j∗ = argminj∈[1:m]c(xk, yj)−Ψj and
set Φk = min{c(xk, yj∗)−Ψj∗ , λ} so that Φk is the largest
possible value satisfying the dual constraints, but no greater
than λ since at this point the dual objective becomes flat.
We now distinguish three cases:

Case 1: If Φk = λ, then destroying xk is the most efficient
action, i.e., we set L[k] = −1 and proceed to k + 1.

Case 2: If Φk < λ and yj∗ is unassigned, then we set
L[k] = j∗ and we can proceed to k + 1.

Case 3: If Φk < λ and yj∗ is already assigned, we must re-
solve the conflict between xk and the element currently
assigned to yj∗. This will be done by a sub-algorithm.

It is easy to see that in the first two cases, if L (or γ), Φ and
Ψ satisfy the primal-dual conditions of Proposition 4.3 up
until k − 1, they will now satisfy them up until k. Let us
now study the third case in more detail.

One finds that if yj∗ is already assigned, then it must
be to xk−1 (proof in supplementary material). We now in-
crease Φi for i ∈ [k − 1 : k] while decreasing Ψj∗ (at the
same rate) until one of the following cases occurs:

Case 3.1: Either Φk−1 or Φk reaches λ. In this case, the
corresponding x becomes unassigned and the other be-
comes (or remains) assigned to j∗. The conflict is re-
solved and we proceed to solve the problem for k + 1.

Case 3.2: One reaches the point where Φk + Ψj∗+1 =
c(xk, yj∗+1). In this case, xk becomes assigned to
yj∗+1, the conflict is resolved and we move to k + 1.

Case 3.3a: One reaches the point where Φk−1 + Ψj∗−1 =
c(xk−1, yj∗−1). If yj∗−1 is unassigned, we assign
xk−1 to yj∗−1, xk to yj∗ . The conflict is resolved and
we move on.

Case 3.3b: In the remaining case where yj∗−1 is already
assigned, we will show that it must be to xk−2. This
means that the set of points involved in the conflict in-
creases and we must perform a slight generalization of
the above case 3 iteration until eventually one of the
other cases occurs.

At each iteration we consider a contiguous set of {xi}k−1
i=imin

assigned monotonously to contiguous {yj}j
∗

j=jmin
, where

imin is initially set imin = k − 1 and jmin is the index of
yj that has been assigned to ximin

(i.e., jmin = j∗), and
the additional point xk. We increase Φi for i ∈ [imin :
k] and decrease Ψj for j ∈ [jmin : j∗], until either
Φk′ becomes equal to λ for some k′ ∈ [imin : k + 1]
(Case 3.1), Φk + Ψj∗+1 = c(xk, yj∗+1) (Case 3.2) or
Φimin

+ Ψjmin−1 = c(ximin
, yjmin−1) (Case 3.3). In Cases

3.1 and 3.2 the conflict can be resolved in an obvious way.
The same holds for Case 3.3, when yjmin−1 is unassigned
(Case 3.3a). Otherwise (Case 3.3b), one adds one more as-
signed pair to the chain and restarts the loop with the pair
(ximin−1, yjmin−1) added to the chain. Of course, trivial
adaptations have to be made to account for boundary ef-
fects, e.g., Case 3.2 cannot occur if j∗ = m etcetera. A
pseudocode description of the method is given by Algo-
rithms 1 and 2, and a visual illustration of these algorithms
is provided in Figure 1. Note that for the sake of legibility,
we make some simplifications, e.g., boundary checks are ig-
nored (see above), and we do not specify how to keep track
of whether j∗ is assigned or not. Also, updating the dual
variables at each iteration of the sub-routine yields a cubic
worst-case time complexity, but is easier to understand. A
complete version of the algorithm with all checks, appropri-
ate data structures, and quadratic complexity is given in the
supplementary material. There we also prove the following
claim:

Theorem 4.4. Algorithm 1 is correct, i.e., it is well-defined
and returns optimal primal and dual solutions L and (Φ,Ψ)
to the 1-dimensional OPT problem for sorted {xi}ni=1,
{yj}mj=1. A slight adaptation of the algorithm (given in the
supplementary material) has a worst-case time complexity
of O(nmax{m,n}).

