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Figure 1. Our approach allows us to capture small details better than existing methods. We show novel views (top-row) synthesized using
our approach and zoom on the details for each view (bottom-row). Our model is trained for 10 minutes. Best viewed in electronic format.

Abstract

We present Neural Pixel Composition (NPC), a novel ap-

proach for continuous 3D-4D view synthesis given a dis-

crete set of multi-view observations as input. Existing

state-of-the-art approaches require dense multi-view super-

vision and an extensive computational budget. The pro-

posed formulation reliably operates on sparse and wide-

baseline multi-view images/videos and can be trained effi-

ciently within a few seconds to 10 minutes for hi-res (12MP)

content. Crucial to our approach are two core novelties: 1)

a representation of a pixel that contains color and depth

information accumulated from multi-views for a particular

location and time along a line of sight, and 2) a multi-layer

perceptron (MLP) that enables the composition of this rich

information provided for a pixel location to obtain the fi-

nal color output. We experiment with a large variety of

multi-view sequences, compare to existing approaches, and

achieve better results in diverse and challenging settings.

1. Introduction

Novel views can be readily generated if we have access
to the underlying 6D plenoptic function R(✓,d, ⌧) [1, 23]
of the scene that models the radiance incident from direc-
tion ✓ 2 R2 to a camera placed at position d 2 R3 at time
⌧ . Currently, no approach exists that can automatically re-
construct an efficient space- and-time representation of the
plenoptic function given only a (potentially sparse) set of
multi-view measurements of the scene as input. The core
idea of image-based rendering [22, 38] is to generate novel
views based on re-projected information from a set of cal-
ibrated source views. This re-projection requires a high-
quality estimate of the scene’s geometry and is only correct
for Lambertian materials, since the appearance of specu-
lar surfaces is highly view-dependent. Building a dense 3D
volume from multi-view inputs that provides correct 3D in-
formation for a pixel is a non-trivial task.

Recent approaches such as Neural Radiance Fields
(NeRF) [27] and Neural Volumes (NV) [20] attempt to cre-
ate rich 3D information along a ray of light by sampling 3D
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MLP3D from multi-views
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(x, y)

Figure 2. Color for a pixel location: Our goal is to estimate
the color for every pixel location (x, y) for a time ⌧ given cam-
era extrinsic parameters (rx, ry, rz, tx, ty, tz). We collect a rich
3D descriptor consisting of color (c) and depth (d) information
from multiple stereo-pairs using an off-the-shelf disparity estima-
tion module [47]. We learn a multi-layer perceptron (MLP) to
compose color and depth. The final output color c̄ is obtained by
a simple dot-product of a blending weight ↵ (output of MLP) and
the corresponding color samples. � is a regressed color correction
term per pixel.

points at regular intervals given a min-max bound. Radi-
ance fields are highly flexible 3D scene representations that
enables them to represent a large variety of scenes including
semi-transparent objects. The price to be paid for this flex-
ibility is that current approaches are restricted to datasets
that provide dense 3D observations [20, 27, 32–34, 49], can
only model bounded scenes [5,20,25,27,44,48], and require
intensive computational resources [20, 27, 49]. In contrast,
we introduce a multi-view composition approach that com-
bines the insights from image-based rendering [39] with the
power of neural rendering [42] by learning how to best ag-
gregate information from different views given only imper-
fect depth estimates as input. Figure 1 shows novel views
synthesized using our approach for different multi-view se-
quences and the reconstructed details for each example.

