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Abstract

We present a large-scale dataset of Planes in 3D, Pi3D,

of roughly 1000 planes observed in 10 000 images from

the 1DSfM dataset, and HEB, a large-scale homography

estimation benchmark leveraging Pi3D. The applications

of the Pi3D dataset are diverse, e.g. training or evaluat-

ing monocular depth, surface normal estimation and image

matching algorithms. The HEB dataset consists of 226 260

homographies and includes roughly 4M correspondences.

The homographies link images that often undergo signifi-

cant viewpoint and illumination changes. As applications

of HEB, we perform a rigorous evaluation of a wide range

of robust estimators and deep learning-based correspon-

dence filtering methods, establishing the current state-of-

the-art in robust homography estimation. We also evalu-

ate the uncertainty of the SIFT orientations and scales w.r.t.

the ground truth coming from the underlying homographies

and provide codes for comparing uncertainty of custom de-

tectors. The dataset is available at https://github.

com/danini/homography-benchmark.

1. Introduction

The planar homography is a projective mapping between

images of co-planar 3D points. The homography induced

by a plane is unique up to a scale and has eight degrees-of-

freedom (DoF). It encodes the intrinsic and extrinsic camera

parameters and the parameters of the underlying 3D plane.

The homography plays an important role in the geom-

etry of multiple views [30] with hundreds of papers pub-

lished in the last few decades about its theory and ap-

plications. Estimating planar homographies from image

pairs is an important task in computer vision with a num-

ber of applications. For instance, monocular SLAM sys-

tems [55,63,70] rely on homographies when detecting pure

rotational camera movements, planar scenes, and scenes

with far objects. As a homography induced by a plane at

infinity represents rotation-only camera motion, it is one of

Figure 1. Example image pairs and homographies with their inlier

correspondences shown, from the proposed Homography Estima-

tion Benchmark (HEB) dataset. Outliers are not drawn.

the most important tools for stitching images [1, 15]. The

generated images cover a larger field-of-view and are useful

in various applications, e.g. image-based localization [3],

SLAM [34, 39], autonomous driving [65], sport broadcast-

ing [17], surveillance [68], and augmented and virtual real-

ity [33, 44]. Homographies play an important role in cali-

bration [18,73], metric rectification [21,41], augmented re-

ality [58,76], optical flow based on piece-wise planar scene

modeling [67], video stabilization [28, 77], and incremen-

tal [56] and global [48, 62] Structure-from-Motion.

The traditional approach of finding homographies in im-

age pairs consists of two main stages. First, similarly as

in most algorithms working with pairs, feature points are

detected and matched [15, 35, 43, 54, 57]. They are then

often filtered by the widely-used second nearest neighbors

(SNN) ratio [42, 43] or by deep learned filtering meth-

ods [51, 61, 69, 75], to remove gross outliers and, therefore,

improve the robust estimation procedure that follows. The

found tentative point correspondences are contaminated by

various sources of noise due to, e.g., measurement and

quantization, and a large proportion of them are still out-

liers – correspondences inconsistent with the sought model

manifold. Consequently, some form of robust estimation
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Figure 2. Typical image pairs (a-c) from widely used datasets for homography estimator benchmarking and (d) from HEB.

has to be applied to find a set of inliers and to estimate the

parameters of the sought homography. In practice, either a

randomized RANSAC-like [24] robust estimator or an iter-

atively re-weighted least squares fitting [31] is applied.

The number of datasets on which recent homography

and, in general, robust estimation papers evaluate their al-

gorithms is severely limited. The Homogr dataset [38] con-

sists only of a few image pairs with relatively small base-

lines and, thus, high inlier ratios. Given that recent robust

estimators, e.g. [6], report lower than 0.5 pixel average re-

projection errors on the provided manually labeled corre-

spondences, it is safe to say that this dataset is solved. The

HPatches dataset [4] consists of a few hundreds of image

pairs, all looking at an almost completely planar scene, with

either significant illumination or viewpoint (mostly in tilt

angle) changes. While [4] is a useful tool for evaluating lo-

cal feature detector and image matching methods, it is very

easy for robust estimators [5]. The ExtremeView (EVD)

dataset [46] poses a significantly more challenging problem

for homography estimation than the previous two. The im-

ages undergo extreme view-point changes, therefore mak-

ing both the feature matching and robust estimation tasks

especially challenging. However, EVD consists only of 15

image pairs, severely limiting its benchmarking power.

