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Abstract

Self-supervised learning in vision–language processing
(VLP) exploits semantic alignment between imaging and
text modalities. Prior work in biomedical VLP has mostly
relied on the alignment of single image and report pairs
even though clinical notes commonly refer to prior im-
ages. This does not only introduce poor alignment be-
tween the modalities but also a missed opportunity to ex-
ploit rich self-supervision through existing temporal con-
tent in the data. In this work, we explicitly account for
prior images and reports when available during both train-
ing and fine-tuning. Our approach, named BioViL-T, uses
a CNN–Transformer hybrid multi-image encoder trained
jointly with a text model. It is designed to be versatile
to arising challenges such as pose variations and miss-
ing input images across time. The resulting model excels
on downstream tasks both in single- and multi-image se-
tups, achieving state-of-the-art (SOTA) performance on (I)
progression classification, (II) phrase grounding, and (III)
report generation, whilst offering consistent improvements
on disease classification and sentence-similarity tasks. We
release a novel multi-modal temporal benchmark dataset,
MS-CXR-T, to quantify the quality of vision–language rep-
resentations in terms of temporal semantics. Our experi-
mental results show the advantages of incorporating prior
images and reports to make most use of the data.

1. Introduction

Self-supervision from image–text pairs has enabled the
development of flexible general-purpose vision–language
models both in the general domain [40, 53, 77] and for
specialised domains such as biomedicine and radiology
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Figure 1. (a) Existing visual–language pre-training approaches
[9, 32, 81] often use only a single image for contrastive learning
(e.g., InfoNCE [49]). (b) In such settings, discarding the temporal
connectivity of images limits the alignment of image–text pairs as
shown with the affinity matrix, leading to suboptimal pre-training
and missed opportunity to create additional model supervision for
free. (c, d) Our approach exploits this domain knowledge by learn-
ing to incorporate a series of images and correlate them to reports,
leading to pre-trained models that can generalise to a wider range
of downstream tasks whilst achieving SOTA performance.

[9, 32, 81]. Vision–language processing (VLP) has shown
that cross-modal supervision can provide a richer signal for
training both image [19] and text [9] models. However, the
success of VLP relies on paired samples sharing semantics,
i.e., given an image and text pair, the text should describe
the image with minimal extraneous detail [15, 16, 35].

In this regard, VLP in biomedicine and radiology poses
a distinctive challenge, as reports routinely include compar-
isons to prior imaging studies [3, 47, 57]. Without knowl-
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edge of this prior image1, temporal information in the text
modality, e.g. “Pneumonia is improving”, could pertain to
any image containing “Pneumonia”, producing ambiguity
during contrastive training (Figure 1). Despite this, the ex-
isting VLP work to date considers alignment between only
single images and reports [9,32,46,81], going so far as to re-
move temporal content from reports in training data to pre-
vent ‘hallucinations’ in downstream report generation [54].
However, temporal information can provide complementary
self-supervision, solely by exploiting existing structure, and
without requiring any additional data.

In this work, we neither ignore nor remove temporal in-
formation in the text modality, but explicitly account for it
during pre-training. Rather than treating all image–report
pairs in the dataset as independent, we exploit temporal cor-
relations by making prior images available for comparison
to a given report. To learn from this structure, we develop
a temporal VLP pre-training framework named BioViL-T.
A core component is its new multi-image encoder that can
handle the absence of prior images and potential spatial
misalignment between images across time. BioViL-T takes
into account prior images where available, removing cross-
modal ambiguity as illustrated in Fig. 1. Linking multi-
ple images during pre-training proves beneficial to both im-
age and text models: we report state-of-the-art (SOTA) per-
formance on both temporal image classification and report
generation. In the latter case, we show that prefixing the
prior report substantially increases performance, again re-
flecting the value of prior information. We emphasise that
the benefit is not restricted to temporal downstream tasks:
our approach also achieves SOTA on non-temporal tasks of
pneumonia detection [60] and phrase grounding [10], un-
derscoring the value of a cleaner learning signal during VLP
without needing to modify or add to the training dataset.
Our contributions can be summarised as follows:

• We introduce a novel pre-training framework called
BioViL-T. It leverages the temporal relationship of sam-
ples to self-supervise VLP models, making commonly
used biomedical VLP models (e.g., [9,32,81]) more ap-
plicable to a wider range of downstream tasks without
compromising performance on existing benchmarks.

• We develop a generic multi-image encoder that handles
missing image inputs and incorporates longitudinal in-
formation without requiring explicit image registration.

• We achieve SOTA results in chest X-ray (CXR) report
generation, temporal image classification, and phrase
grounding downstream benchmarks by accounting for
prior context in self-supervised training and fine-tuning.

