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Abstract

Self-supervised multi-frame depth estimation achieves
high accuracy by computing matching costs of pixel corre-
spondences between adjacent frames, injecting geometric
information into the network. These pixel-correspondence
candidates are computed based on the relative pose esti-
mates between the frames. Accurate pose predictions are
essential for precise matching cost computation as they in-
fluence the epipolar geometry. Furthermore, improved depth
estimates can, in turn, be used to align pose estimates.

Inspired by traditional structure-from-motion (SfM) prin-
ciples, we propose the DualRefine model, which tightly cou-
ples depth and pose estimation through a feedback loop. Our
novel update pipeline uses a deep equilibrium model frame-
work to iteratively refine depth estimates and a hidden state
of feature maps by computing local matching costs based on
epipolar geometry. Importantly, we used the refined depth
estimates and feature maps to compute pose updates at each
step. This update in the pose estimates slowly alters the
epipolar geometry during the refinement process. Experi-
mental results on the KITTI dataset demonstrate competitive
depth prediction and odometry prediction performance sur-
passing published self-supervised baselines 1.

1. Introduction

The optimization of the coordinates of observed 3D
points and camera poses forms the basis of structure-from-
motion (SfM). Estimation of both lays the foundation for
robotics [34, 35, 75], autonomous driving [20], or AR/VR
applications [60]. Traditionally, however, SfM techniques
are susceptible to errors in scenes with texture-less regions,
dynamic objects, etc. This has motivated the development
of deep learning models that can learn to predict depth from
monocular images [14, 15, 18, 48, 50]. These models can

1https://github.com/antabangun/DualRefine
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Figure 1. (a) The estimated pose of a camera affects the epipolar geometry.
(b) The epipolar line in the source image, calculated from yellow points in
the target image, for the PoseNet-based [43] initial pose regression (red) and
our refined pose (green). The yellow point in the source image is calculated
based on our final depth and pose estimates.

accurately predict depth based solely on image cues, without
requiring geometric information.

In recent years, self-supervised training of depth and pose
models has become an attractive method, as it alleviates the
need for ground truth while demonstrating precision com-
parable to those of supervised counterparts [7, 19, 22, 23, 26,
28, 30, 61, 70, 74, 83, 87, 98, 106, 108]. Such an approach
uses depth and pose predictions to synthesize neighboring
images in a video sequence and enforce consistency between
them. As the image sequence is also available at test time,
recent self-supervised methods also study the use of multiple
frames during inference [91]. These typically involve the
construction of cost volumes from multiple views to compute
pixel correspondences, bearing similarities to (multi-view)
stereo models [4, 44, 77]. By incorporating multi-frame data,
geometric information is integrated to make depth predic-
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tions, improving the performance as well as the robustness.
In such a multi-frame matching-based model, the accuracy
of matching costs computation is essential. Recent work in
DepthFormer [29] demonstrates its importance, as they de-
signed a Transformer [84]-based module to improve match-
ing costs and achieve state-of-the-art (SoTA) depth accuracy.
However, their approach came with a large memory cost.

Unlike stereo tasks, the aforementioned self-supervised
multi-frame models do not assume known camera poses
and use estimates learned by a teacher network, typically
a PoseNet [43]-based model. This network takes two im-
ages as input and regresses a 6-DoF pose prediction. As
the estimated pose affects the computation of epipolar ge-
ometry (Fig. 1(a)), the accuracy of the pose estimates is
crucial to obtain accurate correspondence matches between
multiple frames. However, as noted in recent studies [72],
pure learning-based pose regression generally still lags be-
hind its traditional counterpart, due to the lack of geometric
reasoning. By refining the pose estimates, we can improve
the accuracy of the matching costs, potentially leading to
better depth estimates as well. In Fig. 1(b), we show that
the epipolar lines calculated from the regressed poses do not
align with our refined estimates. Conversely, a better depth
prediction may lead to a better pose prediction. Thus, instead
of building the cost volume once using regressed poses, we
choose to perform refinements of both depth and pose in
parallel and sample updated local cost volumes at each itera-
tion. This approach is fundamentally inspired by traditional
SfM optimization and is closely aligned with feedback-based
models that directly couple depth and pose predictions [27].

