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Figure 1. We propose a novel semantic-driven image-based editing approach, which allows users to edit a photo-realistic NeRF with a
single-view image or with text prompts, and renders edited novel views with vivid details and multi-view consistency.

Abstract

Despite the great success in 2D editing using user-
friendly tools, such as Photoshop, semantic strokes, or even
text prompts, similar capabilities in 3D areas are still lim-
ited, either relying on 3D modeling skills or allowing edit-
ing within only a few categories. In this paper, we present
a novel semantic-driven NeRF editing approach, which en-
ables users to edit a neural radiance field with a single im-
age, and faithfully delivers edited novel views with high fi-
delity and multi-view consistency. To achieve this goal, we
propose a prior-guided editing field to encode fine-grained
geometric and texture editing in 3D space, and develop a
series of techniques to aid the editing process, including
cyclic constraints with a proxy mesh to facilitate geomet-
ric supervision, a color compositing mechanism to stabi-
lize semantic-driven texture editing, and a feature-cluster-
based regularization to preserve the irrelevant content un-
changed. Extensive experiments and editing examples on
both real-world and synthetic data demonstrate that our
method achieves photo-realistic 3D editing using only a
single edited image, pushing the bound of semantic-driven
editing in 3D real-world scenes.

1. Introduction

Semantic-driven editing approaches, such as stroke-
based scene editing [34, 39, 66], text-driven image synthe-
sis and editing [1, 50, 53], and attribute-based face edit-
ing [27,60], have greatly improved the ease of artistic cre-
ation. However, despite the great success of 2D image edit-
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ing and neural rendering techniques [4, 42], similar edit-
ing abilities in the 3D area are still limited: (1) they re-
quire laborious annotation such as image masks [27, 71]
and mesh vertices [69, 74] to achieve the desired manipula-
tion; (2) they conduct global style transfer [12,13,16,20,75]
while ignoring the semantic meaning of each object part
(e.g., windows and tires of a vehicle should be textured
differently); (3) they can edit on categories by learning
a textured 3D latent representation (e.g., 3D-aware GANs
with faces and cars etc.) [6,8,9,17,45,56,59,60], or at a
coarse level [35, 64] with basic color assignment or object-
level disentanglement [30], but struggle to conduct texture
editing on objects with photo-realistic textures or out-of-
distribution characteristics.

Based on this observation, we believe that, on the way
toward semantic-driven 3D editing, the following proper-
ties should be ensured. First, the operation of editing
should be effortless, i.e., users can edit 3D scenes on a sin-
gle 2D image in convenient ways, e.g., using off-the-shelf
tools such as GAN-based editing [28, 34], text-driven edit-
ing [1, 53], Photoshop, or even a downloaded Internet im-
age without pixel-wise alignment, rather than steering 3D
modeling software with specific knowledge [69], or repeat-
edly editing from multi-view images. Second, the editing
method should be applicable to real-world scenes or objects
and preserve vivid appearances, which is beyond existing
3D-aware generative models [8, 9] due to the limited cate-
gories and insufficient data diversity on real-world objects.

To fulfill this goal, we propose a novel Semantic-driven
Image-based Editing approach for Neural radiance field in
real-world scenes, named SINE. Specifically, our method
allows users to edit a neural radiance field with a sin-

20919



gle image, i.e., either by changing a rendered image us-
ing off-the-shelf image editing tools or providing an im-
age for texture transferring (see Sec. 4.4), and then deliv-
ers edited novel views with consistent semantic meaning.
Unlike previous works that directly fine-tune the existing
NeRF model [30, 35, 64], SINE learns a prior-guided edit-
ing field to encode geometric and texture changes over the
original 3D scene (see Fig. 2), thus enabling fine-grained
editing ability. By leveraging guidance from existing neu-
ral priors (shape prior models [15] and Vision Transformer
models [7], etc.), SINE can directly perform semantic-
driven editing on photo-realistic scenes without pre-training
a category-level latent space. For example, in Fig. 1, users
can stretch a car’s back or change all four tires to cook-
ies by only editing a single image, and can even cooperate
with text-prompts editing [ 1] to modify a specific object of
a scene with vivid appearances.