• We release a new multimodal benchmark dataset,
MS-CXR-T , curated by an expert radiologist. It enables

1In the MIMIC-CXR v2 dataset [36], around 40% of reports explicitly
reference a previous image. See Appendix B for details.

benchmarking of CXR VLP models in terms of tempo-
ral semantics extracted from image and text data.

2. Related work

Vision–language processing Self-supervised VLP can
significantly reduce the need for manual labels required for
the training of image encoders [19, 53]. The availability of
large-scale paired image–text datasets has thus led to rapid
development of general-purpose VLP models. Objectives
include contrastive and discriminative image–text matching
[40,53,69] including local variants [32,76], auto-regressive
(AR) captioning [4, 39, 77] and multi-modal masked mod-
elling objectives [13, 40, 61].

Biomedical vision–language processing Paired medical
image–report datasets were originally used for supervised
learning via (typically) automated label extraction from
clinical reports [33, 63, 70]. Using such datasets, advances
in general-domain self-supervised VLP have been demon-
strated to benefit biomedical imaging applications [9, 32,
81]. Work has incorporated ideas from general-domain
VLP such as the original CLIP-style cross-modal con-
trastive objective [81], multi-modal masking with merged
co-attention on image–text representations [46], and adap-
tations to the data of the domain. For example, a radiology
report may have sparse image-specific details, prompting
a local modification to the contrastive loss enabling align-
ment between text tokens and image patches [32]. Domain-
specific pre-training of the text model is shown to benefit
biomedical VLP [9], and preferential masking of medical
terms during masked language modelling (MLM) was ex-
plored [75]. Here we use a local loss and domain-specific
pre-training of the text model, but did not find a benefit to
preferential masking. Similarly, cross-attention [22] is used
rather than merged co-attention for image-guided MLM.

Longitudinal modelling of medical images While prior
images are used in unimodal supervised longitudinal analy-
sis of medical images [37, 58, 68, 74], temporal information
has not directly been employed for self-supervision. The
closest work exploits patient metadata to select positive or
negative examples in unimodal contrastive learning [67,79].

Existing models typically employ either late fusion of
global image representations [58,64,68,74], which can miss
fine-grained localised changes [32], or explicit spatial cor-
respondence of features, using fixed spatial grids [48] or
object detection [37]. Registering image pairs is commonly
used for change detection in other contexts [17,52,59], and
has been applied to medical imaging [5, 23]. For CXRs
however, registration entails the ill-posed problem of align-
ing 2D projections of 3D geometry, which inevitably re-
sults in residual misalignment. Our approach does not rely
on bounding boxes or explicit graph construction as it uses
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self-attention of visual tokens across time to handle any spa-
tial misalignment.

Self-supervision across time Self-supervision has found
applications on densely-sampled time series data (e.g.,
video) to capture temporal information [30, 55, 78, 80]. Our
problem setting involves sparsely and sporadically sampled
data where temporal pretext tasks are less applicable [2].
Similarly, it requires text supervision to enable both static
and temporal learning, when temporal structure is present.

3. BioViL-T training framework
Our approach comprises a multi-image encoder designed

to extract spatio-temporal features from sequences of im-
ages (Section 3.1) and a text encoder incorporating optional
cross-attention on image features. The models are trained
jointly with image-guided MLM and cross-modal global
and local contrastive objectives (Section 3.2). The resulting
image and text models are later adapted for uni- or multi-
modal downstream tasks as described in Section 3.3. Im-
plementation details are presented in Appendices E and F.

For a given image and report pair (xcurr
img ,x

curr
txt ), the re-

port xcurr
txt describes the current image content and changes

in reference to prior images. Our proposed formulation fo-
cuses on a single prior image; however, it can be gener-
alised to multiple prior images depending on the applica-
tion. Hence, we construct datasets by including the prior
image whenever it exists2: (xcurr

img ,x
prior
img ,xcurr

txt ) ∈ Dm or
(xcurr

img ,∅,xcurr
txt ) ∈ Ds with the resulting dataset being a

union of single and multi-image examples: D = Dm ∪Ds.

3.1. Extracting spatio-temporal image features

Clinical findings are often observed across different im-
age regions and co-occur simultaneously, which requires
dense level visual reasoning across time to capture both
static and temporal features. In contrast to late global fusion
[64] and bounding-box based approaches [37], BioViL-T
leverages local correspondences between image regions
across time using transformer self-attention blocks [21].
Thus our method does not require an explicit image reg-
istration step between time points.