Besides the data part, a good benchmark has well-

defined parameter tuning (training) and evaluation protocols

and training-test set split. Otherwise, as it happens in other

fields, the seemingly rapid progress might be an artifact of

tuning the algorithms on the test data, or an artifact of the

flawed evaluation procedure [12, 27, 49].

In short, there are no available large-scale benchmarks

with ground truth (GT) homographies that allow evaluating

new algorithms on standard internet photos, i.e., ones not

necessarily looking at completely planar scenes.

As the first contribution, we create a large-scale dataset

of 1046 large Planes in 3D (Pi3D) from a standard landmark

dataset [66]. We use the scenes from the 1DSfM dataset as

input and find 3D planes in the reconstructions. Second, we

use the Pi3D dataset to find image pairs with estimatable

homographies and create a large-scale homography bench-

mark (HEB) containing a total of 226 260 homographies

that can be considered GT when testing new algorithms (see

Fig. 1 for examples). A large proportion of the image pairs

capture significant viewpoint and illumination changes. The

homographies typically have low inlier ratio, thus making

the robust estimation task challenging. Third, we compare a

wide range of robust estimators, including recent ones based

on neural networks, establishing the current state-of-the-art

in robust homography estimation. As the forth contribution,

we demonstrate that the dataset can be used to evaluate the

uncertainty of partially or fully affine covariant features de-

tectors [43,47]. While we show it on DoG features [42], the

homographies can be leveraged similarly for the compari-

son with other detectors.

Existing Datasets. The datasets traditionally used for eval-

uating homography estimators are the following. The Ho-

mogr dataset [38] consists of 16 image pairs with GT ho-

mographies. The GT comes from (also provided) hand-

labeled correspondences, which later were optimized to im-

prove the localization accuracy. There is no train-test split,

nor a benchmark protocol. The ExtremeView dataset [46]

consists of 15 image pairs, taken under extreme view-

point change, together with GT homographies and corre-

spondences. The homographies are derived from hand-

labeled correspondences that stem from multiple local fea-

ture detectors paired with an affine view synthesis proce-

dure [46] and RootSIFT descriptor [2] matching. There is

no train-test split, nor a benchmark protocol. The HPatches

dataset [4] was introduced in form of local patches for

benchmarking descriptors and metric learning methods,
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ters, the camera position noise largely affects the translation

angle. Thus, Eq. (2) distorts the evaluation by returning

large errors even when the camera barely moves in the real

world. We select the averages of the rotation and translation

mAA scores to be our main metric.

Metrics comparison. We plot the angular pose accuracy vs.

metric pose accuracy in Fig. 5 (right). They are mostly in

agreement, except for a few methods, e.g., EAS [23] and

Affine GC-RANSAC [9]. The mAA of the re-proj. error is

also in agreement with the mAA of the pose error (Fig. 5;

3rd) with some exceptions, e.g., LO+-RANSAC.

The number of inliers (Fig. 5, two left graphs) greatly

depends not only on image resolution, but also on the in-

lier threshold and particulars of each algorithm – MAGSAC

outputs many more inliers, while having similar pose ac-

curacy to other methods, while the LMEDS pose is much

worse with the same number of inliers as the rest.

Training and Test Protocols. One of the drawbacks of the

existing homography estimation datasets is the lack of tun-

ing and test protocols. We propose the following proce-

dure for fair evaluation. The main principle is as follows:

one should not not make more than one or two evaluation

runs on the test set. That it why all the hyper-parameters of

the algorithms are fixed when running on the test set. The

tuning and learning are done on the training set, which has

similar, but not equal properties and no overlap in terms of

content with the test set. We tune all the hyper-parameters

with grid search for simplicity.

Training protocol. We fix number of iterations to 1000

for all methods. With each method, grid search is performed

on the training set to determine the optimal combination

of the hyper-parameters, such as inlier-outlier threshold θ,

the SNN ratio threshold and other algorithm-specific pa-

rameters, such as the spatial weight of GC-RANSAC. Note

that, unlike IMC [35], inlier-outlier and SNN thresholds are

tuned jointly and not consequently – we found that it leads

to slightly better hyper-parameters.

We tested the robust estimators on correspondences fil-

tered by the predicted score of recent deep learning models.

After obtaining the scores, we post-processed them in one

of the two ways: (a) thresholding the scores at θ and re-

moving tentative correspondences below it; and (b) sorting

the correspondences by their score and keeping the top K
best. Both θ and K were found by running grid search on

the training set similarly as for other hyper-parameters.

