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Abstract

Visual Question Answering models have been shown to
suffer from language biases, where the model learns a cor-
relation between the question and the answer, ignoring the
image. While early works attempted to use question-only
models or data augmentations to reduce this bias, we pro-
pose an adaptive margin loss approach having two com-
ponents. The first component considers the frequency of
answers within a question type in the training data, which
addresses the concern of the class-imbalance causing the
language biases. However, it does not take into account
the answering difficulty of the samples, which impacts their
learning. We address this through the second component,
where instance-specific margins are learnt, allowing the
model to distinguish between samples of varying complex-
ity. We introduce a bias-injecting component to our model,
and compute the instance-specific margins from the confi-
dence of this component. We combine these with the esti-
mated margins to consider both answer-frequency and task-
complexity in the training loss. We show that, while the mar-
gin loss is effective for out-of-distribution (ood) data, the
bias-injecting component is essential for generalising to in-
distribution (id) data. Our proposed approach, Robust Mar-
gin Loss for Visual Question Answering (RMLVQA) 1 im-
proves upon the existing state-of-the-art results when com-
pared to augmentation-free methods on benchmark VQA
datasets suffering from language biases, while maintaining
competitive performance on id data, making our method the
most robust one among all comparable methods.

1. Introduction
Visual question answering (VQA) lies at the intersection

of computer vision and natural language processing. It is

1Code available at https://github.com/val-iisc/RMLVQA

the task of answering a question based on a given image.
VQA networks need to combine knowledge from both vi-
sual scene and the question to predict the answer. These
systems have numerous applications such as aiding the vi-
sually impaired in understanding their surroundings, image
retrieval systems in e-commerce, and robotics.

With the success of deep learning, research in VQA has
made great strides in recent years [3, 5, 16]. However, stud-
ies have shown that deep networks may learn correlations
between the question and answer alone, ignoring the image
modality [3, 21, 36]. They fail to do multimodal reasoning,
specifically, if there is a class imbalance in the answer distri-
butions of the training and test sets. For example, if most of
the questions starting with “What color..?” are paired with
the answer “red” in the training data, the model memorizes
this trend to answer “red” for all color based questions in
the test set, irrespective of the image.

One solution to this problem is to perform data augmen-
tations in various ways [1,4,11,15,27,36,42,43,46]. These
methods outperform most other debiasing techniques in the
literature. However, augmentation strategies are dependent
on the dataset in question and the type of biases observed,
which makes the process manual and tedious. Another ex-
tensively explored solution is to learn the bias in the dataset
separately using a question-only branch [9, 12, 18] and ex-
plicitly removing the learnt bias from the base model.

Margin losses have been widely used for a number
of tasks. Cao et al. [10] address the problem of long
tailed recognition through an adaptive margin loss, ensuring
higher cosine margin penalty for the tail classes and lower
penalty for other classes. A similar adaptive cosine mar-
gin penalty has been applied to mitigate the language bias
problem in VQA by a previous work [17]. Margin losses
have been widely used in deep face recognition as well,
where it is desired that the features of two images of the
same person should be as similar as possible, whereas those
of two different people should be far apart. Margin losses
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are used in this regard for facial feature discrimination to
maximize the decision margin. Rather than the Euclidean
space, both these margin losses project their feature spaces
onto a fixed radius hypersphere. While the well known
CosFace loss [41] uses cosine margin penalties like Cao et
al. [10], ArcFace [14], uses angular margins to maximize
the decision margins among different classes in this feature
space. Angles correspond to geodesic distance on the pro-
jected hypersphere which stabilizes the training process and
is shown to improve the discriminative power of face recog-
nition models as compared to cosine margin based methods.