We accumulate rich 3D information (color and depth)
for a pixel location using an off-the-shelf disparity estima-
tion approach [47] given multiple stereo pairs as input. We
then learn a small multi-layer perceptron (MLP) for a given
multi-view sequence that inputs the per-pixel information
at a given camera position and outputs color at the loca-
tion. Figure 2 illustrates the components of our approach.
We train an MLP for a sequence by sampling random pix-
els given multi-views. In our experiments, we observe that
a simple 5-layer perceptron is sufficient to generate high-
quality results. Our model roughly requires 1 GB of GPU
memory and can be trained within a few seconds to 10 min-
utes from scratch. The trained model allows us to perform
a single forward-pass at test time for each pixel location in
a target camera view. A single forward pass per pixel is
more efficient than radiance field based approaches that re-
quire hundreds of samples along each ray. Finally, the alpha
values (↵i) allow us to perform dense 3D reconstruction of
the scene by selecting appropriate depth values at a given

location. In summary, our contributions are:

• A surprisingly simple, yet effective approach that re-
quires limited computational resources for novel view
synthesis from calibrated multi-view images or videos.
The proposed method allows us to synthesize novel
views given sparse unconstrained multi-views, where
existing state-of-the-art approaches struggle.

• Our approach offers a natural extension to the 4D view
synthesis problem. Our approach is also able to obtain
dense depth map and 3D reconstruction on challenging
in-the-wild scenes.

• Our approach enables us to reconstruct small details
in the scene better than existing methods. Finally,
we study the generalizability of the learned model us-
ing hi-res studio captures. We observe that the model
learned on a single time-instant for one subject gen-
eralizes to unseen time instances and unseen subjects
without any fine-tuning.

2. Related Work
Our novel view synthesis work is closely related to sev-

eral research domains, such as classical 3D reconstruction
and plenoptic modeling, as well as neural rendering for
static and dynamic scenes. In the following, we cover the
most related approaches. For a detailed discussion of neural
rendering approaches, we refer to the surveys [39, 42, 43].
Plenoptic Modeling and NeRF: Plenoptic function [1, 23]
does not require geometric modeling. A plenoptic or a light-
field camera [10, 18, 28] captures all possible rays of light
(in a bounded scene), which in turns enables the synthesis
of a new view via a per-ray look-up. Recent approaches
such as NeRF [27] and follow-up work [4, 46, 49] employ a
multi-layer perceptron (MLP) that infers color and opacity
values at 3D locations along each camera ray. These color
and opacity values along the ray are then being integrated
to obtain the final pixel color. This requires: 1) dense multi-
view inputs [5, 48]; 2) perfect camera parameters [14, 19];
and 3) a min-max bound to sample 3D points along a ray
of light [33, 49]. We observe degenerate outputs if all three
conditions are not met (as shown in Figure 3). Different ap-
proaches either use prior knowledge or a large number of
multi-view sequences [5, 35, 44, 48], additional geometric
optimization [14, 19, 29], or large capacity models to sepa-
rately capture foreground and background [49]. We use an
off-the-shelf disparity estimation module [47] that allows
us to accumulate 3D information for a given pixel. A sim-
ple MLP provides us with blending parameters that enable
the composition of color information. This allows us to
overcome the above-mentioned three challenges albeit us-
ing limited computational resources to train/test the model.
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Ground TruthOursDS-NeRFNeRF

COLMAP: Dense 3D reconstruction

Figure 3. View synthesis given sparse and spread-out multi-views: Our approach allows us to operate on sparse multi-views of
unbounded scenes [3]. We show novel view points for a fixed time instant for three unbounded scenes. Prior approaches such as NeRF [27]
and DS-NeRF [6] lead to degenerate outputs on these sequences. We also show the 3D reconstruction using COLMAP [36, 37] for the
sequence in the top-row. We observe that dense 3D reconstruction from sparse views is non-trivial for COLMAP.

3D Reconstruction and View Synthesis: Another ap-
proach to solve the problem is to obtain dense 3D recon-
struction from the input images [11] and project 3D points
to the target view. There has been immense progress in
densely reconstructing the static world from multi-view
imagery [8, 15], internet scale photos [2, 12, 36, 41], and
videos [37]. Synthesizing a novel view from accumulated
3D point clouds may not be consistent due to varying illumi-
nation, specular material, and different cameras used for the
capture of the various viewpoints. Riegler et al. [33,34] use
a neural network to obtain consistent visuals given a dense
3D reconstruction. This works well for dense multi-view
observations [17]. However, 3D reconstruction is sparse
given wide-baseline views or scenes with specular surfaces.
This is highlighted in Figure 3, which shows 3D recon-
struction results of COLMAP [36, 37] using one of the se-
quences. Recently, DS-NeRF [6] use sparse 3D points from
COLMAP along with NeRF to learn better and faster view
synthesis. As shown in Figure 3, adding explicit depth in-
formation enables DS-NeRF to capture scene structure but
still struggles with details.