However, even when guided with neural priors, editing
NeRF from a single image with multi-view consistency and
accuracy is still challenging. (1) The generic NeRF does
not necessarily provide an explicit surface or signed dis-
tance field, such that it cannot directly work with shape pri-
ors [15]. Therefore, we propose to use cyclic constraints
with a proxy mesh to represent the edited NeRF’s geom-
etry, which facilitates guided editing using coarse shape
prior. (2) Learning a coordinate-based 3D editing field us-
ing a single edited view is not sufficient to capture fine-
grained details, and applying semantic supervision [7, 52]
directly to the editing field leads to sub-optimal conver-
gence (see Sec. 4.5). To tackle these challenges, we propose
a color compositing mechanism by first rendering the tem-
plate NeRF color and modification color individually, and
then deferred blending them to yield the edited view, which
significantly improves semantic-driven texture editing. (3)
Ideally, a user’s editing should only affect the desired re-
gions while maintaining other parts untouched. However,
in semantic-driven editing, the prior losses require taking
the full shape or image as input, which leads to appearance
or shape drifting at the undesired area. To precisely con-
trol the editing while excluding irrelevant parts from being
affected, we generate feature clusters of the editing area us-
ing the ViT-based feature field [7,30], and use these clusters
to distinguish whether a location is allowed to be edited or
should remain unchanged.

In summary, the contributions of our paper are as fol-
lows. (1) We propose a novel semantic-driven image-based
NeRF editing approach, called SINE, which allows users to
edit a neural radiance field simply on just a single view of
the rendering. SINE leverages a prior-guided editing field to
encode fine-grained geometry and texture changes over the
given pre-trained NeRF, thus delivering multi-view consis-
tent edited views with high fidelity. (2) To achieve seman-
tic editing functionality, we develop a series of techniques,

including cyclic constraints with a proxy mesh for geomet-
ric editing, the color compositing mechanism to enhance
texture editing, and the feature-cluster-based regularization
to control the affected editing area and maintain irrelevant
parts unchanged. (3) Experiments and editing examples
on both real-world/synthetic and object-centric/unbounded
360° scenes data demonstrate superior editing capabilities
and quality with effortless operations.

2. Related Works

Neural rendering with external priors. Neural render-
ing techniques aim at rendering novel views with high-
quality [42] or controllable properties [27, 48] by learn-
ing from 2D photo capture. Recently, NeRF [42] achieves
photo-realistic rendering with volume rendering and in-
spires many works, including surface reconstruction [3 1,65,

], scene editing [4, 18,67,70,71] and generation [22,51],
inverse rendering [5, 76], SLAM [72,77], etc. For learning
from few-shot images [23] or 3D inpainting [43], NeRF’s
variants use hand-crafted losses [44] or large language-
image models [23, 68] as external priors. However, due
to insufficient 3D supervision, such methods cannot recon-
struct accurate geometry and only produce visually plau-
sible results. Besides, some works [21, 32, 40] use the
symmetric assumption to reconstruct category-level objects
(e.g., cars, chairs) but cannot generalize on complex scenes.
Neural 2D & 3D scene editing. With the development of
neural networks, semantic-driven 2D photo editing allows
user editing in various friendly ways, such as controlling at-
tribute of faces [19, 28], stroke-based editing [34, 39, 66],
sketch-to-image generation [ 1, 55], image-to-image tex-
ture transferring [62], or text-driven image generation [53]
and editing [29]. Nevertheless, in 3D scene editing, simi-
lar capabilities are still limited due to the high demand for
multi-view consistency. Existing approaches either rely on
laborious annotation [27,69,71,74], only support object de-
formation or translation [30, 61, 63, 74], or only perform
global style transfer [12, 13, 16,20, 75] without strong se-
mantic meaning. Recently, 3D-aware GANs [8, 9, 17, 24,

,56,59] and semantic NeRF editing [35,64] learn a latent
space of the category and enable editing via latent code con-
trol. However, the quality and editing ability of these meth-
ods mainly depend on the dataset (e.g., human faces [59,60]
or objects in ShapeNet [10]), and they cannot generalize
to objects with rich appearances or out-of-distribution fea-
tures [1]. In contrast, our method allows for semantic-
driven editing directly on the given photo-realistic NeRF,
and uses a prior-guided editing field to learn fine-grained
editing from only a single image.

3. Method

We first formulate the goal of our semantic NeRF edit-
ing task as follows. As illustrated in the left part of Fig. 2,
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Figure 2. Overview. We encode geometric and texture changes over the original template NeRF with a prior-guided editing field, where
the geometric modification field FAG transformed the edited space query x into the template space x’, and the texture modification field
Far encodes modification colors m’. Then, we render deformed template i image I, and color modification i image I, with all the queries,
and use a color compositing layer to blend I, and I, into the edited view I.

given a pre-trained NeRF of a photo-realistic scene (named
template NeRF), we aim at editing the template NeRF us-
ing only a single-view 2D image, and then produce novel
views with consistent semantic meaning (see Sec. 4.3 and
Sec. 4.4). Note that naively fine-tuning on the edited sin-
gle view cannot obtain satisfactory results due to the spatial
ambiguity and lack of multi-view supervision (see Sec. 4.2).
Therefore, we propose to use a novel prior-guided editing
field to encode fine-grained changes (Sec. 3.1) in 3D space,
which leverages geometry and texture priors to guide the
learning of semantic-driven editing (Sec. 3.2 and Sec. 3.3).
Besides, to precisely control the editing area while main-
taining other parts unchanged, we design editing regulariza-
tion with feature cluster-based semantic masking (Sec. 3.4).