We believe that the language bias problem of VQA can
be addressed by learning discriminative features for the bi-
ased and unbiased samples in the dataset. To this end, we
implement an adaptive angular margin loss, inspired by Ar-
cFace, as margins allow models to distinguish between dif-
ferent kinds of samples. However, the key question here
would be how to set the adaptive margins to cater to the
specific problem of language biases. Traditional models
over-trust the questions over the images due to a class im-
balance in the training and test set answer distributions.
Hence, one way to set the margins would be to ensure
that the training samples with frequent answers are given
a smaller penalty due to the abundance of those answers
in the dataset, whereas those with rare answers are given a
higher margin value. We refer to the resultant margin val-
ues as the frequency-based margins. However, one factor
that is ignored in this aspect is the answering difficulty of
each sample. We argue that more margin should be given
to hard samples compared to the easier ones even if the cor-
responding answers are frequent. In this regard, we pro-
pose the learning of instance-specific margins during train-
ing, so as to allow the model to distinguish between hard
and easy samples alongside frequent and rare samples. To
the best of our knowledge, this is one of the first attempts in
learning margins automatically and parallely during train-
ing. We combine these learnable margins with the fre-
quency based margins used in prior works [17], so as to
allow both frequency and complexity of data samples to
control the training dynamics. To compute these learnable
margins, we introduce a bias injecting module to our model
that is trained using Cross-Entropy (CE) loss. We show that
the CE loss additionally clusters the training samples based
on the dataset bias itself, thereby aiding the margin loss fur-
ther. We further introduce a supervised contrastive loss [23]
to pull the features of samples having the same answer to-
gether, while pushing others apart.

Adaptive margin losses, with margins calculated by us-
ing frequency of answers in the dataset, perform well in the
ood setting. However, we show that they cause a drop in
the in-domain performance, which raises questions on their
robustness. As pointed by [40], it is crucial for VQA mod-
els to perform well on both in-domain and ood data since

the test set distibution is unknown apriori. We mitigate this
issue by ensembling the outputs of the bias injecting compo-
nent and the proposed learnable margin-loss trained classi-
fication head during inference. This makes the model robust
to the difference in answer distributions of the training and
test sets. Our overall method is called RMLVQA - Robust
Margin Loss for Visual Question Answering with language
biases. The key contributions of this work can be summa-
rized as follows:

• We propose to mitigate the well known problem of lan-
guage bias in VQA models by introducing an instance-
specific adaptive margin loss, to allow the use of dif-
ferent margins for the learning of samples with vary-
ing complexities, in addition to the use of frequency-
based margins. To achieve this, we introduce a bias-
injecting component and allow the margins to be com-
puted based on prediction probabilities of this branch.
We show that this clusters samples in the feature space
based on the bias present in the dataset.

• We propose to overcome the id-ood trade-off in
margin-based losses, by ensembling the outputs of the
bias-injecting component and the main model.

• We further introduce a supervised contrastive loss that
pulls features of training samples having the same
ground truth answers together, while pushing apart
others. This aids the margin loss further.

• Through extensive experiments and ablations, we
show how the proposed approach achieves state-of-the
art results when compared to augmentation-free meth-
ods on the ood VQA-CP v2 dataset, while maintaining
competitive performance on the id VQA v2 dataset.
This makes our model the most robust one among all
non-augmentation based methods.

The code, hyperparameter analyses, and results on multiple
datasets are shared as supplementary material.

2. Related Work
VQA and the language bias problem. VQA [5, 16] is

the task of answering natural language questions given an
image. VQA v1 & v2 [5, 16] are widely used datasets that
are used to benchmark different algorithms. However, prior
works have shown that these datasets have biases which can
be amplified in the trained models [2, 3, 19, 36, 37]. Specif-
ically, in case of language bias, the model learns a correla-
tion between the question and the answer directly. For ex-
ample, if the model always predicts “tennis” for the sport-
related questions, it can achieve around 40% accuracy on
the VQA v1 dataset, as the images of the VQA datasets are
from MS-COCO [28], which has many “tennis” related im-
ages. To effectively quantify the extent of bias in the trained
models, a new dataset VQA-CP v2 [3] was created from the
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VQA v2 dataset. In this work, we aim to solve the language
bias problem of VQA, where we evaluate our models on the
ood benchmark dataset VQA-CP v2 and the id VQA v2.

Bias mitigation techniques. The language bias problem
reduces the generalizability of the VQA models, resulting in
a drop in performance when the training set answer distri-
bution is different from that of the test set. There are three
popular categories of solutions in the literature tackling this
problem, which we discuss below.

Visual Grounding based methods [34, 45] used hu-
man annotations as supervision to attention maps [13, 33],
whereas more recent works use Grad-CAM for the same
[36, 43].