In this work, we propose a depth and pose refinement
model that drives both towards an equilibrium, trained in a
self-supervised framework. We accomplish this by making
the following contributions: First, We introduce an iterative
update module that is based on epipolar geometry and direct
alignment. We sample candidate matches along the epipolar
line that evolves based on the current pose estimates. Then
the sampled matching costs are used to infer per-pixel con-
fidences that are used to compute depth refinements. The
updated depth estimates are then used in direct feature-metric
alignments to refine the pose updates towards convergence.
As a result, our model can perform geometrically consistent
depth and pose updates. Second, These updates refine the
initial estimates made by the single-frame model. By doing
so, we do not rely on full cost volume construction and base
our updates only on local cost volumes, making it simpler,
more memory efficient, and more robust. Lastly, we design
our method within a deep equilibrium (DEQ) framework [3]
to implicitly drive the predictions towards a fixed point. Im-
portantly, DEQ allows for efficient training with low training
memory, improving upon the huge memory consumption of
previous work. With our proposed novel design, we show
improved depth estimates through experiments that are com-

petitive with the SoTA models. Furthermore, our model
demonstrates improved global consistency of visual odome-
try results, outperforming other learning-based models.

2. Related Work
2.1. Depth from a single image

The depth prediction problem for a single image is ill-
posed due to the possibility of different 3D scenes projecting
onto the same 2D image [32]. Nonetheless, humans can
predict depth from a single image through experience. Moti-
vated by this, numerous supervised neural network models
were proposed to solve the monocular depth estimation task,
starting with Eigen et al.’s paper [15]. Subsequently, per-
formance was improved by modifying the model architec-
ture [14,48,64,94], training on large dataset [13,53,95,100],
designing robust loss functions [49, 103], and transforming
the problem into a classification task [52]. However, super-
visory depth estimation requires ground-truth depth maps,
which are difficult to collect in large quantities and of high
quality. This challenge is one of the main reasons why re-
searchers are exploring semi-supervised training, where the
model expects weak supervision, such as providing relative
depth [12], camera poses [101], or utilizing synthetic data
for training [1, 47, 62].

The need for weak supervision still presents limitations
in generalizability and scalability, among other aspects. To
address these constraints, research on self-supervised train-
ing techniques is gaining momentum. These techniques
involve using geometry in stereo matching [19, 22] or with
a sequence of single-camera images, as initially proposed
by [106]. Monodepth2 [23] refined the idea of exploiting
image sequences for training by using auto-masking and
minimum reprojection losses to address occlusion and ego-
motion issues. Further improvements were made by defin-
ing the problem as a classification task [25, 42], modifying
the architecture [28], feature-based loss for regions with
low texture [74, 101], or reducing artifacts from moving
objects [11, 46, 80].

Our work is based on self-supervised monocular depth
and employs them as a teacher and initial estimate.

2.2. Depth from multiple frames

Relying on single frames at test-time requires the model
to make several assumptions about the scene’s geometrical
details. In contrast, multi-frame approaches, which leverage
available temporal information and incorporate multi-view
geometry, reduce the need for such assumptions.

Multi-frame depth prediction is closely related to stereo
depth estimation, where neural networks convert input stereo
images into depth maps, as demonstrated by [54, 63, 82].
Kendall et al. [44] achieved a significant improvement by
constructing a plane-sweep stereo cost volume. Generally,
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multi-view stereo (MVS) research is more relevant to our
work, as it utilizes an unstructured collection of scene im-
ages, meaning that the pose between different images is not
fixed. In studies like [36, 38, 58, 90, 97], it was common to
combine the previously mentioned cost volumes with ground
truth depth and camera poses for guidance. Consequently,
these works require camera poses during inference [56, 92].
Although some research managed to relax the pose require-
ment during inference, training still necessitates this supervi-
sion [77, 82].

