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Figure 1. Comparison of our method with LIIF and SRWarp when rectifying a natural image. As the kernel map is unknown in this case it

is estimated automatically for our method. Additionally our results can be further sharpened.

Abstract

Deep learning based methods for super-resolution have

become state-of-the-art and outperform traditional ap-

proaches by a significant margin. From the initial mod-

els designed for fixed integer scaling factors (e.g. ×2 or

×4), efforts were made to explore different directions such

as modeling blur kernels or addressing non-integer scaling

factors. However, existing works do not provide a sound

framework to handle them jointly. In this paper we pro-

pose a framework for generic image resampling that not

only addresses all the above mentioned issues but extends

the sets of possible transforms from upscaling to generic

transforms. A key aspect to unlock these capabilities is the

faithful modeling of image warping and changes of the sam-

pling rate during the training data preparation. This allows

a localized representation of the implicit image degradation

that takes into account the reconstruction kernel, the lo-

cal geometric distortion and the anti-aliasing kernel. Using

this spatially variant degradation map as conditioning for

our resampling model, we can address with the same model

both global transformations, such as upscaling or rotation,

and locally varying transformations such lens distortion or

undistortion. Another important contribution is the auto-

matic estimation of the degradation map in this more com-

plex resampling setting (i.e. blind image resampling). Fi-

nally, we show that state-of-the-art results can be achieved

by predicting kernels to apply on the input image instead of

direct color prediction. This renders our model applicable

for different types of data not seen during the training such

as normals.

1. Introduction

Thanks to recent advances in deep learning based super-

resolution which allow to infer impressive high frequency

details from low resolution inputs, it has become possible to

bridge the gap between content and display resolution with-

out noticeable degradation in quality. This is beneficial in

different contexts and, among other things, has enabled new

visual effects production workflows to operate in 2K while

still ultimately delivering at 4K resolution by performing a

2x upscale just before final delivery.

However, super-resolution is not the only image transfor-

mation that can occur in typical visual effects pipelines, and

it is very common to perform additional tasks such as im-

age rectification, retargeting, lens (un)distortion or image
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warping. All these transformations require more complex

image resampling solutions. Even the simple case of lens

undistortion corresponds to a more complex type of resam-

pling — which might locally upscale or downscale — that

existing super-resolution methods do not support. As a re-

sult, one has to fall back to traditional interpolation based

resampling approaches which can result in a noticeable and

unnecessary loss in quality.

To the best of our knowledge, there is only one learn-

ing based method that considers more complex resam-

plings [15]. However, this approach has two drawbacks:

On the one hand it is not optimally suited for real world

content that might suffer from different kinds of implicit

degradations from different blur kernels. On the other hand

the solution seems more complex than needed due to the

multi-scale warping and blending strategy.

In this paper we propose a framework for generic neural

image resampling that is lean and better applicable to real

world scenarios through handling implicit degradations. To

achieve this, we build upon fundamental concepts of signal

processing and decompose the resampling process into dif-

ferent stages, namely reconstruction, geometric distortion,

and anti-aliasing. With this, we are able to create proper

training examples to better handle and interactively control

spatially variant degradation maps that are expected in im-

age resampling. In addition to this, we design our approach

to be able to predict kernels instead of directly outputting

color values which makes the model more robust and en-

ables consistent resampling of other channels, such as nor-

mals. Figure 1 illustrates this with a complex example:

the transformation consists of image rectification and an in-

crease in image resolution. This is an image that was not

downscaled and the blur kernel is unknown. Our method

automatically estimates the degradation map and produces

sharper results than existing methods. Additionally it’s pos-

sible to directly create outputs at different sharpness levels.

This is the first time such applications are possible in image

resampling.

Finally, we are able to show that our approach is able

to beat the state-of-the-art despite its lean design allow-

ing higher quality processing in parts of the visual effects

pipeline that until now could not benefit from advances in

deep learning.