Ensemble based methods use a separate question-only
model to capture the bias, and further remove the bias ex-
plicitly from the base VQA model [9, 12, 35]. Apart from
these techniques, Niu et al. [31] introduce a counterfactual
inference framework to mitigate the biases. KV and Mit-
tal [25] use a visually grounded question encoder such that
the visual information is embedded in the question repre-
sentation itself. Niu et al. [32] improve both ood generaliz-
ability and id performance through introspective knowledge
distillation.

Augmentation based methods remove bias by aug-
menting the dataset to make it more balanced. Some works
generate counterfactual data by masking or transforming the
critical objects and words, and further generating appropri-
ate ground truth answers [11,15,27]. Other works introduce
negative samples by shuffling the inputs (images and ques-
tions) in the minibatch to reduce bias without requiring any
annotation [40,42,46]. Wen et al. [42] use two kinds of neg-
ative samples for balancing the dataset, and construct both
question-only and vision-only models to remove the biases.

Margin-based methods. Max-margin classifiers are
used in popular machine learning algorithms like SVMs
[38]. Margin losses are commonly used in many problems
such as deep face recognition [7, 14, 29, 41], long tailed or
class imbalanced learning [10, 22, 30] and few-shot learn-
ing [26]. Guo et al. [17] apply an adaptive cosine mar-
gin loss to discriminate the frequent and rare answers for a
given question type and implement this by transforming the
multimodal feature space to a fixed radius hypersphere. The
adaptive margins are estimated from the training data based
on the frequency of occurrence of an answer in questions of
a given type, ensuring that rare answers are given more mar-
gin penalty, whereas frequent classes are given less penalty.

3. Proposed approach

3.1. Preliminaries

We consider the problem of classification based Visual
Question Answering (VQA). It is the task of answering
questions based on an image. Given a dataset D having

n samples, with image v ∈ V , question q ∈ Q and answer
(class label) a ∈ A, the goal is to train a model to opti-
mize a mapping function f : V × Q → R|A| to generate
predictions for the given question and image. The VQA
model consists of four parts: (1) image feature extractor ev ,
(2) question feature extractor eq , (3) the VQA model mf

which fuses the image and question features to generate the
joint multimodal features x, (4) classifier c having weights
W, that generates the logits f . Most of the classical VQA
models [4, 6, 8, 24, 44] follow this paradigm and formulate
the problem as follows:

f(v, q) = c(mf (ev(v), eq(q))) (1)

Standard Cross-Entropy loss. VQA models can be
trained by optimizing the Cross-Entropy (CE) loss2 shown
below:

Ls =

|A|∑
i=1

−ai log
exp(fi)∑|A|
j=1 exp(fj)

(2)

To solve the problem of language bias in VQA, the model
should learn discriminative features for different answers
for a given question type so that it can distinguish frequently
occurring answers from rarely occurring answers, as well as
those with varying complexity. However, standard CE loss
only favours the samples with frequently occurring answers.
Normalized CE loss. Before defining the margin loss, we
define a reformulation of the CE loss as a cosine loss [14,
41], by L2-normalizing the classifier weight vectors Wi ∈
c for each ai ∈ A, and feature x = mf (ev(vi), eq(qi)).
Therefore, we define Ŵi = Wi

∥Wi∥ and x̂ = s x
∥x∥ , where

s is a scaling parameter. Let θi be the angle between x
and Wi. Therefore the logit for each ai is transformed as
(keeping the bias term as 0 for simplicity):

fi = Ŵi
⊤
x̂ = ∥Ŵi∥∥x̂∥ cos θi = s cos θi (3)

The joint features x̂ are thus distributed on a hypersphere
with a radius s. This makes the normalized CE loss as:

Lns =

|A|∑
i=1

−ai log
exp(s cos θi)∑|A|
j=1 exp(s cos θj)

(4)

3.2. RMLVQA

In this subsection, we define our method, which is a Ro-
bust Margin Loss based approach for solving the problem
of language biases in VQA.
Adaptive Angular Margin Loss. We introduce an adap-
tive angular margin loss that ensures decision margin max-
imization through angular margins in an adaptive way. The
normalized CE loss transforms the feature space to an an-
gular space of radius s. The motivation behind an adaptive

2In this paper, all losses will be expressed as individual sample losses
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Figure 1. Overview of our model. The orange dashed region shows the proposed bias-injecting module, trained using the CE loss. The
blue dashed region shows how the instance-based margins are generated and then combined with the randomized frequency-based margins
to compute the final margins. The final prediction is obtained by combining the two logit heads.

margin instead of a constant margin is based on the root
of the language bias problem in VQA. These biases occur
when similar questions in the dataset are paired with the
same answers most of the time, fooling the model to mem-
orize these questions and the answers by ignoring the image
completely. Thus, while some samples are overlooked be-
cause of the rarity of their corresponding answers, others are
overly paid attention to. Adaptive margins allow the model
to set different penalties for the varying samples, thus lead-
ing to highly discriminative features for the different train-
ing instances.