The methods discussed above, along with advances in
other domains such as scale domain adaptation [31, 69, 104],
view synthesis [23, 93], and other supervisory techniques
[26,30], have significantly impacted the performance of self-
supervised approaches. ManyDepth [91], which is similar
to our work, focuses on the drawbacks of using a single
image during inference and proposes a flexible model that
takes advantage of multiple frames at test time, if available.
ManyDepth reduces artifacts from moving objects and tem-
porarily stationary cameras by using a single-frame model as
a teacher, resulting in improved depth map accuracy. More
recently, DepthFormer [29] achieved substantial accuracy im-
provements by using Transformers [84] to obtain improved
pixel matching costs.

Inspired by traditional bundle adjustments, we design a
model that simultaneously solves for both depth and pose
while incorporating many of the advancements mentioned
earlier. Our approach is most similar to DRO [27]. However,
compared to their approach, our model tightly integrates
multi-view geometry into the iterative updates formulation
and bases our refinements on the local epipolar geometry.

2.3. Iterative refinements

Iterative refinement has been employed to improve pre-
diction quality in various learning tasks, including object
detection [6, 24], optical flow estimation [37, 78], semantic
segmentation [68, 102], and others [40, 71]. Some recent
research has attempted to iterate the refinement process us-
ing deep convolutional networks [9, 21, 55, 57]. Other works
train the same network repeatedly by utilizing the results of
the previous iteration [99, 102]. In particular, RAFT [78]
found success with its iterative refinement procedure for
flow estimation. DEQ-flow [2] employed a deep equilibrium
(DEQ) [3] framework to reduce the memory consumption of
RAFT during training while maintaining accuracy.

A key component of our model is inspired by the iterative
updates of RAFT and DEQ-flow. Instead of optical flow, our
model refines depth and pose estimates in parallel. We design
our refinement module to tightly couple the two predictions,
considering the epipolar geometry of adjacent frames. With
every update, the epipolar geometry is refined, which also
results in a more accurate matching costs computation of
pixel correspondences.

2.4. Pose estimation

Pose estimation is a crucial component in self-supervised
monocular depth models. In many works, PoseNet-based
models [43] take a pair of adjacent image frames and output
a 6 DoF pose estimation. This class of models is straightfor-
ward, but often less accurate than their traditional counter-
parts [16, 17, 65] due to the absence of geometry constraints.
Recent work in deep learning-based localization has adopted
differentiable geometrically inspired designs within their
models by using direct alignments [72, 85, 86] or geomet-
ric alignments based on optical flow [79]. These models
demonstrate better generalization properties and accuracy.
The use of self-supervised monocular depth has also been
used to improve traditional odometry [8, 96]. However, our
interest lies in learning to refine both depth and pose in the
self-supervision pipeline. To improve the accuracy of pose
estimation, we integrate direct alignment within the recur-
rent module, ensuring geometrically consistent prediction
between depth and pose.

3. Method
Our model comprises two primary sub-modules. The first

is a single frame self-supervised depth and pose estimator,
building upon previous frameworks [23, 105], which we
revisit in Sec. 3.1. This network serves as both a teacher
and an initializer for the second sub-module, our proposed
multi-frame network, presented in detail in Sec. 3.2.

3.1. Self-supervised depth and pose

We begin by describing the canonical self-supervised
monocular depth estimation pipeline [23], which serves as
the foundation for our approach. This depth training method
assumes that a monocular camera with an intrinsic parameter
K captures an image sequence of a scene. In this process,
two networks are trained in parallel to estimate the per-pixel
depth map of the images D and the relative poses between
adjacent image frames. By warping neighboring images
towards a shared target frame using these two predictions,
self-supervised training can be performed by enforcing pho-
tometric consistency between the frames.

Given the depth map D of a target image and its relative
pose with a source image Tt→s, we can calculate the pro-
jection of each pixel u = (x,y) of the target image onto the
source image as follows:

z′u′ = z′

x′

y′

1

= KTt→s

(
D[u]K−1

x
y
1

), (1)

using the estimated depth at that pixel D[u]. The source
images can then be warped towards the target frame by
sampling the pixel values at the calculated projection

Is→t [u] = Is⟨u′⟩, (2)
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Figure 2. (a) The overall pipeline of the model. Given a pair of source and target images, the teacher model predicts an initial depth D0 and pose T0, as well as
initial hidden states that will be updated. DEQ-based alignments are then performed to find the fixed point and output the final predictions. (b) Each iteration
in the update step takes the current depth and pose estimates. Matching costs are sampled along the current epipolar lines that evolves based on the pose
estimates. The updates are computed by Conv-GRU. Then feature-metric alignment is used to obtain a geometrically consistent pose update.

where ⟨·⟩ indicates bilinear interpolation, implemented using
the spatial transformer network (STN) [39].