We propose a hybrid CNN–Transformer encoder
model due to its data efficiency and spatial flexi-
bility of cross-attention across time points: Eimg ∶
RW×H → RW ′

×H′×Dimg (e.g., ResNet-50 [31]) and Aimg ∶
RT×L×Dimg → RL×Dimg (e.g., transformer [21]), where
W , H , and T correspond to spatiotemporal dimensions,
L = W ′H ′ is the number of visual tokens per image, and
Dimg is the embedding dimension. Here Eimg serves as a
stem network [51] to provide visual token features of in-
dividual images. The CNN’s inductive biases [24, 51] en-

2The prior report is not included during pre-training as it may further
reference an earlier study, reintroducing temporal ambiguity.

sure data efficiency of our hybrid model, making it ideal
for smaller scale biomedical datasets. Eimg is initialised
with BioViL weights [9]. The main purpose of Aimg is to
capture patch embedding interactions across time when a
prior image xprior

img is available and to aggregate them into
a fixed-length token representation. Input visual tokens,
Hcurr

0 = Pcurr ∶= Eimg(xcurr
img ), H

prior
0 ∶= Eimg(xprior

img ) are
augmented with spatio-temporal positional encodings and
flattened across the spatial dimensions. They are then pro-
cessed by K transformer encoder [66] layers A as follows:

[H
curr
k

Hprior
k

] = Ak([
Hcurr

k−1 + S + 1L ⊗ tcurr

Hprior
k−1 + S + 1L ⊗ tprior

]) , (1)

for k = 1, . . . ,K, where S ∈ RL×Dimg denotes 2D sinusoidal
positional encodings [12] and T = [tcurr; tprior] ∈ R2×Dimg

is its temporal counterpart, which is learnt (Fig. 2) [4]. The
layer-normalised (LN) [6] output of the final transformer
encoder block Pdiff ∶= LN(Hcurr

K ) is an ‘aggregated’ repre-
sentation of patch-level progression information anchored
on the current image. Figure 3 shows attention roll-out [1]
applied to Pdiff after pre-training, showing how the prior
image contributes to the fused representation. Figure A.3
further highlights the robustness to variations in pose un-
derlining that registration is not necessary for this encoder.

Static-temporal feature decomposition When a prior
image is available the final image representation V ∶=
Pcurr ⊕Pdiff ∈ RW ′

×H′×2Dimg is formed by concatenating
two sets of features (similar to [7]): those from the current
image alone (Pcurr) and the temporal features from cur-
rent and prior images (Pdiff ). In this way, self-attention
is mainly required to cope with pose variations and patch
comparisons across time in extracting temporal content, re-
moving the need for registration or explicit spatial feature
alignment. When no prior scan is available (x ∈ Ds),
Aimg is not used and Pdiff is replaced by a learnable to-
ken pmiss ∈ RDimg , replicated across the spatial dimen-
sions. Section 4.5 later demonstrates that Aimg highlights
the value of feature decomposition for tasks such as phrase
grounding which require well-localised features [10].

Hereafter, downstream tasks that require solely single
image features, Pcurr, are referred to as static tasks, and the
ones that benefit from additional progression information,
Pdiff , as temporal tasks, e.g., report decoding.

3.2. Text-supervision for spatio-temporal learning

Let w = (w1, . . . ,wM) denote a vector of M tokens of
a report xtxt after tokenisation. We first obtain contextu-
alised token features Etxt(w) ∈ RM×Dtxt by passing a se-
quence of text tokens w = (w1, . . . ,wM) through a BERT
encoder Etxt [20]. The input sequence is prepended with
either a [CLS] or [MLM] token associated with a down-
stream training objective, conditioning the output features
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Figure 2. The proposed self-supervised VLP training framework BioViL-T: Image representations V are extracted from single and
multiple input scans (whenever available) using a hybrid CNN and transformer encoder [24,51]. This design choice is to increase the data-
efficiency and enable the fusion of temporal content without requiring image registration. They are later matched with their corresponding
text representations obtained with CXR-BERT [9] using local [32] and global InfoNCE [49] training objectives. As an additional model
supervision, multi-modal fused representations, obtained with cross-attention, are used for image-guided masked language modelling.

similar to [39, 42]. During training, we do two forward
passes through Etxt: once with masking at 45% probabil-
ity (for the MLM objective) and once without masking for
contrastive learning, as shown in Figure 2. The text encoder
is initialised with the weights of CXR-BERT3 [9] canonical
model, trained on domain-specific vocabulary and corpora.

Both text and image features are later projected into a
joint latent space with ϕtxt ∶ RDtxt → RD, and similarly
vproj
w,h ∶= ϕimg(vw,h) where ϕimg ∶ RDimg → RD, with ϕ

being a two-layer perceptron in our experiments.