One aspect of the adaptive margins is to ensure that the
instances with frequent answers are allowed a smaller mar-
gin than those with the rare ones. We call these margins
mfreq . Similar to [17], these margins are calculated based
on the question type as shown below:

m̄k
freq[i] =

nk
i + ϵ∑|A|

j=1 n
k
j + ϵ

(5)

mk
freq[i] = 1− m̄k

freq[i] (6)

where m̄k
freq[i] measures the probability of occurrence of

answer ai in the training data for a given question type qtk.
nk
i is the frequency of answer ai in the training set calcu-

lated for the given qtk, and ϵ is a hyperparameter for avoid-
ing computational overflow. mk

freq[i] is the adaptive margin
for answer ai ∈ A corresponding to qtk.

The adaptive angular margin loss adds a margin penalty
to the angle between the features x and the classifier
weights Wi for the ith class as shown below. Since the mar-
gin is placed on the angle, it maps exactly to the “geodesic”
distance on the hypersphere [14]. While Deng et al. [14]
set a constant value for the margin, i.e. 0.5, our margins are
adaptive in nature.

Lk
Angular =

|A|∑
i=1

−ai log
exp(s cos(θi +mk

freq[i]))∑|A|
j=1 exp(s cos(θj +mk

freq[j]))

For notational simplicity, in the coming sections, we omit k
from the margin and loss computations.
Randomization of the estimated margins. Boutros et
al. [7] suggest that in typical margin losses, setting con-
stant margins can limit the generalizability and discrimina-
tive power of a model. We note that mfreq[i] is constant for
each ai ∈ A for a given question type qtk over all samples
in the training set. When qtk is “how many”, the margin
for the answer “2” is same for all the training instances be-
longing to this question type. We believe that setting the
same high margin value for a specific rare answer in a given
question type and similarly lower value for a frequently ap-
pearing answer can lead to overcorrection of the language
bias, by forcing the model to focus on the rare answers more
than the frequent ones. Therefore, under a given question
type qtk, for every answer ai, we use a randomized version
of m̄freq[i], called m̄ran[i] in the following manner:

m̄ran[i] = N (m̄freq[i], σ) (7)

where N is the Gaussian distribution, and σ is the stan-
dard deviation, which is a hyperparameter. This impedes
the model from overcorrecting with respect to the rare an-
swers, thus increasing its generalizability. Finally, we ob-
tain the randomized margin mran[i] = 1−m̄ran[i] for each
ai ∈ A in each qtk.
Instance-based margins. The frequency-based margins
estimated from the training data are constant for a given
question type. So, for two different questions starting with
“how many”, the margins are same for each answer, ir-
respective of the model’s difficulty in answering these in-
stances. Ideally if one of the samples is hard to answer,
more margin should be given to its ground truth class com-
pared to the easier one. Randomizing mfreq as described
above does not take the complexity of each sample into ac-
count. To this end, our model learns instance-level mar-
gins during training. We augment an auxiliary classifica-
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tion head to the feature x (the orange dashed box in Fig. 1)
which is architecturally same as the original model classi-
fier c. We call this the bias-injecting component. Following
Eq. 1, the formulation of this component becomes:

fb(v, q) = cb(x) (8)

where, fb refers to the logits generated by this component
and cb refers to the classification head. It is to be noted
that while cb ̸= c, both are trained to predict the answers
given the questions and the images. Finally, we denote
m̄ins = softmax(fb/τ) as the confidence, (i.e. prediction
probability) of the bias-injecting component in answering a
question. Here τ stands for temperature which is a hyperpa-
rameter to the network. We define mins = 1− m̄ins as the
instance-level learnable margin, obtained from the model
during training. These learned margins are similar with the
frequency-based margins when samples are far away from
the decision boundary. However, for training instances that
are close, mins increases the margins if the model confi-
dence is low for the ground truth class, and decreases the
same in case the model has high confidence in predicting
the ground truth answer. We combine this instance-level
confidence for the ground truth class with the previously
calculated mran for each sample (v, q) to obtain the final
margins mcomb, as shown in the blue dashed box in Fig. 1.