The self-supervised loss is calculated as a combination of
the photometric error and the edge-aware smoothness loss:

Lsel f−sup = λpLp +λsLs, (3)

where the photometric error between the warped source
image and the target image is calculated using the structural
similarity loss, and the minimum error is taken between
multiple warped images to account for occlusions. Interested
readers can refer to [23]. The self-supervised loss is typically
computed at multiple scales to stabilize the training.

In this paper, we train a monocular depth estimator and
a pose estimation network using this pipeline, serving two
purposes. First, following ManyDepth [91], we use these
models as a teacher to constrain the multi-frame predictions
in the presence of dynamic objects. Additionally, we employ
them as an initializer for the multi-frame alignment network.

3.1.1 Monocular model

We build our monocular depth estimation model based on
DIFFNet [105], a SoTA self-supervised single-frame esti-
mator. We extract feature maps at multiple scales s from the
target image using the HRNet architecture [88]. In accor-
dance with DIFFNet, feature maps from multiple stages are
accumulated in F(1/2s). Then, we employ disparity decoders
to make disparity predictions at scales s = {2,3}. The pose
estimation network follows the canonical PoseNet [43] ar-
chitecture, taking two input images and outputting 6-DoF
values, with a ResNet18 [33] backbone. The predicted dis-
parity and pose estimation from these networks are used as
a teacher to train our alignment sub-module, as was done in
ManyDepth [91].

3.2. Deep equilibrium alignments

In our alignment sub-module, we assume that additional
input from source image(s) is available, which can be used
to refine the depth and pose estimates. In this work, we focus
on using the image from the previous frame in the image
sequence as our source image.

Our alignment module is formulated as a deep equilib-
rium model [3] that updates the hidden states, depth, and
pose estimates to a fixed point. Specifically, at the fixed
point z∗,

(h∗,D∗,T ∗) = z∗ = U(z∗,x), (4)

where z is composed of a hidden state h, the depth prediction
D, and the pose prediction T . U represents our update func-
tion, refining the depth and pose alternatively. x is an input to
the update module, obtained based on the epipolar geometry
at each step, which we discuss in the next subsection. We
perform these iterative updates at scale s = 2.

From the feature extraction output, we compute an initial
hidden state for our recurrent updates h[0] = tanh(H(F(1/4)))
and a context feature q = Q(F(1/4)). Both H and Q are
composed of a single residual block [33] followed by a
convolutional layer.

3.2.1 Depth updates around local neighborhood

Local epipolar sampling. As discussed previously, our
refinement is based on the pixel matching between the target
image and the source image. We use the first two blocks of
the HRNet feature extractor to extract unary features from
the source image m(1/4)

s and the target image m(1/4)
t , which

we will use to calculate the matching costs.
Similarly to RAFT [78], our aim is to compute the match-

ing values for candidate correspondences around the current
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Figure 3. Qualitative results on KITTI data. Is: input image; Wq, Wh,0, and Wh,5: confidence weights; D0, D5: disparity estimates; The Abs Rel error for the
depth estimates.

prediction and use them as input to our update module at the
update step k. Unlike RAFT, however, we perform matching
along an epipolar line based on the pose estimate Tk. This
is done by computing the projected coordinates u′k in the
source image obtained from (1) at the depths of interest. The
depth candidates are computed to be the neighborhood of
the current prediction. Instead of computing the all-pair cor-
relation as was done in RAFT, we compute feature matching
on the fly.