Contrastive objectives Let r ∶= [Etxt(w)][CLS] denote
the global representation of w, with rproj ∶= ϕtxt(r) its pro-
jected version. Given projected patch embeddings vproj

w,h , we
can compute a global cosine similarity SC(v̄proj, rproj) and
a local similarity using weighted pairwise cosine similari-
ties across text tokens and projected patch embeddings [32,
76]. These similarities are used in both global and local
contrastive objectives with the InfoNCE loss [49, 53]. The
local loss proves crucial both for static phrase-grounding
and temporal image classification (see Table 7), highlight-
ing the importance of localised self-supervision.

Image-guided masked language modelling Prior work
[9, 46] has shown that biomedical visual-language learning
benefits from an auxiliary task such as MLM since captur-
ing the joint distribution of tokens can stabilise and improve

3https://huggingface.co/microsoft/BiomedVLP-
CXR-BERT-general

language understanding during joint learning. Given a batch
B of token vectors w, it is often defined as the cross-entropy
for predicting the randomly sampled masked tokens, m ⊂
{1, . . . ,M}, LMLM = − 1

∣B∣
∑w∈B log pθ(wm ∣w/m), where

θ are the weights of the text encoder Etxt.
In the absence of image information, however, certain

masked findings and attributes are not readily predicted,
e.g., “[MASK] is worsening”. As shown in the general do-
main [13], visual information can help disambiguate such
masked predictions and provide additional cross-modal su-
pervision. Thus, we use cross-attention [22,66] to the image
features vproj

w,h during this task. Specifically, for our image-

guided MLM objective we model pθ(wm ∣w/m,vproj
w,h ).

3.3. Adaptations to downstream tasks

BioViL-T can be adapted to various downstream tasks.
For phrase-grounding and zero-shot inference, we rely
on SC(rproj, vproj

w,h ) similar to [9, 32]. For multiple-text
prompts, projected text embeddings are marginalised prior
to ℓ2-normalisation [53]. To enable language decoding,
vproj
w,h inputs are cross-attended by text queries w, and

causal-attention is utilised between text tokens [39,66]. Dif-
fering from [9,32,81], we show that report generation tasks
can greatly benefit from temporal joint latent space.

Conditioning on prior reports In contrast to existing
work, we incorporate the prior report as a prompt to contex-
tualise the report generation task: pΦ(wcurr

txt ∣wprior
txt , vproj

w,h ),
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where Φ are the multi-modal encoder–decoder network’s
weights, and wcurr

txt , wprior
txt denote text tokens for current

and prior reports respectively. This is analogous to fine-
tuning GPT-3 [11] with prompts and instructions [71], but
conditioning on both images and the previous report. A
dedicated separation token [SEP] is added into the input
sequence [wprior

txt ,[SEP],wcurr
txt ].

Curation of imaging datasets CXR datasets [36] often
contain multiple image acquisitions Z = {ximg

1 , . . . ,ximg
Z }

in a single visit due to data quality issues such as a lim-
ited field-of-view or scanning the wrong body part (Fig-
ure A.4). Unlike [9, 32, 81], we conduct curation to choose
higher quality images among the potential candidates in-
stead of performing a random selection. For this step, a
separate BioViL-T is trained on ‘clean’ studies with sin-
gle acquisitions and later used in a zero-shot setting to de-
tect out-of-distribution samples [26,27] arising from the re-
imaging process. The candidate ẑ is selected as follows:
ẑ = argmaxz∈Z SC(v̄proj

z , rproj) s.t. ∣sẑ − sZ/ẑ ∣ > δ for a
margin δ. This approach is applied to enhance the quality
of the temporal classification dataset given its limited size.

4. Datasets & experiments
Here, we demonstrate BioViL-T’s data efficiency and

adaptability to a wide range of applications, and show how
the model achieves SOTA performance on various down-
stream tasks by learning from data instances linked across
time, making effective use of domain priors and the avail-
able training data. Specifically, our model is evaluated on
a diverse set of downstream tasks including zero- and few-
shot static and temporal image classification, report genera-
tion, phrase-grounding [10], and sentence similarity.

MS-CXR-T benchmark We release a new multi-modal
benchmark dataset4, MS-CXR-T , to evaluate chest X-ray
VLP models on two distinct temporal tasks: image clas-
sification and sentence similarity. The former comprises
multi-image and ground-truth label pairs (N = 1326) across
5 findings, with classes corresponding to 3 states of disease
progression for each finding: {Improving, Stable,
Worsening}. The latter quantifies the temporal-semantic
similarity of text embeddings extracted from pairs of sen-
tences (N = 361). The pairs can be either paraphrases or
contradictions in terms of disease progression. The data for
both tasks was manually annotated and reviewed by a board
certified radiologist. Appendix C provides further details on
its data distribution and annotation protocol.