3.1. SINE Rendering Pipeline

As illustrated in Fig. 2, we use a dedicated editing field
to encode geometry and texture changes over the pre-trained
template NeRF. The editing field consists of an implicit ge-
ometric modification field Fa¢ and a texture modification
field Far, where Faqg deforms the query points from the
observed edited space to the original template space, as
x' := Fag(x), and Fap encodes the modification color
m’, as m’ := Far(x). Specifically, for each sampled
query point {x;|¢ = 1,..., N} along the ray r with view
direction d, we first obtain the deformed points x’ (in tem-
plate space) and modification color m’, and feed x’ and d
to the template NeRF to obtain the density 4’ and template
colors ¢’. Then, we perform dual volume rendering both on
edited fields and template NeRF following the quadrature

rules [38,42], which is defined as:
N N
’I") = ZTiaic;, T) = ZTiaim
i=1 i=1
i—1 (1)
T; = exp 720'/3‘5]' ,
j=1

where a; = 1 — exp (—0';6;), and 4; is the distance be-
tween adjacent samples along the ray. In this way, we obtain
the deformed template image I, from the template NeRF’s
pixel color c, (r) and color modification image I, from
the modification color C’e(r). Finally, we apply the color
compositing layer (see Sec. 3.3) to blend I, and I,,, into the
resulting edited views I.

3.2. Prior-Guided Geometric Editing

In this section, we explain how to learn Fa¢(x) with the
geometric prior.
Shape prior constraint on the edited NeRF. We leverage
geometric prior models, such as neural implicit shape rep-
resentation [15,46] or depth prediction [3], to mitigate the
ambiguity of geometric editing based on editing from a sin-
gle perspective. (1) For objects within a certain shape cat-
egory (e.g., cars, airplanes), we use DIF [15], in which the
implicit SDF field and the prior mesh Mp can be gener-
ated with the condition of an optimizable latent code z. We
force the edited NeRF’s geometry Mp to be explainable by
a pre-trained DIF model with the geometric prior loss:

Lyp = mzln( ZfSDF(i,P/) + )\||2H§)

P,GME
+ > min []p —pf3
2
piE]Vf ptE]WP
+ > min |[p; — i3
piEMPpt £

The first term encourages the sampled surface points on the
edited NeRF’s geometry M to lie on the manifold of DIF’s
latent space with an SDF loss fspr and the latent code regu-
larization [15]. The last two terms are Chamfer constraints,
which enforce the M close to the DIF’s periodically up-
dated prior mesh Mp [36] by minimizing the closest sur-
face points. (2) For objects without a category-level prior,
we can build a finalized shape prior M p beforehand. Prac-
tically, we find 3D deforming vertices with 2D correspon-
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dence [26] and monocular depth prediction [3], and use
ARAP [57] to deform the proxy triangle mesh Mg to Mp.
Then, we can inherit the Chamfer loss term in Eq. (2) for
prior-guided supervision.

Representing edited NeRF’s geometry as a deformed
proxy mesh. The edited NeRF has no explicit surface defi-
nition or SDF field to directly apply the geometric prior loss
(Eq. (2)). Therefore, to obtain the edited mesh surface M B
as illustrated in Fig. 3 (a), we first fit the template NeRF
geometry with a proxy mesh Mg [36,65], and then learn a
forward modification field F5 ., to warp the template proxy
mesh to the edited space. F\ is an inverse of the editing
field Faq, which maps from the template space to the query
space [33,41], as x := F 4 (x’), and can be supervised us-
ing a cycle loss L.y, (see the supplementary material for de-
tails). Note that the deformed mesh proxy might not reflect
fine-grained details of the specific shape identity. It facili-
tates applying shape priors to the edited field and provides
essential guidance during geometric editing.

Learning geometric editing with users’ 2D editing. The
goal of geometric editing is to deform the given NeRF ac-
cording to the edited target image while satisfying semantic
properties. To this end, apart from the geometric prior loss
in Eq. (2), we add the following geometric editing loss in
two folds. (1) We encourage the edited NeRF to satisfy the
user’s edited image by directly supervising rendering colors
and opacity on N, rays, which is defined as:

L= ‘N| S™ [1G(r) - Cu(r)|[3 + BCE(O(r), O.(r)).
rEN,
3)
The first photometric loss term encourages the rendered
color C(r) close to the edited target color Cy(r). The sec-
ond silhouette loss term enforces the rendered opacity O(r)
close to the edited object’s silhouette O, (r) (derived from
users’ editing tools) by mlmmlzmg the binary cross-entropy
loss, where O( ) = Zz 1 Ticii. (2) To obtain a spatially
smooth deformation and mitigate overfitting to the mesh’s
surface points, inspired by previous works [15,48,49], we
also add deformation regularization as:

N
1
Le= 7 Y IVFac®@i)llo+Fac(pi)—Fac(pite)ll,

i=1
“4)
where the first term penalizes the spatial gradient of the ge-
ometric editing, and the second term encourages the editing
to be smooth under a mild 3D positional jitter €.
The overall geometric editing loss is defined as:

Cgeo = Agpﬁgp + Egt + )\gr»cgr + Acycﬁcyca (5)
where we set A\, = 0.03, Ay = 0.1 and Ay = 10. In-
tuitively, the geometric editing loss L, jointly optimizes
edited NeRF’s geometry Mg and the latent shape code z
(for category-level objects) to best fit the user’s 2D editing
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to guide the learning of semantic-driven NeRF editing.
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while maintaining shape prior’s semantic properties (i.e.,
shape symmetry or physical conformity).

3.3. Prior-Guided Texture Editing

Semantic texture prior supervision. In our task, users
only conduct editing on a single image, but we hope to natu-
rally propagate editing effects to multi-views with semantic
meaning (see Fig. 1). Therefore, we need to utilize seman-
tic texture supervision that supports transferring the editing
to the given NeRF across views, rather than using a pixel-
aligned photometric loss. Inspired by Tumanyan et al. [62],
we use a pre-trained ViT model [7] as the semantic texture
prior, and apply the texture transferring loss in a multi-view
manner as illustrated in Fig. 3 (b), which is defined as:

Liex = |lters(It) = teus(Dll2 + [[S(Lo) = S(DI[p,  (6)
where I, is the user’s edited image, I, and I are the template
image and edited image as introduced in Sec. 3.1. tcrs()
and S(-) are the extracted deepest CLS token and the struc-
tural self-similarity defined by Tumanyan et al. [62]. Essen-
tially, this loss encourages I, and I to share a similar spatial
structure, and I; and I to contain similar image cues.
Decoupled rendering with color compositing layer. To
achieve texture modification, a naive approach is to directly
add the modification color m’ from the editing field to the
template NeRF’s radiance color ¢’ during volume render-
ing. However, we find it suffers from sub-optimal con-
vergence when cooperating with texture transferring loss
(see Sec. 4.5), since NeRF struggles to learn the global-
consistent appearance under the variational supervisory as
shown in Fig. 8(a). To tackle this issue, we re-design the
rendering pipeline in a decoupled manner. As shown in
Fig. 2, we first render the deformed template image I, with

20922



template NeRF and the color modification fm with FaT,
and then use a 2D CNN-based color compositing layer to
deferred blend the modification Im into the template im-
age I,, which yields final edited view I. Intuitively, the
coordinate-based editing field can encode fine-grained de-
tails from photometric constraints but cannot easily learn
from coarse semantic supervision, while the proposed color
compositing layer can reduce the difficulty by using easy-
to-learn CNN layers before applying texture transferring
loss. Besides, it also learns view-dependent effects from the
semantic prior, making the rendering results more realistic
(e.g., the shining diamond effect in Fig. 1).

3.4. Editing Regularization

Feature-cluster-based semantic masking. To precisely
edit the desired region while preserving other content un-
changed, inspired by previous works [30, 61, 63], we learn
a distilled feature field with DINO-ViT [7] to reconstruct
scenes/objects with semantic features. However, existing
semantic field decomposing approaches [30,61] are limited
to the query-based similarity and require all the editing to
be finalized on the 3D field, which is not compatible with
our color compositing mechanism. Therefore, we leverage
users’ editing silhouette M, to generate several feature clus-
ters from the distilled feature map, and compute semantic
masks M, using the closest cosine similarity to cluster cen-
ters with a threshold, which will be served for image-based
editing regularization.

Regularization on geometric and texture editing. With
the semantic masks that indicate the editing area, we can ap-
ply editing regularization to the geometric and texture edit-
ing, i.e., by enforcing the rendered pixels and the queries at
the irrelevant part unchanged, which is deﬁned as:

Ereg:Z”FAG ||1+Z||C )||2a (7
x€N\ M, rel\N,
where the sampled points x and rays r are both from the
background area of the computed semantic masks M,.

4. Experiments
4.1. Datasets

We evaluate SINE on both real-world/synthetic and ob-
ject/scene datasets, including real-world car dataset [54],
PhotoShape datasets (synthetic chairs) [47], “pinecone”,
“vasedeck”, and “garden” from NeRF real-world 360°
scenes [2,42], “chairs” and “hotdog” from NeRF photo-
realistic synthetic data [42], bird status from DTU [25]
dataset, and “airplane” from BlenderSwap [37]. Please re-
fer to the supplementary material for more details.