At each pixel u, we compute the local depth candidates as
D[u]k ±(i×c×n), with i ∈Z and i ≤ r. We set the sampling
radius hyperparameter r = 8 in our experiments. In depth
estimation, the error typically grows with distance. To ac-
count for this, we define c = D[u]/C as a function of depth to
make the sampling range dependent on the depth, where we
set C as a trainable parameter. Following RAFT, to collect
the matching information from a larger neighborhood, we
sampled at multiple levels n = {1,2,3}. At each level, we bi-
linearly resize the matching feature map of the source image
m(1/4)

s with a scale of 1/2n. Then, the matching features are
sampled at the calculated corresponding set of coordinates
u′k, and the absolute differences with the target feature

Ck[u] = |mt [u]−ms⟨u′k⟩| (5)

are calculated and gathered. This provides us with a map Ck
that contains n×(2×r+1) matching cost values at the corre-
sponding depth candidates. We then encode these matching
costs along with the depth using a two-layer convolutional
neural network (CNN) to compute the input for the update
module

xk = [CNNC(Ck),CNNDx(Dk),q], (6)

where [·, ·] represents the concatenation.

Depth update. The update function calculates an updated
hidden state hk+1 using the Conv-GRU block [5,41,78]. hk+1
is used to compute the depth updates. To stabilize training,
we use the activation function tanh(·) to bound the absolute
update values for the depths to be within r · c:

Dk+1 = Dk + r · c · tanh(CNNDU(hk+1)). (7)

These updates are performed in an alternating fashion with
the pose updates to reach the fixed point D∗. Using h∗,
we compute a convex upsampling to obtain the final depth
estimate at the input resolution.

3.2.2 Feature-metric pose alignments

In (1), the accuracy of pose estimation affects the calcu-
lation of the coordinates of pixels. Hence, a refined pose
estimate would also improve the reliability of the matching
costs. To refine the pose while being geometrically consis-
tent, we perform our pose updates based on direct feature
alignments [16, 17, 87]. These updates δk can be calculated
by solving Hkδk = bk, where

Hk = J T
k diag(Wk)Jk and bk =−J T

k diag(Wk)rk

rk[u] = ms⟨u′k⟩−mt [u],
(8)

and J is the Jacobian with respect to the pose.
To compute this pose update, one could assign uniform

confidence to every pixel in the image. However, in Eq. (8),
additional confidence weights per pixel W can also be in-
tegrated. This is done for two reasons. First, the solution
for the pose updates can be affected by dynamic objects
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as well as inaccurate feature alignments that may occur in
region with repeated textures. To account for this, the con-
fidence weighting of the input context feature map Wq can
be computed [72]. Specifically, we computed a confidence
map Wt,s = 1/(1+ReLU(CNNWq(Ft,s))) for both target and
source images. The source confidence is warped towards the
target frame using Eqs. (1) and (2). Finally, the confidence
is computed as Wq =Wt ·Ws,warped . This confidence weight
is only computed once to assign per-pixel confidence for the
input images.

Second, the accuracy of pose updates would depend on
the accuracy of the depth estimates. To obtain more accurate
pose updates, we would like to assign more alignment con-
fidence to the region with higher depth accuracy. We use a
neural network to infer this confidence from the matching
costs. Since the hidden states h have a history of these match-
ing costs, another confidence weights Wh,k = CNNWh(hk)
can be computed. Unlike the previous confidence map, this
one is computed and evolves at every update step. By doing
so, the network can use the depth predictions to guide the
pose estimates towards convergence using the depth infor-
mation. In our experiments, we investigate the use of each
confidence weighting and combination of both Wk =WqWh,k.

Finally, we can compute the updated pose as Tk+1 =
exp(δ∧

k )Tk. These operations are designed to be differen-
tiable to enable end-to-end training.

3.2.3 DEQ training

We adopt a DEQ framework, wherein the above steps are
repeated until the depth and pose values reach a fixed point,
at which the update value is minimal. In our implementation,
the fixed points of depth and pose are chosen separately, and
it is possible for both to be selected from different update
steps. Finally, the training gradient is computed using the
chosen depth and pose fixed points. Operations prior to the
fixed point do not require saving gradients in memory, which
allows memory-efficient training.