The algorithm can be adjusted to the case where λ1 =∞
by setting all instances of λ in Algorithms 1 and 2 to +∞
except for the initialization of Ψ. This means that cases 1
and 3.1 never occur. The algorithm then reduces to a primal-
dual version of that given in [4]. If λ2 = ∞, then one
simply flips the two marginals and proceeds as for λ1 =∞.
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Algorithm 1

Algorithm 2

Figure 1. Depiction of Algorithms 1 and 2 for solving the optimal partial transport in one dimension.

Algorithm 1: opt-1d
Input: {xi}ni=1, {yj}mj=1, λ
Output: L, Ψ, Φ

1 Initialize Φi ← −∞ for i ∈ [1 : n], Ψj ← λ for
j ∈ [1 : m] and Li ← −1 for i ∈ [1 : n]

2 for k = 1, 2, . . . n do
3 j∗ ← argminj∈[1:m] c(xk, yj)−Ψj

4 Φk ← min{c(xk, yj∗)−Ψj∗ , λ}
5 if Φk = λ then
6 [Case 1] No update on L

7 else if j∗ unassigned then
8 [Case 2] Lk ← j∗

9 else
10 [Case 3] Run Algorithm 2.

4.2. Runtime Analysis

We test the wall clock time by sampling the point
lists from uniform distributions and Gaussian mix-
tures. In particular, we set {xi}ni=1

iid∼ Unif[−20, 20],

{yj}mj=1
iid∼ Unif[−40, 40], λ ∈ {20, 100} and {xi}ni=1

iid∼
1
5

∑5
k=1N (−4 + 2k, 1), {yj}mj=1

iid∼ 1
6

∑6
k=1N (−5 +

2k, 1), λ ∈ {2, 10}, n ∈ {2000, 2500, . . . 10000}, and
m = n+1000. We compare our algorithm with POT (Algo-
rithm 1 in [4]), an unbalanced Sinkhorn algorithm [10] (we
set the entropic regularization parameter to λ/40), and lin-
ear programming in python OT [20]. Our algorithm, POT,
and Sinkhorn algorithm are accelerated by numba and linear
programming is written in C++. Note that POT [4] and the
unbalanced Sinkhorn minimize a different model. In ad-
dition, for the latter, the performance depends strongly on

the strength of regularization and we found that it was not
competitive in the regime of a low blur. For each (n,m),
we repeat the computation 10 times and compute the av-
erage. For our method and POT, the time of sorting is in-
cluded, and for the linear programming and Sinkhorn algo-
rithms, the time of computing the cost matrix is included.
We also visualize our algorithm’s solutions for {xi}ni=1

iid∼
Unif(−20, 20), {yj}mj=1

iid∼ Unif(−40, 40), n = 8,m = 16
and λ ∈ {1, 10, 100, 1000} (see Figure 3). One can observe
that as λ increases, larger transportations are permitted. The
data type is 64-bit float number, and the experiments are
conducted on a Google Colab Pro+ virtual machine.

5. Sliced Optimal Partial Transport
In practice, data has multiple dimensions and the 1-D

computational methods cannot be applied directly. In the
balanced OT setting the sliced OT approach [5,29,30,32,43]
applies the 1-D OT solver on projections (i.e., slices) of two
r-dimensional distributions. Inspired by these works, we
extend the sliced OT technique into the OPT setting and in-
troduce the so-called “sliced-unbalanced optimal transport”
problem.