Layered Depth and Multi-Plane Images: Closely related
to our work are layered depth images [24, 26, 30, 31, 38, 51]
that learn an alpha composition for multi-plane images at
discrete depth positions. In this work, we did not restrict
our approach to 2D planes or specific depth locations. In-
stead, we learn a representation for a pixel at arbitrary depth
locations. A pixel-wise representation not only allows us

to interpolate, but also to extrapolate, and obtain dense 3D
reconstruction results. Since we have a pixel-wise repre-
sentation, we are able to generate 12MP resolution images
without any modifications of our approach. Prior work has
demonstrated results on a max 2MP resolution content.
4D View Synthesis: Most approaches are restricted to 3D
view synthesis [26, 27] and would require drastic modifica-
tions [7,32] to be applied to the 4D view-synthesis problem.
Lombardi et al. [21] employ a mixture of animated volumet-
ric primitives to model the dynamic appearance of human
heads from dense multi-view observations. Open4D [3] re-
quires foreground and background modeling for 4D visual-
ization. Our work does not require major modifications to
extend to 4D view-synthesis. In addition, we do not require
explicit foreground-background modeling for 4D view syn-
thesis. We demonstrate our approach on the challenging
Open4D dataset [3] where the minimum distance between
two cameras is 50cm. Our composition model trained on
a single time instant also enables us to do 4D visualization
for unseen time instances. Finally, the model learned for
view synthesis enable dense depth map and 3D reconstruc-
tion from multi-views.

3. Method
We are given M multi-view images with camera param-

eters (intrinsics and extrinsics) as input. Our goal is to learn
a function, f , that inputs pixel information (p), p 2 RNp ,
and outputs color (c̄ 2 R3) at that location, i.e., f : p ! c̄.
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(c) Neural Composition(b) Naive Composition++(a) Naive Composition (d) Ground Truth

Figure 4. Naive Composition vs. Neural Composition: The baseline naively uses multiple stereo-pairs to generate the final output
(Naive Composition). (a) For each pixel location, we select the color value for the closest depth location. (b) We also take the average of
color values for the three closest depth locations (Naive Composition++). (c) We contrast these results with Neural Composition which
uses an MLP to compose the color values. We observe that the MLP nicely composes the color values despite noisy depth estimates and
fills the missing regions. (d) We also show ground truth for reference. Best viewed in electronic format.

Learning such a function is challenging since we live in a
3D-4D world and images provide only 2D measurements.
We present two crucial components: 1) a representation of
a pixel that contains relevant multi-view information for
high-fidelity view synthesis; and 2) a multi-layer percep-
tron (MLP) that inputs the pixel information and outputs
the color.
Overview: We input a pixel location (x, y) given corre-
sponding camera parameters (rx, ry, rz, tx, ty, tz) at time,
⌧ , along with an array of possible 3D points along the line
of sight. The ith location of this array contains depth (di)
and color (ci). The MLP outputs alpha (↵i) values for the
ith location that allow us to obtain the final color at (x, y).
The MLP also outputs gamma, � 2 R3, which is a correc-
tion term learned by the model. We get the final color at
pixel location (x, y) as: c̄ = � +

PN
i=1 ↵ici, where N is the

number of points in the array. We describe our representa-
tion of a pixel in Sec. 3.1 and the MLP in Sec. 3.2.

3.1. Representation of a Pixel
Given a pixel location (x, y) for a camera position

(rx, ry, rz, tx, ty, tz), our goal is to collect dense 3D infor-
mation that contains depth and color information at all pos-
sible 3D points along a line of sight. We obtain 3D points
via two-view geometry [11] by forming

�M
2

�
stereo-pairs.

The estimated disparity between a stereo pair provides the
depth for the 3D point locations. Multiple stereo pairs allow
us to densely populate 3D points along the rays.