As noted in Eqs. (1) to (3), the self-supervision losses
can be computed given a depth and pose prediction. At
the fixed point, we compute two additional self-supervision
losses. The first performs source-to-target image warping
through the pairing of the final depth D∗ and the initial pose
T0, where we detach T0 from the computational graph to act
as a teacher. This loss is used so that the output of the teacher
and refinement modules shares the same scaling. The second
performs the warping with the pairing of D∗ and T ∗. This
loss helps drive refined estimation of both depth and pose
towards the optimal value. Detailed experiments for this
choice of loss pairings are provided in the supplementary.

In both losses, we also apply the consistency loss between
D0 and D∗, similar to ManyDepth [91], to account for dy-
namic objects or occluded regions. Specifically, we extract

coarse depth predictions from the raw feature matchings and
mask regions where large disagreements occur, and enforce
consistency with the teacher depth. Unlike ManyDepth,
however, our method does not explicitly construct a cost
volume. To obtain the coarse depth, we search for the lowest
matching cost around the neighborhood of the teacher depth,
similar to Sec. 3.2.1, but with a larger neighborhood range.
This approach offers an additional advantage compared to
the cost volume-based method, as we do not need to rely
on an estimated minimum and maximum depth or know the
scale of the estimates. Moreover, since the computation of
coarse depth depends on the accuracy of feature matching
costs, it can be improved with more accurate pose estimates
(Tab. 2).

4. Experiments
4.1. Dataset and metrics

For depth estimation experiments, we use the Eigen
train/test split [15] from the KITTI dataset [20]. To evaluate
the estimated depths, we scale them by a scalar to match the
scale of the ground truth. We employ standard depth evalua-
tion metrics [14, 15], including absolute and squared relative
error (Abs Rel, Sq Rel), root mean square error (RMSE,
RMSE log), and accuracy under threshold (δ1, δ2, and δ3),
with a maximum depth set at 80m. Lower values are better
for the first four metrics, while higher values are better for
the remaining three.

For the visual odometry experiments, we use the KITTI
odometry dataset and follow the same training and evalua-
tion sequences (Seq. 00-08 for training and Seq. 09-10 for
evaluation) as in previous work [106]. Since our estimation
relies on a monocular camera, the estimated trajectories are
aligned with the ground truth using the 7 DoF Umeyama
alignment [81]. We use standard odometry evaluation met-
rics such as translation (terr) and rotation (rerr) error [20],
and absolute trajectory error (ATE) [76].

4.2. Implementation details

We conduct our experiments using PyTorch [66] on an
RTX 3090 GPU with a batch size of 12. Following [23],
we apply color and flip augmentations and resize input im-
ages to a resolution of 640× 192. For our high resolution
experiments, we resize the images to 960× 288. We train
the entire network for 15 epochs with a learning rate of 10−3,
at which point we freeze the teacher depth and pose models.
We then continue to train the network with a learning rate of
10−4. Adam optimizer [45] is employed with β1 = 0.9 and
β2 = 0.999.

As mentioned earlier, the depth backbone is based on the
HRNet architecture [88]. For the teacher pose model, we
adhere to the standard design, using the first five layers of a
ResNet18 initialized with ImageNet pre-trained weights as
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Method Test frames Semantics W ×H Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

L
ow

&
m

id
re

s

Ranjan et al. [70] 1 832×256 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [59] 1 832×256 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth (M) [10] 1 416×128 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Videos in the wild [26] 1 416×128 0.128 0.959 5.230 0.212 0.845 0.947 0.976

Guizilini et al. [30] 1 640×192 0.102 0.698 4.381 0.178 0.896 0.964 0.984
Johnston et al. [42] 1 640×192 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Monodepth2 [23] 1 640×192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Packnet-SFM [28] 1 640×192 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Li et al. [51] 1 416×128 0.130 0.950 5.138 0.209 0.843 0.948 0.978
DIFFNet [105] 1 640×192 0.102 0.764 4.483 0.180 0.896 0.965 0.983

DualRefine-initial (D0) 1 640×192 0.103 0.721 4.476 0.180 0.891 0.965 0.984
Patil et al. [67] N† 640×192 0.111 0.821 4.650 0.187 0.883 0.961 0.982
Wang et al. [89] 2 (-1, 0) 640×192 0.106 0.799 4.662 0.187 0.889 0.961 0.982