2. Related Work

Resampling is one of the classic problems of signal pro-

cessing and a large body of theory exists around it. Given

the importance of images as a type of signal, image resam-

pling is well studied and documented. For a review of key

notions and solutions we refer to the work of [4]. Previous

methods in computer graphics such as [22] have built upon

this theoretical foundation. Our paper leverages such fun-

damental considerations in the case of neural based image

resampling.

We start our review of related works with image super-

resolution, which is one of the main sub-tasks in resam-

pling. Here there is no geometric transformation of the

image, but simply an increased sampling rate. By focus-

ing on a simpler problem, works in this category pushed

the limits of state-of-the-art by proposing new models and

training strategies. These contributions are either already

integrated in our model or represent an interesting future

step for improved quality. Dong et al. [5] were among the

first authors to propose using deep convolutional neural net-

works for image super-resolution. Since then the field has

seen significant progress and we can mention, among other

things, increased speed and application to video [14], adver-

sarial training [8], and residual dense networks [17,21]. We

can note that any important progress in deep learning had

an impact on model choices for super-resolution, as such

recent works explored channel attention [20], transformer

models [9, 19], diffusion models [13] and finally normal-

izing flows [10]. There is another new direction taken by

recent works that explore frequency representation in the

generator [12] or in the loss function [6].

Modeling the implicit blur kernel in the image for deep

learning based super-resolution, as proposed by Zhang et

al. [18], is one step toward a more generic setting. This blur

kernel conditioned generator idea is leveraged by several

blind super-resolution methods, differing mainly in their

kernel estimation strategy [3, 11].

Even in the simple upscaling setting, most existing

works are limited to integer scaling. Hu et al. [7] note

that extending super-resolution to arbitrary scaling factors

needs to address the arbitrarily large state for output pix-

els given possible scaling factors and offsets with respect

to the closest input pixels. They solve this issue by using

a separate weight prediction model that estimates weights

to be applied on low resolution features according to posi-

tion and scaling information of the output pixel. Chen et

al. [2] showed that a local ensemble strategy was sufficient

to extend possible scaling factors beyond the training range.

Most recently [16] extend these ideas to address indepen-

dent scaling factors for width and height.

To the best of our knowledge [15] is the only work that

addresses image resampling using deep learning. They

present some interesting ideas, namely by explicitly using

the Jacobian of the local transform to modify pixel offsets

before weight prediction. However the overall solution is

overly complex in particular due to the multi-scale warp-

ing and blending strategy. Our proposed resampling layer

is simpler, takes into account the local distortion more nat-

urally by using the linearized Jacobian matrix and achieves

better results. More importantly we take care to accurately

model the implicit resampling operation to be undone which

is a generalization of the blur kernel conditioning strategy
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Figure 2. Preliminaries on the image resampling problem. Given an input image I , the classic approach for resampling starts with a

conversion to the continuous image fI using a reconstruction kernel KR. The continuous image is then warped according to W . To avoid

aliasing artifacts, the continuous warped image f ′

I is filtered before sampling. In the case of decreasing sampling rate, classic filtering

techniques are favored, however increasing the sampling rate corresponds to an inverse problem and a deep learning method has a strong

advantage.

used in SR.

Finally, besides addressing a wider set of transforms, we

also have the possibility to resample other types of chan-

nels that can be available with the image (e.g. normals, al-

pha, depth, etc.) even if these are not seen during training.

This is feasible by offering the option of image resampling

through kernel prediction similar to some existing denois-

ing methods [1]. To the best of our knowledge this is first

time such applications are possible in image resampling.

3. Preliminaries

In this section we discuss some of the theory around im-

age resampling and motivate using a learned approach in

certain settings. Our goal in resampling is warping the im-

age using a given mapping (or warp) W which maps co-

ordinates in the input image to coordinates in the output

image. Let us for a moment assume that the input image

is a continuous function which may be evaluated at any 2D

coordinates (x, y). In that case warping the image can be

achieved using simple function concatenation. That is

fI′(x, y) = fI(W
−1(x, y)), (1)

where fI and fI′ are the continuous input and output images

respectively.

In case the input image is a discrete set of pixels, warping

becomes more complex. Concretely we have two issues.