Color and Depth Array: We use multiple stereo pairs to
build an array of depth (d) and color (c) for a pixel. We
store the values in order of increasing depth, i.e., di+1 �
di. The array is similar to a ray of light that travels in a
particular direction connecting the 3D points. We limit the
number of 3D points to be N . If there are less than N depth
observations, we set di = 0 and ci = (0, 0, 0). If there are
more than N observation, we take closest N 3D points.

Uncertainty Array: In this work, we use an off-the-shelf
disparity estimation module from Yang et al. [47]. This
approach provides an estimate of uncertainty (entropy) for
each prediction. We also keep an array of uncertainty values
(H) of equal size as the depth array (obtained from dispar-
ity and camera parameters), s.t., Hi 2 [0, 1], where a higher
value represents higher uncertainty. The uncertainty allow
us to suppress noise or uncertain 3D points.

Encoding Spatial Information: For each pixel, we con-
catenate its spatial location, i.e., (x, y) location and camera
position (rx, ry, rz, tx, ty, tz). We employ high-frequency
positional encoding [26] to represent spatial information of
a pixel for a given camera position. We normalize the pixel
coordinates, s.t., x 2 [�1, 1] and y 2 [�1, 1].

Incorporating Temporal Information: Our approach
enables a natural extension to incorporate temporal infor-
mation. Given a temporal sequence with T frames, we rep-
resent each time instant as a Gaussian distribution with peak
at the frame ⌧ . We concatenate the color, depth, and uncer-
tainty array alongside the spatial and temporal information
in a single Np-dimensional array, where Np is sum of the
dimensions of each term. We input this array to the MLP to
compute the color output at the pixel location.

3.2. Multi-Layer Perceptron (MLP)
Our goal is to output blending values ↵ that enable us to

take the appropriate linear combination of color values in
the color-array. A naive way is to directly use the output of
the last layer of the MLP as an alpha array and compute a
dot product with the color-array:

f(x, y, ⌧, rx, ry, rz, tx, ty, tz, c,d,H) = w. (1)

While this is reasonable, it assumes that the MLP will im-
plicitly understand the relationship between color (c), depth
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(d), and uncertainty (H). This is challenging to learn. In
this work, we observe that explicitly using the depth and
uncertainty with the output of the MLP (w) enables better
view synthesis. We, therefore, define:

↵i =
(1 � Hi)e�(widi�µ)2

PN
j=1(1 � Hj)e�(wjdj�µ)2

, (2)

where µ = 1
N

PN
j=1 wjdj . The Gaussian distribution

forces the model to select color values belonging to depth
location that are: 1) closest to the average depth value; and
2) are confident and less noisy. We employ these alpha val-
ues together with the original color array to predict the final
values (c̄):

c̄ =
NX

i=1

↵ici + �, (3)

where � is an additional correction term that helps us to
obtain sharp outputs. Note that the fifth layer of the MLP
outputs ↵ and � values.

Multi-Layer Perceptron: We employ a 5-layer percep-
tron. Each linear function has 256 activations followed by a
non-linear ReLU activation function. We train the MLP in
a self-supervised manner using a photometric `1-loss:

min
f

L =
mX

k=1

kck � c̄kk1, (4)

where ck and c̄k are the ground truth color and predicted
color respectively for the kth pixel, and m is the number of
randomly sampled pixels from the M images. We train the
MLP from scratch using the Adam optimizer [16]. We ran-
domly sample 4 images, and sample 256 pixels from each
image for every forward/backward pass. The learning rate
is kept constant at 0.0002 for the first 5 epochs and is then
linearly decayed to zero over next 5 epochs. We observe
that composition model converges around in a few seconds
of training on a single GPU with 1 GB GPU memory.
Naive Composition: One can also naively use the pixel rep-
resentation to generate the final output by selecting the color
value for the closest depth location. A slightly nuanced
version is to take average of color values for three closest
depth location (Naive Composition++). We use this naive
composition for comparisons in our work. Figure 4 shows
the importance of using neural composition via MLP over
naive composition. We believe it is an importance baseline
for view synthesis as this simple nearest-neighbor based
method generates results without any training.