mcomb[gt] = βmran[gt] + (1− β)mins[gt] (9)

gt refers to the index of the ground truth class of the sample,
and β is a hyperparameter used for combining the two mar-
gins. For all indices l ̸= gt, mcomb[l] = mran[l]. In the first
few training epochs, we do not compute mins as the model
is in the initial stage of its learning, i.e. we set β = 1. As
training progresses, β is decreased in a step-wise manner to
increase the contributions from the learnt margins.
The bias-injecting component. The bias-injecting compo-
nent is a classifier appended to the features x trained using
the standard CE loss. As the CE loss is known to favour
the frequently appearing answers in the training data, it au-
tomatically learns the bias in the dataset, and by backprop-
agating this bias into the network, it clusters samples in the
feature space based on the source of the bias. This aids
the margin loss as it can now separate the (frequent, rare),
and the (easy, difficult) samples inside the individual clus-
ters. Moreover, the advantage of using it to generate the
learnable margins is that the bias captured is now reflected
directly in m̄ins, which ensures that it is close to m̄freq , but
still provides information on the answering difficulty of a
samples lying close to the decision boundary. Another ad-
vantage of this component is that by learning the data bias,
this module is capable of generalizing to any in-distribution
data, whereas the predictions from the primary classifier c
favour the ood data.
Inference. While margin losses are effective on an ood test

data, they result in degraded performance on id test set. To
mitigate this problem, during inference time, we take ad-
vantage of both the bias-injecting component fb and the
primary logit head f , as the former is useful in making pre-
dictions for an id test data, while the latter is useful in an
ood setting. This makes our model robust to different data
distributions. We donote by ˆpcomb the combined predicted
answer probabilities. This is obtained by combining the pre-
dictions from c and cb as defined below:

ˆpcomb = α.p̂+ (1− α).p̂b (10)

where α is a hyperparameter controlling the weight of each
logit head during inference, p̂ = softmax(f) are the pre-
dictions from classifier c, p̂b = softmax(fb/τ) are the pre-
dictions from the bias-injecting component cb. The answer
predicted is therefore â = argmax( ˆpcomb). The tempera-
ture τ is same as that defined previously for the instance-
based margins.
Supervised Contrastive (SupCon) Loss. We further sepa-
rate samples in the feature space based on the SupCon loss.
In addition to creating discriminative features for (frequent,
rare) and (easy, difficult) samples, the SupCon loss leads
to a degree of discrimination among samples with differ-
ent ground truth answers in the feature space. We con-
sider a mini-batch of size B of multimodal features de-
noted as {x1,x2, . . . ,xB} and corresponding answers as
{a1, a2, . . . , aB}. If we consider the current sample with
index j, the set of positive examples from the mini-batch
is denoted by Pj : {i ∈ B s.t. ai = aj}. Similarly,
the set of negative examples is denoted by Nj : {i ∈
B s.t. ai ̸= aj}. The SupCon loss [23] is defined as,

Lsup−con =
∑
j∈B

−1

|Pj |
∑
p∈Pj

log
exp(xj

Txp/τ)∑
n∈Nj

exp(xj
Txn/τ)

,

(11)
We set the temperature τ = 1 for all experiments as we do
not find any significant improvements by changing its value.
Total Loss: The final loss function for each sample is:

L = LAngular(mcomb) + Ls + Lsup−con (12)

where LAngular is the angular margin loss, Ls is the CE
loss training the bias injecting component, Lsup−con is the
SupCon loss. Our final model can be seen in Fig. 1. We
name our overall method RMLVQA.

4. Experiments
Dataset details. We evaluate our model on the VQA-

CP v2 dataset (Visual Question Answering Under Chang-
ing Priors) [3], which is an ood benchmark, based on the
standard evaluation metric shown by Antol et al. [5]. It
was created by reorganizing the training and validation sets
of the VQA v2 [16] dataset, ensuring that the distribution
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of answers for each question type in the training set and
the test set are different. The training set of VQA-CP v2
contains approximately 121k images and 438k questions,
the test set contains approximately 98k images and 220k
questions. Following previous works, we also evaluate our
model on the VQA v2 validation set.