First, the mapping W−1(x, y) does not in general result in

coordinates that directly correspond to a pixel in the input

image. Due to this some sort of interpolation is required to

evaluate the expression I ′(x, y) = I(W−1(x, y)). Second,

in case the sampling rate of the output image is lower than

that of the input image, anti-aliasing needs to be applied to

avoid artifacts.

To address both issues classic image processing formu-

lates the resampling process of discrete images as illustrated

in Figure 2. The input image I is first converted to the con-

tinuous image fI using the reconstruction kernel KR. The

continuous image is then warped according to W . To avoid

aliasing artifacts an anti-aliasing kernel KA is applied to the

continuous output image f ′

I . Finally, f ′

I is sampled to create

the discrete output image I ′. In addition to illustrating these

steps, Figure 2 also shows how the change of sampling rate

plays a key role in the image we obtain. When the resam-

pling operation destroys information then classic filtering

techniques are sufficient. However if we try to increase the

sampling rate (e.g. Super-resolution), we have an inverse

problem and using a deep learning model has a significant

impact on the result. The next sections detail how we solve

this inverse problem.

4. Learned Image Resampling

Our objective is to address the generic image resampling

problem in the case where the sampling rate increases. The

notion of increased sampling rate is loosely defined here and

mostly corresponds to the settings where the output image

resolution is not significantly reduced. We start by describ-

ing the process that is used to generate training pairs with

different degradations. After that we present the proposed

resampling model, discussing in particular how information

about the degradation and local distortion can be provided

to the model.
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Figure 3. Overview of our proposed kernel aware resampler. First, features are extracted from the input image I ′ and the degradation map

KW . Second, the extracted features are resampled using our resampling layer. Third, from the resampled features the resampling kernels

or the output colors are predicted. In case the resampling kernels are predicted they are applied to the input image to produce the output.

During training the degradation map KW is applied on the ground truth image I to get the low resolution image I ′.

4.1. Training Data Generation

We start by noting that modeling the implicit blur ker-

nel in the input images was a key aspect for a kernel aware

super-resolution model that can be applied on real-word

data. This relatively simple task in the super-resolution

setup, where even locally varying blur kernels are straight-

forward to model [3], becomes challenging in the case of

generic image resampling due to the more complex trans-

formation.

If we detail the equations corresponding to the descrip-

tion provided in the previous section

I ′ = KA ∗ fI′ (2)

= KA ∗ (fI ◦W ) (3)

= KA ∗ ((KR ∗ I) ◦W ) (4)

we can note that it is possible to combine the reconstruction

kernel KR and the anti-aliasing kernel KA into a single ker-

nel KW which can be applied to the input image directly.

The warping function will simply define the input image lo-

cation where the kernel is applied as well as the offsets used

for the kernel weight computations. By modeling the down-

scaling process this way we are able to generate a complex,

spatially varying kernel map KW by combining two sim-

ple, non spatially varying kernels KR and KA with a warp

W . We note that we have a differentiable CUDA imple-

mentation of the kernel combination and application, which

is required for our automatic degradation estimation. We

provide additional details in the supplementary material.

4.2. Kernel Aware Resampler

An overview of the proposed image resampling model

is illustrated in Figure 3. The left side of the figure illus-

trates the input data preparation. In the previous subsection,

we have seen that sampling a lower resolution image can be

parameterized with the reconstruction kernel KR, the warp

W and the anti-aliasing kernel KA. Putting these together

results in the resampling kernel map KW which can be ap-

plied on the input image I to obtain the transformed lower

resolution I ′. This kernel map KW is the key additional

input for the resampling model.

We now have all the data needed for our kernel aware

resampler. Given the input image I ′ the objective is to re-

sample it according to the warp W . We simply express the

warp as a 2D map of the same resolution as I , indicating the

sampling position in I ′ for every output pixel location. We

refer to this map as the warp grid GW−1 . This is the most

flexible option as it allows a wide range of transforms.