Datasets For pre-training, we use the MIMIC-CXR v2
[28, 36] chest X-ray dataset, which contains longitudinal
imaging studies with corresponding radiological reports,

4MS-CXR-T benchmark dataset can be accessed through PhysioNet:
https://aka.ms/ms-cxr-t

Prior image Current image Prior image Current image

Figure 3. Attention rollout maps [1] from the reference patch
(marked with ★) to the current and prior images. The bounding
boxes, annotated by a radiologist, show the extent of consolida-
tion. Note that the reference patch attends to its anatomical neigh-
bourhood in the prior image despite the misalignment between
prior and current images. The grid (14 × 14) represents the patch
tokens processed in the transformer encoder blocks.

see Fig. B.1 for the distribution of studies. We only use
frontal view scans and discard samples where reports do not
contain an IMPRESSION section. From this data, we gather
174.1k and 4.9k text-image pairs for training and validation
respectively, with a majority of pairs including a prior im-
age: ∣Dtrain

m ∣ = 118.8k, ∣Dtrain
s ∣ = 55.3k. The text consists

of the IMPRESSION section and, for MLM additionally the
FINDINGS section if available. Note that no manual labels
are used during pre-training and no additional data is used
for the methods that leverage the link between current and
prior images. For early stopping we track the validation
loss, see Appendix E for implementation details.

Downstream evaluations are performed on a disjoint
held-out test set shared across all tasks, ∣Dtest∣ = 2971.
For report generation, we extend this test set with samples
from healthy subjects (N = 815) to match the prevalence
of pathological studies used in prior work [14, 25, 45]. For
fine-tuning on temporal image classification, we use labels
from the Chest ImaGenome dataset [72] as in [37] (statis-
tics in Table F.2). In detail, we use the following bench-
mark datasets: (I) MS-CXR [10] for phrase grounding, (II)
the RSNA Pneumonia dataset [60, 70] to test zero-shot and
fine-tuned classification, (III) MS-CXR-T for temporal sen-
tence similarity and temporal image classification.

Comparison approaches We compare our approach to
other domain-specific SOTA pre-training frameworks [9,
32] specifically on phrase-grounding and zero-shot predic-
tive performance. The non-temporal BioViL framework [9]
is most similar to our approach and provides insight into
non-temporal pre-training. We additionally compare to in-
ternal ablations such as removing the past report during re-
port generation and masking prior images during phrase
grounding. For SOTA performance comparison, various
AR and nearest-neighbour (NN) based language decoding
approaches are used as baselines: IFCC [45], R2Gen [14],
CXR-RePaiR-2 [25], and CXR-RePaiR-Select [25].

For the temporal classification task, we compare against
a baseline exploiting the BioViL image encoder [9], and an
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Table 1. Results for report generation task: Predictions are
evaluated in terms of lexical (BLEU-4, ROUGE) and factual-
ity metrics (CHEXBERT, TEM). Approaches are grouped into
two broad categories: nearest-neighbour (NN) and auto-regressive
(AR). BioViL-T pre-training consistently yields improved decod-
ing. Further, the consistent performance gains of using prior im-
age and report demonstrate the importance of such domain priors.
‘PI / PR’ indicate usage of prior image and report, respectively.

Method Pre-training PI / PR BLEU-4 ROUGE CHEXBERT TEM

N
N

CXR-RePaiR-2 [25] BioViL ✗ / ✗ 2.1 14.3 28.1 12.5
Baseline (NN) [9] BioViL ✗ / ✗ 3.7 20.0 28.3 11.1
Proposed (NN) BioViL-T ✓/ ✗ 4.5 20.5 29.0 13.0

A
R

Baseline (AR) [9] BioViL ✗ / ✗ 7.5 ± 0.1 27.9 ± 0.1 29.3 ± 0.3 13.8 ± 0.1
Proposed BioViL-T ✓/ ✗ 8.2 ± 0.1 28.7 ± 0.1 30.2 ± 0.7 16.0 ± 0.3
Proposed BioViL-T ✓/ ✓ 9.2 ± 0.3 29.6 ± 0.1 31.7 ± 1.0 17.5 ± 0.1

Table 2. Temporal image classification results (repeated for 4
random seeds) on the MS-CXR-T benchmark for fully-supervised
and zero-/few-shot (Z&F) learning settings, in terms of macro-
accuracy across the three classes for each finding. Affine regis-
tration is performed for the baseline method (denoted with suffix
‘w/reg’), to partially address the pose variations across scans.