4.2. Semantic-driven vs. Manual Editing

We first clarify the difference between our semantic-
driven NeRF editing and manual NeRF editing (e.g.,
NeuMesh [69], NeRF-Editing [74]). As illustrated in Fig. 4

r’»—»

\ .
| > 2N

)’T/ — T
A

NeuMesh Editing with 3D Skeleton NeuMesh Rendered Edited Views

4 kx4

Our Editing on a Single Image Our Rendered Edited Views
(a) Image-based geometric editing vs. manual geometric editing

Single-View _g# o

Fine-Tuning N 4

Rendered Results from naive fine-tuning

1. Semanuc driven

J Our Rendering Results

Target
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Figure 4. We show the difference between our semantic-driven
image-based NeRF editing and manual NeRF editing [69].

(a), our method provides much more effortless ways than
manual approaches. For example, they require 3D modeling
skills to bind the skeleton of the mesh using Blender [69],
or drive models [74] with Mixamo poses [58], while our
method can easily achieve similar geometric editing with
only a single-view image. Besides, naively fine-tuning
NeRF on a single-view with a pixel-aligned photometric
loss like NeuMesh [69] would only modify visible regions,
which leads to inconsistent novel view rendering (e.g., in
Fig. 4 (b), the car edited by single-view fine-tuning would
expose unpainted red part). On the contrary, our method
leverages semantic priors [7] to naturally edit objects with
multi-view consistency, which does not require pixel-wise
alignment and enables texture transferring between objects
with different shapes (see cars and chairs in Fig. 6 (a)).

4.3. Semantic-driven Geometric Editing

We first show our geometric editing results in Fig. 5
(a), where the objects can be faithfully deformed accord-
ing to users’ 2D editing (e.g., the airplane with warped
wings [37], green chair with bent legs [42] and deformed
bird status [25]). For the usage of geometry prior, we use
a pre-trained DIF [15] model for cars [54], chairs [47] and
planes [37], and use ARAP-based shape priors for general
objects without a category-level prior (i.e., toy in Fig. 4
(a), green chair with unusual shape and status in Fig. 5
(a), etc.). Then, we compare our method with EG3D [9], a
3D-aware generative model that learns a latent representa-
tion of category-level objects, and EditNeRF [35], a NeRF-
variant that supports object editing with single-view user in-
teraction. In addition to editing comparisons, we also used
PSNR, SSIM, and LPIPS [42] to measure the edited render-
ing quality on synthetic cars and chairs. For the geometric
editing on EG3D, we first conduct 3D GAN inversion to
obtain the style code with multi-view images (same input
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Figure 5. We compare the geometric editing with EG3D [9] and EditNeRF [35] on the real-world cars [54] and PhotoShape [47].

as ours), and then fine-tune the code on the target images.
As shown in Fig. 5 (b), we conduct different editing oper-
ations on four cars from CalWare 360° datasets with DIF
shape prior [15], i.e., enlarging/shrinking tires/back. Due to
the difficulty of learning a latent textured 3D representation
and the limitation of data diversity, 3D-aware generative
models like EG3D cannot produce rendering results with
fine-grained details, which also results in lower evaluation
metrics. For the Photoshape [47], EditNeRF [35] does not
provide edited GT images, so we regenerate all testing cases
using Blender, which is more challenging than the original
ones. Then, we evaluate EditNeRF [35] by fine-tuning the
pre-trained models on specific chairs from the PhotoShape
dataset. As shown in Fig. 5 (c), EditNeRF produces more
blurry rendering results than ours, and cannot achieve sat-
isfactory results with single-view editing (e.g., multi-view
inconsistent chair back in the first row, and unmodified or
blurry shapes in the third and fourth rows). By contrast,
our method consistently delivers high-fidelity rendering re-
sults and achieves reliable editing capability by leveraging
geometric priors [3, 15]. This demonstrates that, for seman-

tic geometric NeRF editing, learning a prior-guided editing
field like ours can maintain better visual quality and achieve
greater generalization ability than pre-training a textured 3D
generative model or latent model.