4. 3D View Synthesis
We study various aspects of 3D view synthesis using our

approach: (1) synthesizing novel views given sparse and

24 sequences PSNR" SSIM" LPIPS [50] #

LLFF [26] 15.187 ± 2.166 0.384 ± 0.082 0.602 ± 0.090
NeRF [27] 13.693 ± 2.050 0.317 ± 0.094 0.713 ± 0.089
DS-NeRF [6] . 14.531 ± 2.603 0.316 ± 0.099 0.757 ± 0.040
DS-NeRF** [6] . 15.346 ± 2.276 0.389 ± 0.076 0.716 ± 0.048

Naive Composition 15.480 ± 1.928 0.372 ± 0.061 0.665 ± 0.065
Naive Composition++ 16.244 ± 2.186 0.442 ± 0.074 0.616 ± 0.063

Ours 17.946 ± 1.471 0.562 ± 0.077 0.534 ± 0.061

Table 1. Sparse and Unconstrained Multi-Views: We evaluate
on the 24 sparse and unconstrained multi-view sequences of the
Open4D dataset [3]. We train NeRF [27] and DS-NeRF [6] models
for each sequence. DS-NeRF [6] employs additional depth along
with NeRF. We trained two versions of DS-NeRF. One where
we use the same model as NeRF with additional depth supervi-
sion. The second version is DS-NeRF** with tuned hyperparam-
eters. We also use off-the-shelf LLFF model. We observe de-
generate outputs using LLFF, NeRF and DS-NeRF, especially for
unbounded scenes. However, our approach is able to reliably gen-
erate novel views in twenty times less time. Training a NeRF
or a DS-NeRF model takes roughly 420 minutes per sequence
whereas our approach take 10 minutes (including pre-processing
multi-view content). We also generate results using naive compo-
sition and obtain better results than prior work.

unconstrained multi-views (Sec. 4.1); (2) synthesizing hi-
res 12MP content (Sec. 4.2); and (3) scenes with unbounded
depth and influence of the number of views (Sec. 4.3). We
demonstrate our approach on hi-resolution studio capture in
Sec. A.4 and observe that our approach can generalize to
unseen subjects and unknown time instances from a single
time-instant. We study convergence in Sec. A.5 where we
observe that our model gets close to convergence within a
few seconds of learning.

4.1. Sparse and Unconstrained Multi-Views
We use 24 sequences of sparse and unconstrained real-

world samples from the Open4D dataset [3]. Open4D con-
sists of temporal sequences. We use certain time instants
for 3D view synthesis. The minimum distance between two
adjacent cameras is 50cm in these sequences. We contrast
our approach with NeRF [27]. We also study DS-NeRF [6],
which additionally employs sparse 3D point clouds from
COLMAP for training NeRF. DS-NeRF has shown promis-
ing results given the sparse views from LLFF dataset [26].
Both approaches are trained for 200, 000 iterations (roughly
420 minutes) per sequence on a NVIDIA V100 GPU. Ta-
ble 1 compares the performance of different methods on
held-out views from these sequences using PSNR, SSIM,
and LPIPS (AlexNet) [50]. In this work, we observe that
these three evaluation criteria are not self-sufficient in de-
termining the relative ranking of different methods. While
PSNR and SSIM may favor smooth or blurry results [50],
LPIPS may ignore the structural consistency in images. We
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8 sequences PSNR" MCSSIM" LPIPS #

NeRF [27] 22.009 ± 3.148 0.757 ± 0.156 0.487 ± 0.180
NeX [45] 22.292 ± 3.137 0.774 ± 0.152 0.423 ± 0.156

Naive Composition 16.624 ± 2.906 0.648 ± 0.197 0.342 ± 0.096
Naive Composition++ 17.535 ± 2.698 0.688 ± 0.184 0.317 ± 0.107