Method (% of labels) Pre-train Consolidation Pl. effusion Pneumonia Pneumothorax Edema
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CNN + Transformer ImageNet 44.0 ± 2.0 61.3 ± 1.6 45.1 ± 3.5 31.5 ± 3.1 65.5 ± 1.1
CheXRelNet [37] ImageNet 47 47 47 36 49
BioViL [9] Static 56.1 ± 1.5 62.3 ± 1.1 59.4 ± 1.0 41.7 ± 2.8 67.5 ± 0.8
BioViL w/reg [9] Static 56.0 ± 1.5 63.0 ± 0.9 60.2 ± 0.7 42.5 ± 2.7 67.5 ± 0.9
BioViL-T wout curation Temporal 58.9 ± 1.7 65.5 ± 0.7 61.5 ± 2.2 44.4 ± 2.1 67.4 ± 0.8
BioViL-T Temporal 61.1 ± 2.4 67.0 ± 0.8 61.9 ± 1.9 42.6 ± 1.6 68.5 ± 0.8

approach that makes use of graph convolutions across re-
gions of interest extracted from bounding boxes [37]. For
BioViL, we perform affine image registration (with 4 DoF)
for each pair of scans to cope with pose variations, and the
encoded images are concatenated along the feature dimen-
sion and classified via a multilayer perceptron. For [37],
we compare to the three-class setting. Lastly, we bench-
mark our final text model in isolation against domain spe-
cific SOTA models in a temporal sentence similarity task:
CXR-BERT [9] and PubMedBert [29].

Metrics Due to class imbalance, we report macro-
accuracy for temporal image classification. For phrase
grounding, we use mean Intersection-Over-Union (mIoU)
and Contrast-to-Noise-Ratio (CNR) [9]. The latter mea-
sures the discrepancies between cosine similarities inside
and out of the bounding box region without requiring hard
thresholds. To evaluate the quality of generated reports,
we use both the standard lexical metrics, e.g., BLEU [50],
ROUGE-L [41], and also domain-specific factuality metric:
CheXbert5 [62]. To directly probe the generation of change-
related information, we introduce a new metric called tem-
poral entity matching (TEM) to compute the match score of
a fixed set of temporal entities (see Appendix D).

5The average of the weighted-F1 score across 14 pathological observa-
tions labelled by CheXbert.

Table 3. Report generation results using the same train/test
splits from [25], measured by lexical (BLEU-2) and factuality
(CHEXBERT) metrics. Baseline results were also collected from
[25]. Note the CHEXBERT score covers all 14 observations.

Method Decoded sections BLEU-2 CHEXBERT

R2gen [14] Findings & Impression 21.20 ± 0.10 14.80 ± 0.30
IFCC [45] Findings 21.70 ± 0.10 27.00 ± 0.40
CXR-RePaiR-Sel [25] Impression 5.00 ± 0.10 27.40 ± 0.30
BioViL-T Impression 15.86 ± 0.14 34.83 ± 0.73
BioViL-T Findings & Impression 21.31 ± 0.19 35.86 ± 0.35

4.1. Temporal pre-training yields data efficiency

Downstream tasks are enabled with minimal labels.

The sections ‘NN’ and ‘Z&F’ on Tables 1 and 2 report
zero- and few-shot performance on tasks benefitting from
temporal information: temporal image classification and re-
port generation. Here we measure the quality of the learnt
joint latent space and the extent to which BioViL-T enables
efficient use of raw data. For zero-shot classification we
prompt the AR fine-tuned model with prefix: “[FINDING]
is” and compare the next-token probability of words mean-
ing ‘improving’, ‘stable’, and ‘worsening’ (Appendix F.4).

Without using any labelled data, Table 2 shows that the
proposed AR-based approach already yields performance
superior to prior fully-supervised work [37] on temporal
image classification. With only 10% of labels, classifi-
cation fine-tuning provides a further boost, indicating that
BioViL-T produces a multi-image encoder readily adapted
to temporal tasks. Similarly, in a zero-shot report-retrieval
setting, the findings show that compared to temporally-
agnostic pre-training, BioViL-T leveraging prior images
improves across all metrics. Consistent with prior work
[25], the retrieved reports already preserve factuality with
high CheXbert scores, more-so than the other metrics which
measure fine-grained specifics of phrasing. This demon-
strates that the latent space captures the high-level seman-
tics of the clinical features. Fine-grained phrasing however
will be substantially improved by AR fine-tuning.

4.2. Achieving SOTA performance with BioViL-T

A wide range of downstream tasks benefit substantially
from temporally-aware pre-training.