ManyDepth (MR) [91] 2 (-1, 0) 640×192 0.098 0.770 4.459 0.176 0.900 0.965 0.983
DepthFormer [29] 2 (-1, 0) 640×192 0.090 0.661 4.149 0.175 0.905 0.967 0.984

DualRefine-refined (D∗) 2 (-1, 0) 640×192 0.090 0.658 4.237 0.171 0.912 0.967 0.984

H
ig

h
re

s DRO [27] 2 (-1, 0) 960×320 0.088 0.797 4.464 0.212 0.899 0.959 0.980
Wang et al. [89] 2 (-1, 0) 1024×320 0.106 0.773 4.491 0.185 0.890 0.962 0.982

ManyDepth (HR ResNet50) [91] 2 (-1, 0) 1024×320 0.091 0.694 4.245 0.171 0.911 0.968 0.983
DualRefine-refined (HR) (D∗) 2 (-1, 0) 960×288 0.089 0.754 4.273 0.170 0.917 0.968 0.983

Table 1. Results and comparison with other state-of-the-arts models on the KITTI [20] Eigen split. Bold: Best, Underscore: Second best. † : evaluated on
whole sequences

Pose Consistency Abs Rel Sq Rel RMSE δ1 δ2Updates mask
no update T0 0.097 0.713 4.462 0.898 0.964
no weights T0 0.090 0.658 4.237 0.912 0.967

no Wh,k T0 0.090 0.645 4.273 0.908 0.966
no Wq T0 0.091 0.713 4.295 0.910 0.967

Wq and Wh,k T0 0.089 0.652 4.282 0.909 0.967
no weights T ∗ 0.091 0.645 4.201 0.910 0.968

Table 2. Ablation experiment for the effect of pose updates on the
KITTI [20] Eigen split. Bold: Best.

an encoder, followed by a decoder that outputs 6-DoF pose
estimates. At test time, depth estimates are made using the
current frame and the previous frame when available. When
the previous frame is unavailable, we skip the refinement
module and simply use the initial estimates.

4.3. Ablation

Pose updates. We analyze the effect of pose refinement
toward depth and present the findings in Table 2. Our model
that does not perform pose updates has the worst accuracy.
Evolving confidence weighting. We also show the impact
of confidence weightings. Interestingly, similar performance
can be observed for all models that perform pose updates,
even when no confidence weighting is used to guide the pose
computation.
DEQ iteration. In addition to studying the effect of pose
refinements, we also investigate aspects of DEQ iterative
updates and present the findings when we vary the number
of iterations during training and at test time in Table 3. The
results suggest that 6 iterations is sufficient for the model to
find the fixed point. We speculate that the initial estimate
provides a reliable starting point and hence the fast conver-
gence. On our machine, the 6 update iterations increase the

DEQ Abs Rel Sq Rel RMSE δ1
Time

# iters (ms)
3→3 0.097 0.777 4.431 0.906 53
6→3 0.098 0.695 4.318 0.905 53
6→6 0.090 0.658 4.237 0.912 68
12→3 0.102 0.732 4.428 0.900 53
12→6 0.095 0.708 4.336 0.907 68

12→12 0.092 0.707 4.316 0.909 99

Table 3. Ablation experiment for the DEQ iterations on the KITTI [20]
Eigen split. a → b represents a : # iters at training and b : # iters at test time.
Bold: Best.

baseline model’s inference time from 37.90 ms by ∼ 31 ms
to a total of 68.49 ms, running at almost 15 fps. However,
we only use PyTorch basic functions in our implementation,
and further optimization of the code could be made.

4.4. Depth results

Table 1 shows the comparison of our depth estimation
with SoTA self-supervised models. We compare with mod-
els that train on monocular video. Our model outperforms
most previous models and is competitive with the Trans-
former [84]-based DepthFormer [29] model. Specifically,
our model shows a significant improvement in δ1, suggesting
highly accurate inliers. Furthermore, compared to Depth-
Former that requires 16GB training memory per batch, ours
only consumes 24GB of memory for 12 batches, around
1/8× the memory requirement. This is mainly because our
method refines 2D hidden states based on local sampling,
while [29] refines 2D feature maps and a 3D feature volume
using self/cross-attention along every depth bin.