Definition 5.1. In Rd space, given µ, ν ∈ M+(Ω) where
Ω ⊂ Rd and λ : Sd−1 → R++ is an L1 function, we de-
fine the sliced optimal partial transport (SOPT) problem as
follows:

SOPTλ(µ, ν) =

∫
Sd−1

OPTλ(θ)(〈θ, ·〉#µ, 〈θ, ·〉#ν) dσ(θ)

(6)

where OPTλ(·, ·) is defined in (3), σ ∈ P(Sd−1) is a prob-
ability measure such that supp(σ) = Sd−1.

13685



Algorithm 2: sub-opt
Input: ({xi}ni=1, {yj}mj=1, k, j∗, L, Φ, Ψ)
Output: (Updated L, Φ, Ψ, optimal for

OPT({xi}ki=1, {yj}mj=1))
1 Initialize imin ← k − 1, jmin ← j∗.
2 while true do
3 i∆ ← argmini∈[imin:k](λ− Φi)

4 λ∆ ← λ− Φi∆
5 α← c(xk, yj∗+1)− Φk −Ψj∗+1

6 β ← c(ximin
, yjmin−1)− Φimin

−Ψjmin−1

7 if λ∆ ≤ min{α, β} then
8 [Case 3.1]
9 Φi ← Φi + λ∆ for i ∈ [imin : k + 1]

10 Ψj ← Ψj − λ∆ for j ∈ [jmin : j∗]
11 Li∆ ← −1, Lk ← j∗

12 for i ∈ [i∆ + 1 : k − 1] do
13 Li ← Li − 1

14 return
15 else if α ≤ min{λdiff , β} then
16 [Case 3.2]
17 Φi ← Φi + α for i ∈ [imin : k + 1]
18 Ψj ← Ψj − α for j ∈ [jmin : j∗]
19 Lk ← j∗ + 1
20 return
21 else
22 Φi ← Φi + β for i ∈ [imin : k + 1]
23 Ψj ← Ψj − β for j ∈ [jmin : j∗]
24 if jmin − 1 unassigned then
25 [Case 3.3a]
26 Limin ← jmin − 1, Lk ← j∗

27 for i ∈ [imin + 1 : k − 1] do
28 Li ← Li − 1

29 return
30 else
31 [Case 3.3b]
32 imin ← imin − 1, jmin ← jmin − 1

Generally, σ is set to the uniform distribution on the unit
ball Sd−1. Whenever supp(σ) = Sd−1, SOPTλ(µ, ν) de-
fines a metric.

Theorem 5.2. Suppose c : R×R→ R+ is the p-th power of
a metric on R where p ∈ [1,∞), and λ ∈ L1(Sd−1;R++),
then (SOPTλ(µ, ν))1/p is a metric inM+(Ω).

In practice, this integration is usually approximated us-
ing a Monte Carlo scheme that draws a finite number of i.i.d.
samples {θl}Nl=1 from Unif(Sd−1) and replaces the integral
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Figure 2. We test the wall-clock time of our Algorithm 1, the par-
tial OT solver (Algorithm 1 in [4]), the unbalanced Sinkhorn algo-
rithm [10], and the linear programming solver in POT [20], which
is written in C++. The maximum number of iterations for linear
programming and the Sinkhorn algorithm is set to 200 ln(n)n.
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Figure 3. Output of the proposed algorithm for λ ∈
[1, 10, 100, 1000] on a sample pair of measures.

with an empirical average:

SOPTλ(µ, ν) ≈ 1

N

N∑
l=1

OPTλl
(〈θl, ·〉#µ, 〈θl, ·〉#ν).
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10k,5% 10k,7% 9k,5% 9k,7%

ICP-D 1.10(1.59) 3.60(0.11) 1.65(1.13) 2.04(2.28)
ICP-U 3.72(0.53) 3.72(0.52) 3.69(0.63) 3.92(0.32)
SPOT 1.27(0.01) 1.40(0.15) 1.42(0.13) 1.53(1.50)
Ours 0.01(1e-3) 0.02(2e-3) 0.20(0.09) 0.33(0.03)

Table 1. We compute the mean (and variance, in parenthesis) of er-
rors in the Frobenius norm between the ground truth and estimated
transportation matrices for ICP(Du), ICP(Umeyama), SPOT, and
our method. We vary the size of the source point cloud from 9k
to 10k samples, the percentage of noise from 5% to 7% (on both
source and target datasets).