Through downstream adaptations and fine-tuning our
model, we report SOTA performance on report generation
and temporal image classification tasks. For the former, us-
ing both prior images and reports during fine-tuning sub-
stantially improves across metrics (Table 1). In particular,
TEM metric results show that temporal context is key for
accurately describing change in the generated report while
avoiding hallucinations (see Table A.1 for examples). Com-
paring to published results on a comparable test split and
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Table 4. Image classification results on RSNA Pneumonia Detection
Benchmark [60] for train and test splits of 70% – 30% respectively.

Method % of Labels Supervision Acc. F1 AUROC

GLoRIA [32] ✗ Zero-shot 0.70 0.58 -
BioViL [9] ✗ Zero-shot 0.732 0.665 0.831
BioViL-T ✗ Zero-shot 0.805 0.706 0.871

BioViL [9] 1% Few-shot 0.805 0.723 0.881
BioViL-T 1% Few-shot 0.814 0.730 0.890

metrics (Sec. 4.1), we conclude that BioViL-T with fine-
tuning achieves SOTA on report generation, producing re-
ports that are lexically on par with prior work but substan-
tially more factually accurate. Note that we do ‘vanilla’
AR fine-tuning to focus on the impact of the pre-trained
encoders, so application-specific supervision [45] could be
used in conjunction to further boost performance.

In temporal image classification (Tab. 2), BioViL-T pre-
training outperforms the non-temporal baseline (BioViL)
and improves on previously-reported results [37] by up to
20 percentage points (pp). Furthermore, baseline meth-
ods that rely on image registration (BioViL w/reg), under-
perform compared to the proposed approach. Further anal-
ysis reveals that errors tend to be in cases with disagreement
between radiologists (Appendix A.2). We also note that pre-
training is critical for a hybrid CNN-transformer model on
this task, likely due to the small labelled dataset. Lastly, cu-
ration of temporal training data is observed to improve the
classification results by .68 pp aggregated across the find-
ings, see Appendix A.4 for details.

4.3. Static tasks benefit from temporal learning

BioViL-T broadens the range of applicable downstream
tasks whilst contributing to performance on static tasks.

In this section, we demonstrate that performance im-
provements afforded by BioViL-T are not restricted to tem-
poral tasks – static tasks also benefit. Table 4 reports results
on zero- and few-shot pneumonia classification from sin-
gle images [60], where BioViL-T establishes a new SOTA
compared to prior work [9, 32].

We see a similar trend on the MS-CXR phrase grounding
benchmark (Tab. 5). This task can be solved with single
images, however we show that the inclusion of the prior
image (where available) does not impair the performance
of BioViL-T. Feature decomposition effectively preserves
localised information from the current image.

4.4. Towards better sentence embedding quality

Language models acquire increased temporal sensitivity.

We hypothesise that text encoders learn temporal seman-
tics through supervision from longitudinal image series. To
verify this, RadNLI [45] and MS-CXR-T datasets are used
in a zero-shot binary classification setting. Cosine similarity

Table 5. Results on MS-CXR benchmark [10] (5-runs with different
seeds), “Multi-image” column indicates the input images used at test time.

Method Multi-Image Avg. CNR Avg. mIoU

BioViL [9] ✗ 1.07 ± 0.04 0.229 ± 0.005
+ Local loss [9, 32] ✗ 1.21 ± 0.05 0.202 ± 0.010
BioViL-T ✗ 1.33 ± 0.04 0.243 ± 0.005
BioViL-T ✓ 1.32 ± 0.04 0.240 ± 0.005

Table 6. Results on MS-CXR-T sentence similarity benchmark.

MS-CXR-T (361 pairs) RadNLI (145 pairs)

Text Model Accuracy ROC-AUC Accuracy ROC-AUC

PubMedBERT [29] 60.39 .542 81.38 .727
CXR-BERT-G [9] 62.60 .601 87.59 .902
CXR-BERT-S [9] 78.12 .837 89.66 .932
BioViL-T 87.77 ± 0.5 .933 ± .003 90.52 ± 1.0 .947 ± .003

of sentence pair embeddings [56] are treated as class-logits
to label each pair either as paraphrase or contradiction. See
Appendix F.6 for further details.

Our text model is benchmarked against SOTA domain-
specific BERT models. Table 6 shows that the proposed
framework greatly increases the sensitivity of sentence em-
beddings to temporal content whilst better capturing the
static content (RadNLI). Note that CXR-BERT-Specialised
[9] is learnt through single-images starting from the same
canonical model, illustrating the substantial increase in tem-
poral and static sensitivity due to BioViL-T pre-training.

4.5. Ablation experiments

In Table 7 we report extensive ablations across the multi-
image encoder architecture, pre-training choices, and AR
fine-tuning for report generation.

Image encoder Table 7 shows that decomposition of
static and progression features is essential to ensure good
performance on single-image tasks, such as phrase ground-
ing. For temporal representations, on the other hand, posi-
tional encodings (T) are essential to disambiguate the order
of scans, i.e., permutation variance across time.