4.1. Results
Quantitative analysis. In Table 1, we show a compara-

tive analysis of the performance of RMLVQA on both VQA-
CP v2 test and VQA v2 validation sets. We report the over-
all accuracies along with those on “yes/no”, “number” and
“other” type questions. We observe that our method gains
around 6.39% in the overall accuracy for VQA-CP in com-
parison with AdaVQA [17], which is the cosine margin loss
trained model. We observe that AdaVQA, while perform-
ing well on VQA-CP v2, has considerably low scores for
the in-domain VQA v2. With RMLVQA, the validation ac-
curacy of VQA v2 is 59.99%, which is 13.01% higher than
AdaVQA. This shows that our method is the first one trained
by adaptive margins that is robust to both id and ood data.
With a score of 60.41% for VQA-CP v2, the model im-
proves upon the current state-of-the-art augmentation-free
models. In addition to reporting the performance of the var-
ious models in literature on the two datasets, we show the
relative difference in accuracies between VQA-CP v2 test
data and VQA v2 validation data. RMLVQA outperforms
all other non-augmentation based models in terms of ro-
bustness, with the lowest difference in the two accuracies
(see Table 1), indicating that our method is the most robust
compared to all other methods that do not use any augmen-
tation, and perform equally well on both VQA-CP v2 and
VQA v2. For all experiments, Updn [4] is our base network.
Qualitative analysis. We further demonstrate the effective-
ness of our method in Fig. 2 which provides qualitative
results on the VQA-CP v2 test set for RMLVQA and the
base network UpDn. In the first row, we show examples
for question type “what color”. The base network UpDn [4]
focuses on the incorrect region in the image, given by at-
tention map scores, and outputs “blue”, the most frequent
answer in the training set for the given question type. The
best scoring region from the attention maps of our model
is localized at the correct region in the image, and it cor-
rectly outputs “red”, which is not a frequent answer in “what
color”. In the second example, belonging to question type
“what is the person”, we see that while the baseline outputs
“phone”, which is a frequent class under that question type,
RMLVQA predicts the correct answer “hat”, which is a rare
class, thus showing the effectiveness of our method. While
the baseline outputs incorrect answers, it still focuses on the
correct region in the image. This crucial observation indi-
cates that the bias in the model weights do not allow this
visual information to propagate forward. Thus it still picks
from the frequent answers for the given question type.

Choice of hyperparameter α for inference time combi-
nation of prediction probabilities. Choice of α is crucial
as it decides how much weight to put on the prediction prob-
abilities of the bias-injecting component cb and the primary
classifier c. As VQA-CP v2 does not have a validation set,
we choose α = 0.5 for fair evaluation. However, we re-
port the accuracies of VQA-CP v2 test and VQA v2 vali-
dation sets for different values of α in Table 2. We observe
that α = 0.5 leads to the most robust performance of our
method on both id and ood data, where the relative gap of
accuracies is just 0.42%. While we already choose the opti-
mal value of α for reporting model performance, our experi-
ments demonstrate that one can choose an appropriate value
to control the tradeoff between id and ood performances.

4.2. Ablation studies
In this subsection, we discuss the role of each component

of RMLVQA. We evaluate them on the VQA-CP v2 test and
VQA v2 validation data and show the results in Table 3.
Effectiveness of angular margins. We call the base adap-
tive angular margin loss trained model RMLVQA-Base,
which only considers the frequency based margins. Com-
pared to AdaVQA, it leads to a rise of 3.22% in the VQA-
CP test accuracy and an increase of 2.74% in the accuracy
of the VQA-v2 validation set. This shows the effectiveness
of the angular margin loss over the cosine margins both in
id and ood data, validating the choice of the angular margin
loss for addressing the language bias problem of VQA.
Effect of randomization of the margins. Randomizing
the margins of each answer leads to an improvement in the
accuracy values of VQA-CP v2 test, as shown in Table 3.
Further, we also notice that it improves the in-domain accu-
racy of VQA v2 by a large margin (7.12%), thus showing
its effectiveness in generalizability.
Role of the learnable margins. As explained earlier, mins