Test protocol. After fixing all hyper-parameters, we

run the algorithms on the test set, varying their maximum

number of iterations from 10 to 10 000 (to 1000 for meth-

ods significantly slower than the rest, i.e., scikit-image

RANSAC, EAS and kornia-CPU) to obtain a time-accuracy

plot. The algorithm terminates after its iteration number

reaches the maximum. Note that, unlike in IMC [35], such

experiments are performed on the test, not training set.

Methods for Homography Estimation. We give a brief

overview of algorithms that we compare on HEB. Note that

we consider it important to compare not just the algorithms

as published in their respective papers but, also, their avail-

able implementations. Even though it might seem unfair to

compare a method implemented in Python to C++ codes,

the main objective is to provide useful guidelines for users

on which algorithms and implementations to use in practice.

Traditional Algorithms. In all tested methods, the nor-

malized DLT algorithm runs both on minimal and non-

minimal samples. We found that the implementation is as

important as the algorithm itself, thus, we define a method

by its name and the library in which it is implemented.

We compare the OpenCV implementations of

RANSAC [24], LMEDS [53], LSQ, RHO [11],

MAGSAC++ [7], and Graph-Cut RANSAC [6]. The

RANSAC implementation as in the scikit-image li-

brary [64]. Unlike OpenCV RANSAC, which is

implemented in optimized C++ code, scikit-image is

implemented in pure Python with the help of numpy [29].

LO-RANSAC [20] as implemented in the PyTorch [50]-

based kornia library [52]. LO-RANSAC+ [38] imple-

mented in the pydegensac library with and without local

affine frame (LAF) check [46]. The Graph-Cut RANSAC,

MAGSAC [8], MAGSAC++ and VSAC [32] algorithms

implemented by the authors. While MAGSAC and

MAGSAC++ uses the PROSAC sampler [19] as default, we

run GC-RANSAC and VSAC with and without PROSAC.

We also evaluate the deterministic EAS algorithm [23]

provided by the authors. EAS is implemented in pure

Python using the numpy [29] package.

Also, we apply the affine correspondence-based GC-

RANSAC [9] with its implementation provided by the au-

thors. Since our benchmark does not have affine correspon-

dences, we approximate them using SIFT features. Given

rotations α1, α2 ∈ [0, 2π] and scales s1, s2 in the two im-

ages for a correspondence, the affine transformation is cal-

culated as A = J2J−1
1 , where Ji = RiSi, matrix Ri is the

2D rotation by αi degrees, and Si is the 2D scale matrix

uniformly scaling by si along the axes, i ∈ [1, 2].

Deep prefiltering. The standard two-view matching

pipeline with SIFT or other local features uses the SNN

test [43] to filter out unreliable matches before running

RANSAC [13, 22, 35]. Recently, it was shown [51, 69]

that using a neural network for correspondence prefiltering

might provide benefits over the SNN ratio test.

We evaluated how using models [13,16,51,61,69,72,75]

for correspondence prefiltering for uncalibrated epipolar ge-

ometry help in homography estimation. For our study, we

took pre-trained models, provided by the authors of each pa-

per and use them for scoring the tentative correspondences.

We emphasize that we neither trained, nor fine-tuned them

for the homography estimation task, so their performance
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for the fastest methods (NG, DFE and CLNet), which po-

tentially is a limitation for real-time applications, especially

when running on a smart device without GPU.

An application: uncertainty of SIFT keypoints. The un-

certainty of popular detectors and their implementations is

unknown or incomparable, e.g., only referring to a certain

resolution. Our goal is to determine bias and variance of

angular, scale, and positional transformations of SIFT key-

points {Ci}Ni=1 and – if possible – compare it to previous

results. This may be a motivation to use the scaled rotation

as an approximation for the local affine transformation.

The positional uncertainty of SIFT keypoints is known

to be approximately 1/3 pixel (see [25] p.681, [37] Tab.6).

The standard deviations (STD) of the keypoints depend on

the detector scales (see [25] p.681, [71] Eq.(15)). We are

not aware of investigations into the uncertainty of the direc-

tions and scales. The SIFT detector (in OpenCV) uses an

orientation histogram with 36 bins of 10 degrees. Assum-

ing an average STD of less than three times the rounding

error 10◦/
√
12 ≈ 2.89◦, the average STD of αi = φ′

i − φi

is approx. 12◦, the factor three taking care of other model

errors. This large uncertainty may be useful in cases where

the rotation between keypoints is large.