Model pre-training The corresponding results are shown
in the middle section of Table 7. The local contrastive loss
proves crucial to ensure meaningful language supervision
during pre-training, followed by the image-guided MLM
objective. Lastly, use of the FINDINGS section results in
only minor performance gains as the key findings are al-
ready captured in the IMPRESSION section.

Report generation The importance of prior image and
report is demonstrated by the substantial drop in the “no
prior image and report” ablation, confirming our hypothesis
that temporal context is crucial for improving report qual-
ity. While both inputs are crucial for optimal performance,
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Table 7. Ablation study on image encoder, pre-training settings,
and report generation (one component at a time, and repeated for
4 random seeds). Note that for temporal classification, linear prob-
ing is applied to frozen image embeddings. In report generation,
the baseline method is fine-tuned with both prior image and report.
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. Baseline 29.64 ± 0.08 17.54 ± 0.11

− Prior image 29.35 ± 0.25 16.30 ± 0.40
− Prior report 28.67 ± 0.12 16.00 ± 0.30
− (Prior image and report) 27.78 ± 0.09 13.65 ± 0.48
− Separation token 26.00 ± 0.40 15.50 ± 1.06

the prior report is more so because it summarises the im-
age and provides a clearer signal. The prior image however
cannot be dismissed entirely as it provides granular details
which may not always be documented in a report. Finally,
we found the separation token is crucial in differentiating
between the predicted tokens for the current report and to-
kens from the prior report.

4.6. Which tokens require a prior image in MLM?

We leverage the MLM objective in an inference setting to
analyse the influence of prior images in predicting masked
tokens. Inspired by the ∆ image loss of [8], we define
∆prior

img as the change in loss by conditioning the estimation
with a prior image for a given token w as follows:

∆prior
img (w) = l(w,x

curr
img ,∅) − l(w,xcurr

img ,x
prior
img ) (2)

where l(w,xcurr
img ,x

prior
img ) is the cross-entropy of predicting

the masked token w given visual features (MLM loss for a
single token), averaged over sentences in which w appears.
∆prior

img is a measure of how much that token benefits from
access to the prior image, as well as an assessment of the
contribution of the prior image to the image representation.
In Figure 4 we show the distribution of ∆prior

img as a func-
tion of token category (e.g., Anatomy, Positional; see F.5 for
annotation details). For Progression-type terms in particu-
lar, the model heavily relies on the prior image for image-
guided MLM. We further observe that this effect is specific
to temporal tokens; as expected, those from other semantic
categories do not consistently rely on the prior image.

5. Conclusion
In this paper, we introduced BioViL-T, a vision–

language pre-training framework enabling alignment be-
tween text and multiple images. BioViL-T makes use of
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Uncertain

∆prior
img (w)

Figure 4. Mean token-level increase in image-guided MLM loss
when prior image is discarded, grouped by token category. The
prior image is excluded during inference to measure its impact
on masked token predictions. Progression tokens are significantly
better predicted when prior images are incorporated into image
embeddings. The top five Progression tokens are ‘persist’, ‘im-
proving’, ‘remains’, ‘unchanged’, and ‘residual’.

a novel multi-image encoder and explicitly decomposes
static–temporal features to augment the current image rep-
resentation with information from prior images. This en-
ables the grounding of temporal references in the text. To
our knowledge, this is the first method capable of lever-
aging the temporal content commonly present in biomed-
ical text. It addresses an important limitation in existing
VLP approaches, which simply discard such context. Also,
incorporating such multi-modal temporal content provides
strong learning signals to the model, resulting in richer rep-
resentations and improved downstream performance.

We demonstrate the value of this paradigm through ex-
tensive experiments: BioViL-T excels on both static and
temporal tasks, establishing new SOTA on report genera-
tion, temporal image classification, few/zero-shot pneumo-
nia detection, and phrase grounding. Furthermore, we re-
lease a new multi-modal benchmark (MS-CXR-T) to mea-
sure the quality of image and text representations in terms
of temporal semantics, enabling more diverse evaluation
of biomedical VLP models. The corresponding model
weights6 and code7 are publicly available.

Further exploration and evaluation are required on di-
verse datasets to characterise what kinds of tasks would
benefit from a temporal modelling approach, and specifi-
cally from the proposed methodology.

Acknowledgements: We would like to thank Hannah
Richardson, Hoifung Poon, Melanie Bernhardt, Melissa
Bristow and Naoto Usuyama for their valuable feedback.

6Models can be found at: https://aka.ms/biovil-t-model
7Code can be found at: https://aka.ms/biovil-t-code
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