represents the confidence of the bias-injecting component
in answering a question. We show the positive effect of
adding these margins to mran in Table 3 for VQA-CP v2,
with a slight loss in VQA v2. In Fig. 4 we show the
Spearman’s rank correlation coefficient ρ between mfreq

and mins for the question type ‘how many’ for our method
(for the angular and cosine margin losses defined in Sec 3
and AdaVQA [17] respectively), averaged over the relevant
samples in each training epoch. We note the following: a) ρ
is high throughout, indicating that the order of margin val-
ues in mins for a certain sample remains similar to that of
the margin values in mfreq for the question type to which
the sample belongs. b) ρ decreases over epochs, indicat-
ing the excess information being carried by mins, aiding in
the discrimination of samples whose answer frequencies are
similar, but have different complexities.
Role of the bias-injecting component. In Table 3,
we show that the bias-injecting component increases the
model’s overall accuracy by 1.47% for VQA-CP v2 (3.65%
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Table 1. Accuracy comparisons with other methods on the VQA-CP v2 and VQA v2 datasets. The methods have been grouped into
different categories (separated by lines in the table): base approaches, methods using human annotations, those that modify the language
encoder, models weakening the language bias in different ways, our approach RMLVQA trained with UpDn as backbone, and finally the
augmentation based methods. The best performance in each column is highlighted in bold. We highlight the overall accuracy of RMLVQA
on VQA-CP with an underline as it achieves state-of-the art on augmentation-free methods. ∗ denotes numbers shown in [17]. We report
the average accuracy of our model over 5 random seeds (along the with standard deviations in the superscript). Columns ending with “-CP”
denote accuracies for VQA-CP v2, others denote accuracies for VQA v2. † indicates our implementation.

Model Y/N-CP Num-CP Others-CP Overall-CP Y/N Num Others Overall Diff

SAN [44] 38.35 11.14 21.74 24.96 70.06 39.28 47.84 52.41 27.45
GVQA [3] 57.99 13.68 22.14 31.30 72.03 31.17 34.65 48.24 16.94
UpDn [4] 42.27 11.93 46.05 39.74 81.18 42.14 55.66 63.48 23.74

S-MRL [9] 42.85 12.81 43.2 38.46 41.96 12.54 41.35 37.13 1.33

AttAlign [36] 43.02 11.89 45.00 39.37 80.99 42.55 55.22 63.24 23.87
HINT [36] 67.27 10.61 45.88 46.73 81.18 42.99 55.56 63.38 16.65
SCR [43] 70.41 10.42 47.29 48.47 78.8 41.6 54.5 62.2 13.73

VGQE [25] 66.35 27.08 46.77 50.11 - - - 64.04 13.93
DLR [20] 70.99 18.72 45.57 48.87 76.82 39.33 48.54 57.96 9.09

AdvReg [35] 65.49 15.48 35.48 41.17 79.84 42.35 55.16 62.75 21.58
RUBi [9] 68.65 20.28 43.18 47.11 - - - - -

LMH∗ [12] 70.29 44.10 44.86 52.15 65.06 37.63 54.69 56.35 4.2
CF-VQA [31] 90.61 21.50 45.61 55.05 81.13 43.86 50.11 60.94 5.89

IntroD [32] 90.79 17.92 46.73 55.17 82.48 46.60 54.05 63.40 8.23
GGE-DQ [18] 87.04 27.75 49.59 57.32 73.27 39.99 54.39 59.11 1.79

AdaVQA † [17] 70.83 49.00 46.29 54.02 47.78 34.13 51.14 46.98 7.04

RMLVQA 89.98±0.46 45.96±0.57 48.74±0.13 60.41±0.32 76.68±0.37 37.54±0.49 53.26±0.12 59.990.06 0.42

CVL [1] 45.72 12.45 48.34 42.12 - - - - -
Unshuffling [39] 47.72 14.43 47.24 42.39 78.32 42.16 52.81 61.08 18.69

RandImg [40] 83.89 41.60 44.20 55.37 76.53 33.87 48.57 57.24 1.87
SSL [46] 86.53 29.87 50.03 57.59 - - - 63.73 6.14
CSS [11] 84.37 49.42 48.21 58.95 73.25 39.77 55.11 59.91 0.96