Point cloud             ICP (Du)                      SPOT                   Ours   

Figure 4. We visualize the results of ICP(Du), SPOT and our
method. In each image, the target point cloud is in green and the
source point cloud is in orange.

6. Application: Point Cloud Registration

Point cloud registration is a transformation estimation
problem between two point clouds, which is a critical prob-
lem in numerous computer vision applications [26, 48]. In
particular, given two 3-D point clouds, xi ∼ µ, i = 1, . . . , n
and yj ∼ ν, j = 1, . . . ,m, one assumes there is an un-
known mapping, T , that satisfies ν = T#µ. In many appli-
cations, the mapping T is restricted to have the following
form, Tx = sRx + β, where R is a 3 × 3 dimensional
rotation matrix, s > 0 is the scaling and β, called transla-
tion vector, is 3× 1 vector. The goal is then to estimate the
transform, T , based on the two point clouds.

The classic approach for solving this problem is Itera-

tive Closest Point Algorithms (ICP) introduced by [3, 8].
By [50]’s work, classical ICP can be extended into the uni-
formly scaled setting, with further developments by [16].
To address some issues of ICP methods (convergence to
a local minimum, poor performance when the size of the
two datasets are not equal), [4] proposed the Fast Iterative
Sliced Transport algorithm (FIST) using sliced partial opti-
mal transport (SPOT).
Problem setup and our method. We consider the uniform
scaled point cloud registration problem and assume a sub-
set of points in both the source and target point clouds are
corrupted with additional uniformly distributed noise. We
suppose prior knowledge of the proportion of noise is given
(i.e., we have prior knowledge of a number of clean data).

In general, the registration problem can be iteratively
solved, and each iteration contains two steps: estimating
the correspondence and computing the optimal transform
from corresponding points. The second step has a closed-
form solution. For the first step, the ICP method estimates
the correspondence by finding the closest y for each trans-
formed x. Inspired by this work, we estimate the correspon-
dence by using our SOPT solver. See the algorithm 3.

Algorithm 3: iterative-sopt
Input: {xi}ni=1, {yj}mj=1, n0:the # of clean x , N : #

of projections
Output: R, s, β

1 initialize R, s, β, λ, sample {θi}Ni=1 ⊂ S2

2 for l = 1, . . . N do
3 Ŷ ← sRX + β
4 Compute transportation plan L of

OPTλ(θTl Ŷ , θ
T
l Y ) by algorithm 1

5 ∀i ∈ dom(L), ŷi ← ŷi + (θTl yL[i] − θTl ŷi)θ
6 Compute R, s, β from

(X[dom(L)], Ŷ [dom(L)]) by ICP (e.g.,
equations (39)-(42) in [50])

7 If |dom(L)| > n0, decrease λ; otherwise,
increase λ.

Experiment. We illustrate our algorithm on different 3D
point clouds, including Stanford Bunny, Stanford dragon,
Witch-castle and Mumble Sitting. For each dataset, we
generate transforms by uniformly sampling angles from
[−1/3π, 1/3π], translations from [−2std, 2std], and scal-
ings from [0, 2], where std is the standard deviation of the
dataset. Then we sample noise uniformly from the region
[−2M, 2M ]3 where M = maxi∈[1:n](‖xi‖) and concate-
nate it to our point clouds. The number of points in the
target (clean) data is fixed to be 10k and we vary the num-
ber of points in the source (clean) data from 9k to 10k, and
the percentage of noise from 5% to 7%.
Performance. For accuracy, we compute the average and
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ICP SPOT Ours

Dataset(%Noise) Source Target Time/iter. # Iter. Time/iter. # Iter. Time/iter. # Iter.