4.4. Semantic-driven Texture Editing

We evaluate our semantic texture editing ability on
both objects (cars from CalWare 360°, chairs from Photo-
Shape [47]) and unbounded 360° scenes [2,42]. Since our
method only requires a single image as editing input, we
exhibit several editing functionalities as shown in Fig. 6.
Users can edit by assigning new textures on the car using
Photoshop (adding sea wave windows in Fig. 6 (a)), us-
ing a downloaded Internet image with different shapes as
a reference (transferring textures of cars and chairs in Fig. 6
(a)). Moreover, we cooperate SINE with off-the-shelf text-
prompts editing methods [1] by using a single text-edited
image as the target, which enables to change the object’s
appearance in the 360° scene with vivid effects (e.g., shiny
plastic round table or burning pinecone in Fig.6 (b)) while
preserving background unchanged. It is noteworthy that
our method does not pre-train a latent model within a spe-
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Figure 7. We compare our texture editing with ARF [75] and CLIP-NeRF [64] on the real-world cars [54] and 360° [2,42] scene dataset.

cific category like cars or chairs, yet still transfers texture
between objects with correct semantic meaning, e.g., the
texture styles of chair legs and cloths in the edited views
are precisely matched to the target images in Fig. 6 (a).
Besides, we also compare our methods with ARF [75], a

NeRF stylization method that also takes a single reference
image as input, and CLIP-NeRF [64], which supports text-
driven NeRF editing using the large language model [52].
As demonstrated in Fig. 7, ARF globally changes appear-
ance colors to the given target images but fails to produce
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fine-grained details (e.g., cookie tires in Fig. 7 (a)). For
CLIP-NeREF, since it directly fine-tunes NeRF’s color lay-
ers, the results only show color/hue adjustment on the orig-
inal scene (e.g., in Fig. 7, the round table turns gray instead
of a realistic silver texture, the vasedeck turns blue instead
of a shining diamond). Thanks to the prior-guided editing
field, our method learns more fine-grained editing details
than the others, and achieves texture editing with consistent
semantic meaning to the given target images (e.g., similar
appearance to the Tesla’s cybertruck in Fig. 7 (a)), and de-
livers rich appearance details and vivid effects (e.g., silver
texture and shining diamond effects in Fig. 7 (b)).

User study. We also perform user studies to compare our
texture editing (including target-image-based editing and
text-prompts editing as Fig. 7) with ARF [75] and CLIP-
NeRF [64] on 43 cases with 30 users. The results show that
users prefer our methods (89.5% / 83.3%) to ARF (10.4% /
7.4%) and CLIP-NeRF (9.3%). Please refer to the supple-
mentary material for more details.

4.5. Ablation Studies

Geometric prior constraints. We first analyze the effec-
tiveness of geometric prior constraints (Sec. 3.2) by ablating
geometric prior loss (Eq. (2)) in Fig. 9 (i.e., deforming cars
and airplanes with DIF shape prior, and adding plates with
general shape prior). As shown in Fig. 9 (b), when learning
without geometric prior constraints, the object will be dis-
torted when rendered from other views (e.g., collapsed car
back, twisted airplanes, and warped hotdog plates). By ap-

plying geometric prior constraints, we successfully mitigate
the geometric ambiguity for single-image-based editing and
produce plausible rendering results from novel views.
Color compositing mechanism. We then inspect the ef-
ficacy of the color compositing mechanism (Sec. 3.3) by
disabling the texture modification field Far and the color
compositing layer in turn. As demonstrated in Fig. 8 (a),
when learning texture editing without Far, the rendered
edited object can show a similar global appearance to the
target, but lose vivid local patterns (e.g., gray and white
grains and blue shininess). When ablating the color com-
positing layers, the editing effect might not be properly ap-
plied to every part of the object (e.g., the uncovered gray
part of the car’s front). When all the compositing mecha-
nism is enabled, we successfully learn NeRF editing with
fine-grained local patterns and globally similar appearance.
Editing regularization. We finally evaluate the editing reg-
ularization (Sec. 3.4) in geometric and texture editing by
ablating regularization loss (Eq. (7)). As shown in Fig. 9
(c) and Fig. 8 (b), when learning editing without regulariza-
tion, the irrelevant part would be inevitably changed (e.g.,
bent car’s front and airplane’s head in Fig. 9 (c), a spurious
cookie at the car’s front and snowy background in Fig. 8
(b)). By adding editing regularization, we can modify the
user-desired objects precisely while preserving other con-
tent unchanged.

Please refer to the supplementary material for more ex-
periments (e.g., ablation on more loss terms, visualization
of color composition layer, discussion with external super-
vision, efc.).

5. Conclusion

We have proposed a novel semantic-driven NeRF editing
approach, which supports editing a photo-realistic template
NeRF with a single user-edited image, and delivers edited
novel views with high-fidelity and multi-view consistency.
As a limitation, our approach does not support editing with
topology changes, which can be future work. Besides, our
method assumes users’ editing to be semantically meaning-
ful, so we cannot use target images with meaningless ran-
dom paintings.

Acknowledgment. This work was partially supported by
NSF of China (No. 62102356).