Ours (10 minutes) 22.868 ± 4.588 0.802 ± 0.140 0.269 ± 0.120

Table 2. Shiny dataset: We study our approach on the 8 real
sequences from the Shiny dataset [45]. We use NeRF [27] and
NeX [45] results from the authors of Shiny dataset [45]. NeX use
multiple GPUs and a few days to train a model. Our approach gets
better performance in only a few minutes.

posit that it is important to look at all three criteria and not
one. Figure 3 shows the qualitative performance of our ap-
proach on these challenging sequences. We observe degen-
erate results using NeRF on these sequences. DS-NeRF
also results in degenerate outputs most of the times ex-
cept for the scenes with bounded depth. Our approach is
able to generate high-quality results (with details such as
faces, hair, dress, etc.) in this setting both qualitatively and
quantitatively. Total time taken to process (pre-processing
multi-view content and training the composition model) a
sequence is less than 10 minutes. We also observe that a
naive pixel composition can also yield meaningful results
better than prior work. However, we obtain better pixel
composition using MLPs. The details of these sequences
are available in Appendix A.1.

4.2. Better Details in Lesser Time

We use 8 multi-view sequences from the Shiny
Dataset [45] that consists of multi-views captured for spec-
ular surfaces. Table 2 shows the performance of different
methods. We use the results generated by NeX [45]. It
takes multiple GPUs for a few days to get these results. Our
model trained for 10 minutes achieves better performance.
Figure 6 contrasts our method with NeX. We observe small
details are better captured by our method.

We use 12 high-resolution (4032⇥ 3024) multi-view se-
quences from the LLFF dataset [26] that contain challeng-
ing specular surfaces. In this setting, we train NeRF [27]
on these sequences for 2, 000, 000 iterations which take
approximately 64 hours on a single NVIDIA V100 GPU
(10, 000 iterations take 20 minutes). Performance saturates
at 1M iterations after 32 hours of training. We train our
model for 10 epochs, which takes around 10 minutes on a
single GPU and only 1GB GPU of memory. We estimate
disparity [47] for multiple stereo pairs at one-fourth resolu-
tion for these sequences. Disparity estimation using the off-
the-shelf model takes less than 5 minutes per sequence on
a single GPU. Table 3 contrasts the performance of NeRF
models at different intervals of training using PSNR, SSIM,

12 sequences PSNR" SSIM" LPIPS #

NeRF (32 hours) [27] 21.741 ± 2.985 0.602 ± 0.147 0.584 ± 0.087

Naive Composition 16.008 ± 2.315 0.415 ± 0.142 0.427 ± 0.068
Naive Composition++ 17.022 ± 2.483 0.460 ± 0.144 0.406 ± 0.066

Ours (10 minutes) 20.953 ± 2.805 0.598 ± 0.136 0.460 ± 0.078

Table 3. Hi-Res (12MP) View Synthesis: We evaluate on 12
sequences from LLFF containing specular surfaces on original
4032 ⇥ 3024 resolution. We contrast the performance of our ap-
proach with a NeRF model trained for 1M iterations after 32 hours
of training using a NVIDIA-V100 GPU. Our model converges
quickly in a few minutes. Training our model requires 1 GB of
GPU memory for training. The MLP allows us to obtain better
results than a naive composition (Fig. 4). We refer the reader to
Figure 5 for visual comparisons. We observe that details become
better for NeRF when trained for long. However, our approach
captures more details in a few minutes as compared to 32 hours
of training of a NeRF model. Consistent with the observation of
Zhang et al. [50], PSNR may favor averaged/blurry results while
LPIPS favors sharp results. More analysis in Appendix A.2.

and LPIPS (AlexNet). We compute the average of per-
frame statistics as the number of samples in the test set for
these 12 sequences are roughly the same. We once again
observe that it is crucial to include all three evaluation cri-
teria. Figure 5 shows the results of NeRF at different in-
tervals of time. We observe that the NeRF model improves
over time and captures sharp results as suggested by LPIPS.
Our method enables sharper outputs as compared to NeRF.
The qualitative and quantitative analysis suggest that we can
efficiently generate results on 12MP images without drasti-
cally increasing the computational resources. We also show
the performance of naive composition to generate the final
outputs. We observe that MLPs allow us to obtain better
results. More analysis are available in Appendix A.2.