While the reference scale ratios easily can be determined

from a local reference affinity Ãi, derived from H̃i, the ref-

erence rotations α̃i requires care. There are two approaches

to obtain reference rotations: (1) comparing direction vec-

tors d(φ′

i) in the second image with the transformed direc-

tion d(φi) in the first image, and (2) deriving a local rotation

from the reference affinity matrix Ãi and compare it to αi.

We apply following approach: approximate the projec-

tive transformation by a local affinity Ãi ∈ R
2×2, and, de-

compose Ãi into reference scale ratio r̃i, rotation angle α̃i,

and two shears p̃i ∈ R
2. We investigated QR, SVD and an

exponential decompositions, namely decomposing the ex-

ponent B̃i of Ãi = exp(B̃i) additively (see supplement).

We evaluate the differences ∆αi = α̃i − αi between ob-

served and reference angles. The bias E(∆αi), i.e. the mean

of ∆αi and the STD σ∆αi
=

√
D(∆αi) of the rotation

differences ∆α, for the OpenCV SIFT detector empirically

lead to an estimated STD of the rotation σ̂∆αi
= 11.8◦,

which is close to the above mentioned expectation.

Each of the three approaches leads to different reference

rotations α̃i. Rotation α̃i is effected by the shears p̃i in

Ãi. If the shears are small, all three methods yield sim-

ilar rotations. The magnitude |p̃i|2 of the shears can be

approximated by the condition number cond(Ãi). To eval-

uate the rotations αi of the keypoint pairs, we restrict the

samples to those with condition number < 1.5, which for

image pairs in normal pose roughly is equivalent to slopes

of the scene plane below 25◦, see Suppl. 4.2. More-

over, we show the comparison of angular residuals between

d′

i = [cos(φ′

i) sin(φ′

i)]
T] and the one obtained by affinely

transformed di = [cos(φi) sin(φi)]
T], i.e. with Ãidi. The

average deviations are similar to those obtained with the de-

composition methods, see the details in the suppl. material.

The scale ratio ri = s′i/si of a keypoint pair and its

ratio ∆ri = ri/r̃i to the reference ratio r̃i should lead to

E(∆ri) = 1. Further, we use a weighted log-ratio, mea-

sured as ρi = log(∆ri)/r̃i which should follow E(ρi) = 0,

and takes into account the intuition, that larger scales are

less accurate. The OpenCV implementation of the SIFT de-

tector empirically leads to σ̂ρi
= 0.51 (see the suppl. mate-

rial). Obviously, the scales from the detector may on aver-

age deviate by a factor 1.6 ≈ exp(0.51) in both directions.

The positional residual of each keypoint pair is

characterized by the mean reprojection error ǫxi
=√

(|x′

i − H̃(xi)|22 + |xi − H̃−1(x′

i)|22)/8, the factor 8 guar-

anteeing that ǫxi
can be compared to the expected uncer-

tainty of the coordinates. For the OpenCV SIFT detec-

tor, we empirically obtain a positional uncertainty of ǫxi

as σ̂x ≈ 0.67 pixels. The STD is a factor two larger, than

expected, which might result from accepting small outliers.

6. Conclusion

A large-scale dataset containing roughly 1000 planes

(Pi3D) in reconstructions of landmarks, and a homography

estimation benchmark (HEB) is presented. The applica-

tions of the Pi3D and HEB datasets are diverse, e.g., train-

ing or evaluating monocular depth, surface normal estima-

tion and image matching. As one possible application, we

performed a rigorous evaluation of a wide range of robust

estimators and deep learning-based correspondence filter-

ing methods, establishing the current state-of-the-art in ro-

bust homography estimation. The top accuracy is achieved

by combining VSAC [32] with OANet [72]. In the GPU-

less case, a viable option is to use VSAC [32], OpenCV

RHO [11] or Affine GC-RANSAC with SNN test, depend-

ing on the time budget. We also show that PROSAC – a

well-known, but often ignored sampling scheme accelerates

RANSAC by an order of magnitude. Exploiting feature ori-

entation and scale has clear benefits in Affine GC-RANSAC

and it can be used in other approaches as well, e.g., VSAC.

As another application, we show that having a large

number of homographies allows for analyzing the noise in

partially or fully affine-covariant features. As an example,

we evaluate DoG features. To the best of our knowledge,

we are the first ones to investigate the actual noise in the

orientation and scaling components of such features.
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