Fig. 3 displays qualitative outputs for the disparity and
error map of our model. We can observe an improvement to
the error map of the refined depth. We also additionally dis-
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Methods Seq 9 Seq 10
terr(%) ↓ rerr(

◦/100m) ↓ ATE (m) ↓ terr(%) ↓ rerr(
◦/100m) ↓ ATE (m) ↓

ORB-SLAM2 [65] (w/o LC) 9.67 0.3 44.10 4.04 0.3 6.43
ORB-SLAM2 [65] 3.22 0.4 8.84 4.25 0.3 8.51
SfMLearner [106] 19.15 6.82 77.79 40.40 17.69 67.34

GeoNet [98] 28.72 9.8 158.45 23.90 9.0 43.04
DeepMatchVO [73] 9.91 3.8 27.08 12.18 5.9 24.44
Monodepth2 [23] 17.17 3.85 76.22 11.68 5.31 20.35
DW [26]-Learned - - 20.91 - - 17.88

DW [26]-Corrected - - 19.01 - - 14.85
SC-Depth [7] 7.31 3.05 23.56 7.79 4.90 12.00

Zou et al. [107] 3.49 1.00 11.30 5.81 1.8 11.80
P-RGBD SLAM [8] 5.08 1.05 13.40 4.32 2.34 7.99

DualRefine-initial (T0) 9.06 2.59 39.31 9.45 4.05 15.13
DualRefine-refined (T ∗) 3.43 1.04 5.18 6.80 1.13 10.85

Table 4. Results on Seq. 09 and Seq. 10 of the KITTI odometry data. We provide a comparison with other state-of-the-art self-supervised depth and odometry
methods. ORB-SLAM2 is included as a representative non-learning based method. Bold: Best, Underscore: Second best.

(a) Sequence 09

(b) Sequence 10

Figure 4. Estimated trajectory by the initial pose estimator and the refined
trajectory using our pose refinement module on (a) Seq. 09 and (b) Seq. 10
of KITTI odometry data. The refined pose estimate improves the global
trajectory, even without explicitly training for global consistency.

play confidence weight outputs obtained by the model that
computes them. We observe that the confidence Wq, which
is calculated once, assigns the high confidence sparsely. In-
terestingly, the confidence weights that evolve with each
iteration initially assign high confidence to far-away points
and moves towards closer points with increasing iterations.
Limitation: we note an increase in error for the moving
vehicle in the lower image set. The worse RMSE of our
model compared to DepthFormer also indicates higher out-
lier predictions. This could be due to repeated operation of

our iterative updates, which further exacerbate the outlier
problem. Even with consistency masking, the model we
propose displays limitations with dynamic objects. How-
ever, the results of the last row of Tab. 2 show that using
the refined pose to extract the consistency mask for training
slightly improves Sq Rel, RMSE, and δ2. We leave further
the discussion of this issue for future study.

4.5. Odometry results

We present the results for visual odometry of the teacher
model and the refinement model in Table 4. We also present
the results of previous models that were trained on monoc-
ular videos. Our refinement module drastically improves
the initial odometry results, as shown in Fig. 4. Although
the goal of our study was to improve the estimation of local
poses for accurate matching, we outperformed most of the
other models in all metrics. Even without explicit training
to ensure scale consistency, as in [7, 8], our refined output
demonstrates a globally consistent odometry prediction. Ad-
ditionally, unlike Zou et al. [107] which infers pose from
long-term geometry, this result is achieved with only two in-
put frames to infer pose estimates. Our model also achieves
an ATE that is on par with the traditional ORB-SLAM2,
which performs global geometric optimization, although our
results in rerr still lag behind.

5. Conclusions
In this paper, we introduced a self-supervised pipeline

for multi-frame depth and pose estimation and refinement.
By leveraging the combined power of neural network repre-
sentation and geometric constraints to refine both depth and
pose, our approach achieved state-of-the-art performance in
both tasks. Our method also demonstrates greater efficiency
than competing methods, with potential for further improve-
ment. Nevertheless, we still observed poorer depth accuracy
in dynamic scenes.
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