4.3. Unbounded Scenes and Number of Views

We study the influence of the number of views us-
ing the challenging synthetic multi-view sequences from
MVS-Synth dataset [13] that consist of different unbounded
scenes. We use the first 13 sequences with unbounded depth
from this dataset for our analysis. Each sequence consists
of 100 frames. We use 50 frames (1920 ⇥ 1080 resolution)
for evaluation, and train models by varying the number of
views between {10, 20, 30, 40, 50}. The details about train-
test splits are available in Appendix A.3. For this analysis,
we train 65 NeRF [27] models (each for 200, 000 iterations
taking roughly 420 minutes per model) and 65 models for
our approach. We contrast the performance of two methods
in Table 4. Without any modification, our approach can gen-
erate better results. We can also generate better results with
fewer views. The camera parameters are computed using
Agisoft Metashape here for each setting. We also contrast

295



2 hours 4 hours 8 hours 32 hours Ours (10 minutes)

Figure 5. Improvement in NeRF over time: We show the progression (first 32 hours) of improvement for the NeRF model. We observe
that results improve over time as details become clearer over time. Our approach can generate sharp results in only 10 minutes. One can
zoom-in to see California written on the number plate. Full image is in the supplementary material. Best viewed in electronic format.

(a) Ours (b) NeX

Figure 6. Shiny Dataset: We contrast the results of our approach
(a) with (b) NeX [45] on held-out views. Our approach is able to
capture the details better than NeX such as the text (0454295012
3-Y) in the top-row and the details on the plate and stone in the
bottom row. Best viewed in electronic format.

13 sequences PSNR" SSIM" LPIPS #

num-views=10
NeRF 16.150 ± 4.195 0.541 ± 0.139 0.619 ± 0.158
Ours 18.460 ± 4.099 0.656 ± 0.129 0.451 ± 0.167

num-views=20
NeRF 18.171 ± 4.543 0.582 ± 0.135 0.594 ± 0.171
Ours. 22.414 ± 4.197 0.766 ± 0.126 0.289 ± 0.147

num-views=30
NeRF 19.725 ± 4.759 0.619 ± 0.135 0.557 ± 0.179
Ours 24.191 ± 4.219 0.803 ± 0.122 0.243 ± 0.137

num-views=40
NeRF 20.074 ± 4.673 0.627 ± 0.132 0.556 ± 0.178
Ours. 24.832 ± 4.110 0.822 ± 0.117 0.218 ± 0.125

num-views=50
NeRF 20.244 ± 4.611 0.631 ± 0.129 0.556 ± 0.178
Ours 25.529 ± 4.212 0.836 ± 0.112 0.198 ± 0.116

Table 4. Synthetic Multi-View Sequences: We vary the num-
ber of views in our analysis. Our approach achieves better per-
formance even with a few views and improve as we increase the
number of views.

the performance of our approach using ground truth camera
parameters with estimated parameters in Appendix A.3.

OursOpen4D

Figure 7. 4D View Synthesis: Our approach allows us to get
better facial details than Open4D [3] on challenging sequences.

5. 4D View Synthesis
We study the ability of our approach to perform 4D view

synthesis. We train our model on the temporal sequences
(1920⇥1080 resolution) from the Open4D dataset and con-
trast our approach with their method [3]. We conduct two
experiments: (1) held-out temporal sequences; and (2) held-
out camera views.
Held-out temporal sequences: We study the performance
of the trained model on unseen temporal sequences. We
train the model without temporal constraint. Our goal is to
study the compositional ability of our model in contrast to
the more explicit Open4D. The model is trained with multi-
views available for 300 � 400 time instances and evaluated
on unseen 100 time instances. Table 5 contrasts the per-
formance of our approach with Open4D. Quantitatively, we
observe similar performance of our approach as compared
to Open4D on unseen temporal sequences. Our approach
is able to capture details such as human faces consistently
better than Open4D as shown in Figure 7.
Held-out camera views: We study the performance on un-
seen camera views but a known temporal sequence. We
train the model for 500 time instances with and without
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(a) 10 views capturing a single person

(b) 9 views capturing two people

(c) 12 views capturing three people

(d) 12 views capturing more than thirty people

Figure 8. We show depth map (top-row) and dense 3D point clouds (bottom-row) for two sequences. The “jet blue” color corresponds to
missing depth values for these images (e.g., the bottom right edge on the depth map of the first image).