Bunny (5%) 9k 10k 0.66s 50 10.9s 100 0.31s 2000
Bunny (7%) 10k 10k 0.76s 130 13.2s 100 0.35s 2000

Dragon (5%) 9k 10k 0.66s 100 10.4s 100 0.31s 2000
Dragon (7%) 10k 10k 0.77s 100 13.1s 80 0.35s 1500

Mumble (5%) 9k 10k 0.65s 100 10.78s 100 0.32s 2000
Mumble (7%) 10k 10k 0.78s 100 13.18s 80 0.36s 1500

Castle (5%) 9k 10k 0.66s 150 10.7s 100 0.31s 2000
Castle (7%) 10k 10k 0.76s 350 13.7s 80 0.35s 1800

Table 2. This table reports the data for our method in the shape registration experiment: the number of source and target distributions, the
percentage of noise, the computation times per iteration, and the number of iterations they took to converge for ICP(Du), SPOT, and our
method. The source point cloud is in orange color and the target is in blue color.

standard deviation of error defined by the Frobenius norm
between the estimated transformation and the ground truth
(see Table 1). For accuracy, we observe ICP methods sys-
tematically fail, since the nearest neighbor matching tech-
nique induces a non-injective correspondence, which may
result in a too-small scaling factor. SPOT can successfully
recover the rotation, but it fails to recover the scaling. Our
method is the only one that recovers the ground truth for the
noise-corrupted data (since it utilizes prior knowledge).

For the running time, ICP has the fastest convergence
time, which is generally 100-260 seconds, since finding the
correspondence by the closest neighbor can be done imme-
diately after the cost matrix is computed. SPOT requires
1000-1300 seconds and our method requires 500-700 sec-
onds. The data type is 32-bit float number and the experi-
ment is conducted on a Linux computer with AMD EPYC
7702P CPU with 64 cores and 256GB DDR4 RAM.

Lastly, we provide additional experimental results on a
different application, namely image color adaptation, in the
supplementary material to demonstrate the generality of the
proposed metric.

7. Conclusion and future work
This paper proposes a fast computational method for

solving the OPT problem for one-dimensional discrete mea-
sures. We provide computational and wall-clock analy-
sis experiments to assess our proposed algorithm’s cor-
rectness and computational benefits. Then, utilizing one-
dimensional slices of an r-dimensional measure, we pro-
pose the “sliced optimal partial transport (SOPT)” distance.
Beyond our theoretical and algorithmic contributions, we
provide empirical evidence that SOPT is practical for large-
scale applications like point cloud registration and image
color adaptation (see supplementary material). In point
cloud registration, we show that compared with other clas-
sical methods, our SOPT-based approach adds robustness

Init 1min 3min final

17.45min	

1.3min	

8.75min	

ICP

SPOT

Ours

Figure 5. We visualize the processed point cloud for every meth-
ods with respect to time. The dataset is Stanford dragon. In each
image, the point cloud in orange is source and the point cloud in
green color is the target.

when the source and target point clouds are corrupted by
noise. In the future, we will investigate the potential ap-
plications of SOPT in other machine learning tasks such as
open set domain adaptation problems and measuring task
similarities in continual and curriculum learning.
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Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham
Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain
Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python
optimal transport. Journal of Machine Learning Research,
22(78):1–8, 2021. 5

[21] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio
Araya, and Tomaso A Poggio. Learning with a Wasserstein
loss. Advances in neural information processing systems, 28,
2015. 1

[22] Wilfrid Gangbo, Wuchen Li, Stanley Osher, and Michael
Puthawala. Unnormalized optimal transport. Journal of
Computational Physics, 399:108940, 2019. 1

[23] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis
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