20926



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. arXiv preprint arXiv:2204.02491, 2022.
1,2,6,7

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 5, 6,7

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4009—4018, 2021. 3,4, 6
Boming Zhao and Bangbang Yang, Zhenyang Li, Zuoyue Li,
Guofeng Zhang, Jiashu Zhao, Dawei Yin, Zhaopeng Cui, and
Hujun Bao. Factorized and controllable neural re-rendering
of outdoor scene for photo extrapolation. In Proceedings
of the 30th ACM International Conference on Multimedia,
2022. 2

Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan Barron, and Hendrik Lensch. Neural-pil:
Neural pre-integrated lighting for reflectance decomposi-
tion. Advances in Neural Information Processing Systems,
34:10691-10704, 2021. 2

Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc
Van Gool. Pix2nerf: Unsupervised conditional p-gan for sin-
gle image to neural radiance fields translation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3981-3990, June 2022.
1

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650-9660, 2021. 2,4, 5

Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and
Gordon Wetzstein. pi-gan: Periodic implicit generative ad-
versarial networks for 3d-aware image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition (CVPR), 2021. 1,2

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware
3D generative adversarial networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 1,2,5,6

Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2

Wengling Chen and James Hays. Sketchygan: Towards di-
verse and realistic sketch to image synthesis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9416-9425, 2018. 2

[12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

20927

Yaosen Chen, Qi Yuan, Zhiqiang Li, Yuegen Liu, Wei Wang,
Chaoping Xie, Xuming Wen, and Qien Yu. UPST-NeRF:
Universal photorealistic style transfer of neural radiance
fields for 3d scene. In arXiv preprint arXiv:2208.07059,
2022. 1,2

Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei-
Sheng Lai, and Wei-Chen Chiu. Stylizing 3d scene via im-
plicit representation and hypernetwork. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1475-1484, 2022. 1, 2

Frank Dellaert and Lin Yen-Chen. Neural volume rendering:
Nerf and beyond. arXiv preprint arXiv:2101.05204, 2020. 1
Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit
field: Modeling 3d shapes with learned dense correspon-
dence. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10286-10296,
2021. 2,3,4,5,6

Zhiwen Fan, Yifan Jiang, Peihao Wang, Xinyu Gong, Dejia
Xu, and Zhangyang Wang. Unified implicit neural styliza-
tion. arXiv preprint arXiv:2204.01943,2022. 1,2

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian
Theobalt.  Stylenerf: A style-based 3d-aware genera-
tor for high-resolution image synthesis. arXiv preprint
arXiv:2110.08985,2021. 1, 2

Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas
Funkhouser. Object-centric neural scene rendering. arXiv
preprint arXiv:2012.08503, 2020. 2

Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. Attgan: Facial attribute editing by only
changing what you want. /EEE transactions on image pro-
cessing, 28(11):5464-5478, 2019. 2

Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: consistent 3d scene stylization as styl-
ized nerf via 2d-3d mutual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18342-18352, 2022. 1,2

Eldar Insafutdinov, Dylan Campbell, Jodo F Henriques,
and Andrea Vedaldi. Snes: Learning probably symmet-
ric neural surfaces from incomplete data. arXiv preprint
arXiv:2206.06340, 2022. 2

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867-876,2022. 2

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5885-5894, 2021. 2

Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 12949-12958, 2021. 2

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola,
and Henrik Aanzs. Large Scale Multi-view Stereopsis Eval-
uation. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 406—413. IEEE, 2014. 5



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi,
and Kwang Moo Yi. Cotr: Correspondence transformer for
matching across images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6207—
6217, 2021. 4

Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzcifiski, and Andrea Tagliasacchi. Conerf: Controllable
neural radiance fields. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

18623-18632,2022. 1,2

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401-4410, 2019. 1, 2
Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. arXiv
preprint arXiv:2210.09276, 2022. 2

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. arXiv preprint arXiv:2205.15585,2022. 1,2, 5
Hai Li, Xingrui Yang, Hongjia Zhai, Yuqian Liu, Hujun Bao,
and Guofeng Zhang. Vox-surf: Voxel-based implicit sur-
face representation. /[EEE Transactions on Visualization and
Computer Graphics, 2022. 2

Xingyi Li, Chaoyi Hong, Yiran Wang, Zhiguo Cao, Ke Xian,
and Guosheng Lin. Symmnerf: Learning to explore sym-
metry prior for single-view view synthesis. arXiv preprint
arXiv:2209.14819, 2022. 2

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6498—
6508, 2021. 4

Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,
Antonio Torralba, and Sanja Fidler. Editgan: High-precision
semantic image editing. Advances in Neural Information
Processing Systems, 34:16331-16345, 2021. 1, 2

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5773-5783,
2021.1,2,5,6

William E Lorensen and Harvey E Cline.  Marching
Cubes: A High Resolution 3D Surface Construction Algo-
rithm. ACM SIGGRAPH Computer Graphics, 21(4):163—
169, 1987. 3,4