5 sequences PSNR" SSIM" LPIPS #

Naive Composition 13.723 ± 2.759 0.342 ± 0.110 0.665 ± 0.113
Open4D [3] 20.355 ± 4.425 0.626 ± 0.131 0.306 ± 0.079
Ours 21.458 ± 4.690 0.645 ± 0.145 0.431 ± 0.139

Table 5. Unseen Temporal Sequences: We study the composi-
tional ability of our model in contrast to the more explicit Open4D.
The model is trained with multi-views available for 300�400 time
instances and evaluated on unseen 100 time instances. There are a
total of 5297 frames used for evaluation. Our approach is able to
generate results competitive to Open4D without any modification.

temporal constraint to understand its importance. Table 6
contrasts the performance of our approach with Open4D.
Without any heuristics and foreground-background estima-
tion, we are able to learn a representation that allows 4D
view synthesis. Our approach use a simple reconstruction
loss whereas Open4D use an additional adversarial loss [9].
Using the adversarial loss enables Open4D to generate over-
all sharp results that leads to lower LPIPS score. However,
the details are not consistent as shown in Appendix B.

6. Depth Map and Dense 3D reconstruction

We use the learned MLPs to construct depth map for a
given view. Given an array of depth values for a pixel, we
select the depth value corresponding to the maximum ↵i

value. Multiple stereo pairs also provide us with dense 3D
point clouds. However, correspondences can still be noisy,
and using them with noisy camera parameters leads to poor
3D estimates. We observe that the learned MLP enables us
to select good 3D points per view that can be accumulated
across multi-views to obtain a dense 3D reconstruction. For
each pixel, we take the top-3 ↵i values and check if the cor-
responding di values are in the vicinity of each other (this
is done by empirically selecting a distance threshold). If
they are, then we select the 3D point from a stereo pair
corresponding to the maximum ↵i value. The process is
repeated for all the pixels in the available multi-views. Fig-
ure 8 shows the depth map and dense 3D reconstruction. We

5 sequences PSNR" SSIM" LPIPS #

Naive Composition 14.584 ± 3.364 0.374 ± 0.089 0.617 ± 0.064
Open4D [3] 16.681 ± 2.718 0.498 ± 0.071 0.477 ± 0.061
Ours (w/o T) 16.665 ± 2.365 0.519 ± 0.074 0.538 ± 0.071
Ours (w/ T) 16.797 ± 2.523 0.535 ± 0.080 0.522 ± 0.075

Table 6. Held-Out Camera Views: We contrast the performance
of our approach with Open4D [3] to synthesize held-out camera
views. There are a total of 2092 frames used for evaluation. We
achieve similar performance. We further improve performance by
incorporating temporal information as an input to the model.

do not have ground truth depth values for these sequences.

7. Discussion

We propose a novel approach for continuous 3D-4D
view synthesis from sparse and wide-baseline multi-view
observations. Leveraging a rich pixel representation that
consists of color, depth, and uncertainty information leads
to a high performing view-synthesis approach that gener-
alizes well to novel views and unseen time instances. Our
approach can be trained within few minutes from scratch
utilizing as few as 1GB of GPU memory. In this work, we
strive to provide an extensive analysis of our approach in
contrast to existing methods on a wide variety of settings.
Our method works well on numerous settings without in-
corporating any task-specific or sequence-specific knowl-
edge. We see our approach as a first step towards more
efficient and general neural rendering techniques via the ex-
plicit use of geometric information and hope that it will in-
spire follow-up work in this exciting field.
Acknowledgements: We would like to thank David Forsyth for
many comments and insights that were extremely helpful in de-
signing this work.
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