CSS + CL [27] 86.99 49.89 47.16 59.18 67.27 38.40 54.71 57.29 1.89
Mutant [15] 88.90 49.68 50.78 61.72 82.07 42.52 53.28 62.56 0.84
D-VQA [42] 88.93 52.32 50.39 61.91 82.18 44.01 57.54 64.96 3.05

Figure 2. Qualitative analysis of RMLVQA. We show two images from two question types in the rows. Column (a) represents the ground
truth answers, column (b) represents the answers predicted by the baseline UpDn model. Column (c) represents the answer predicted by
our method. The bounding boxes show the highest scored region in the attention map of the individual models.
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Figure 3. TSNE visualization of the feature space with respect to differ-
ent question types for the model components, evaluated incrementally: a)
RMLVQA-Base, b) Gaussian randomization, c) Bias injection

Figure 4. Spearman’s rank correlation coefficent be-
tween mfreq and mins over epochs for question type
“how many” on VQA-CP v2 test set

Table 2. Role of α in the inference stage of RMLVQA.

α VQA-CP v2 Test VQA-v2 Val Gap

1.0 60.54 58.16 2.38
0.8 60.50 58.83 1.67
0.6 60.33 59.57 0.76
0.5 60.41 59.99 0.42
0.4 59.87 60.46 0.59
0.2 57.46 61.26 3.8
0.0 39.48 61.54 22.06

Table 3. Ablations. In this table we show the ablations of RM-
LVQA, evaluated on VQA-CP v2 test & VQA v2 val.

Model Y/N Num Others Overall VQA v2 Val

RMLVQA-Base 79.78 49.62 48.49 57.24 49.72
+Randomization 83.72 49.47 48.31 57.97 56.84
+Bias Injection 88.27 44.13 48.55 59.44 60.49
+Learnable Margin 88.06 46.63 48.74 59.87 59.60
+SupCon Loss 89.98 45.96 48.74 60.41 59.99
-Backprop 89.36 40.56 47.80 58.80 59.67

for VQA v2). The effectiveness of this component can be
understood from Fig. 3, where we show the TSNE visu-
alizations of how answers from different question types are
placed in the feature space for the components of RMLVQA.
Fig. 3(a) shows that while for some question types like ‘how
many’, ‘are’, answers are well separated, some others like
‘do’, ‘are they’, ‘is there’ are close, out of which some are
entangled. Although the randomization increases flexibility
of the adaptive margins, it does not disentangle these ques-
tion types, as seen in Fig. 3b. Finally, in Fig. 3(c), we
see that the bias-injecting component aids in separating the
answers according to their question types. This is because
the bias sources of VQA-CP is its question types, and hence
this component clusters samples in the training set based on
the same. This is crucial, as with more entanglement, the
model tends to answer questions of one question type with

the answers of another type. In the last row of Table 3, we
also observe the effect of removing the backpropagation of
the CE loss (used to train the bias-injecting component) into
the main network for VQA-CP v2. The classifier weights
in the bias-injecting component learn the language bias in
the dataset and backpropagate the same into the network,
thus helping the model separate the answers across different
question types in the feature space. We utilize this knowl-
edge in the inference stage, where we combine the two logit
heads, thus helping the model to generalize to both id and
ood test data, as is evident from Tables 1 and 2.
Role of the SupCon Loss. The addition of the SupCon loss
is shown to improve the performance of our model empiri-
cally for both VQA-CP and VQA v2 as shown in Table 3.

5. Conclusion
Although margin-based losses are useful in mitigating

language biases in VQA, they may not distinguish between
answers of different task-complexity levels in the feature
space. To distinguish between samples having similar an-
swer frequency, but different complexity, we learn instance-
based margins for each sample from the model during
training. We introduce a bias-injecting component in our
model and utilize its confidence in answer prediction as the
instance-level margins. Being trained by the CE loss, this
component further clusters the training samples based on
the source of the data bias, guiding the margin loss to dis-
tinguish frequent and rare answers inside each cluster. We
ensemble the outputs of the bias-injecting component with
those of the main model during inference to achieve state-
of-the-art results among existing augmentation-free meth-
ods on the ood VQA-CP v2 dataset, while being the most
robust with respect to both id and ood test sets.
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