John Roper Matthew Muldoon. Blenderswap. https://
www . blenderswap.com/, 2022. Accessed: 2022-11-
10. 5

Nelson L. Max. Optical Models for Direct Volume Render-
ing. IEEE Trans. Vis. Comput. Graph., 1(2):99-108, 1995.
3

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-
Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis and
editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073,2021. 1,2

[40]

(41]

(42]

(43]

(44]

[45]

[40]

(47]

(48]

[49]

(501

(51]

(52]

20928

Lu Mi, Abhijit Kundu, David Ross, Frank Dellaert, Noah
Snavely, and Alireza Fathi. im2nerf: Image to neural ra-
diance field in the wild. arXiv preprint arXiv:2209.04061,
2022. 2

Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu
Tang. Leap: Learning articulated occupancy of people. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10461-10471, 2021. 4
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021. 1,
2,3,5,6,7

Ashkan Mirzaei, Yash Kant, Jonathan Kelly, and Igor
Gilitschenski. Laterf: Label and text driven object radiance
fields. arXiv preprint arXiv:2207.01583, 2022. 2

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5480-5490, 2022. 2

Michael Niemeyer and Andreas Geiger. Girafte: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1145311464, 2021.
1,2

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165-174, 2019. 3
Keunhong Park, Konstantinos Rematas, Ali Farhadi, and
Steven M. Seitz. Photoshape: Photorealistic materials for
large-scale shape collections. ACM Trans. Graph., 37(6),
Nov. 2018. 5,6

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865-5874, 2021. 2, 4
Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz.  Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 4
Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2085-2094,
2021. 1

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-



(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748-8763. PMLR, 2021. 2, 7

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 1, 2

Arun Kumar Sahlam. Carwale. https://www.
carwale.com/,2022. Accessed: 2022-11-10. 5, 6, 7
Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Scribbler: Controlling deep image synthesis
with sketch and color. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5400-5409, 2017. 2

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems, 33:20154-20166, 2020. 1, 2

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In Symposium on Geometry processing, volume 4,
pages 109-116, 2007. 4

Nazim Kareemi Stefano Corazza. Mixamo. https://
www.mixamo.com/, 2022. Accessed: 2022-11-10. 5
Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue
Wang, and Yebin Liu. Ide-3d: Interactive disentangled edit-
ing for high-resolution 3d-aware portrait synthesis. arXiv
preprint arXiv:2205.15517,2022. 1, 2

Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi
Zhang, Yebin Liu, and Jue Wang. Fenerf: Face editing in
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7672-7682, 2022. 1,2

Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural feature fusion fields: 3d distillation of
self-supervised 2d image representations. arXiv preprint
arXiv:2209.03494,2022. 2, 5

Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali
Dekel. Splicing vit features for semantic appearance transfer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10748-10757, 2022.
2,4

Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi SM Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes.
arXiv preprint arXiv:2111.13260, 2021. 2, 5

Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manip-
ulation of neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3835-3844,2022. 1,2,7,8

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurlPS, 2021. 2, 4

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In

[67]

[68]

[69]

(70]

(71]

(72]

(73]

(74]

[75]

(76]

(771

20929

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798-8807, 2018. 1, 2

Qianyi Wu, Xian Liu, Yuedong Chen, Kejie Li, Chuanxia
Zheng, Jianfei Cai, and Jianmin Zheng. Object-
compositional neural implicit surfaces. arXiv preprint
arXiv:2207.09686, 2022. 2

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey
Shi, and Zhangyang Wang. Sinnerf: Training neural radiance
fields on complex scenes from a single image. arXiv preprint
arXiv:2204.00928, 2022. 2

Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda
Zhang, Zhaopeng Cui, and Guofeng Zhang. Neumesh:
Learning disentangled neural mesh-based implicit field for
geometry and texture editing. In European Conference on
Computer Vision, pages 597-614. Springer, 2022. 1,2, 5
Bangbang Yang, Yinda Zhang, Yijin Li, Zhaopeng Cui, Sean
Fanello, Hujun Bao, and Guofeng Zhang. Neural render-
ing in a room: amodal 3d understanding and free-viewpoint
rendering for the closed scene composed of pre-captured ob-
jects. ACM Transactions on Graphics (TOG), 41(4):1-10,
2022. 2

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13779—
13788, 2021. 1,2

Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation. In
2022 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR), pages 499-507. IEEE, 2022. 2
Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. arXiv preprint
arXiv:2106.12052,2021. 2

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18353-18364,2022. 1,2, 5

Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In European Conference on Computer Vision, pages
717-733. Springer, 2022. 1,2,7, 8

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics
(TOG), 40(6):1-18, 2021. 2

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12786—12796, 2022.
2