To reduce it’s dimensionality the kernel map KW is first

encoded by a small MLP. Then, the input image I ′ and the

encoded kernel map are concatenated and further processed

by the ProSR network introduced in [17].

After that the resampling layer uses the warp grid GW−1

to resample the extracted features. Note that W−1 maps co-

ordinates in the output image to their location in the input

image. The resampling layer produces two outputs. First,

for each sampling location in GW−1 it gathers the extracted

features in a 3× 3 neighborhood around the closest feature.

Second, it computes geometric information about the warp

for each sampling location in GW−1 . The geometric infor-

mation consists of the offset to the closest feature and the

local Jacobian matrix. Further details are discussed in Sec-

tion 4.3. After the resampling layer, the obtained features,

now of same resolution as the target image are processed by

the prediction network (see Section 4.4).
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Figure 4. Details of the Resampling Layer. The warp grid GW−1

indicates the sampling position for every output pixel. The resam-

pling layer outputs for every pixel the closest 3×3 features as well

as geometric information. Geometric information consists of the

sampling offsets dx, dy and the Jacobian matrix.

4.3. Resampling Layer

The resampling layer warps the extracted features ac-

cording to GW−1 . As illustrated in Figure 4, GW−1 pro-

vides for each output pixel its corresponding coordinate in

the input image. The warping is done by looking up the

nearest feature for each output location. The features in a

3×3 neighborhood around the nearest feature are then con-

catenated along the channel dimension to produce the the

warped feature.

Additionally, geometric information about the warp is

computed for each warped feature. The geometric informa-

tion consists of the sampling offsets and the Jacobian. The

sampling offset is the vector pointing from an output pixels

coordinate in the input image to the coordinate of the near-

est feature. This gives us a 2D vector (dx, dy) which de-

scribes the warped features sub-pixel location in the input

image. To provide information about the local distortion,

the Jacobian is computed using simple central differencing.

It produces a 2 × 2 matrix describing the local deforma-

tion for each output location. The sampling offsets and the

flattened local Jacobians are concatenated along the chan-

nel dimension and fed to a small MLP. Finally, the result

of this MLP is concatenated with the warped features along

the channel dimension.

4.4. Prediction Layer

After the resampling layer, we obtain a feature map of

same resolution as the target. The prediction network either

produces the output image colors directly or kernels to be

applied to the input image. A small MLP is used for this fi-

nal prediction. In the case of kernel prediction, the network

produces a 5× 5 kernel for each output location. This 5× 5
kernel is then applied to the 5× 5 neighborhood around the

closest pixel in the input image. Note that per output loca-

tion only a single kernel is predicted. This kernel is then

applied to all channels in the input image, which allows the

method to generalize to input channels that were not seen

during training such as alpha, depth, normals, etc.

5. Kernel Map Estimation

The method we have described so far requires three in-

puts — the warp W , the input image I ′ and the kernel map

KW . In a practical application, however, KW is unknown

and a method for estimating it is needed.

SR methods that are conditioned on the blur kernel have

faced a similar problem [3]. Because the warping process

described in section 3 is fully differentiable, we propose to

adopt a similar strategy for blind image resampling. We

start by noting that providing the incorrect degradation map

KW to the image resampling model produces images that

are either blurry or contain artifacts such as ringing. Build-

ing on this observation we train a simple neural network

model which predicts the difference between the output

with a random degradation map KŴ and the result with the

correct kernel KWGT
:

FE(F ,KW , I ′) = |F(I ′,KWGT
)−F(I ′,KW )|, (5)

where FE is the error prediction model and F our resam-

pler.

Once the error prediction model is trained, it can be used

at test time. We propose to modify the optimization prob-

lem originally solved in [3] for estimating the degradation

map. To give more control over the resampled image to the

user, we add an additional loss term to the estimation pro-

cedure. This additional loss term rewards larger kernels KR

and KA, which results in sharper images after resampling.

The kernel optimization can be written as

KW
∗ = argmin

KW

FE(F ,KW , I ′)− α|KR| − β|KA| , (6)

where |KR| and |KA| refer to the size of KR and KA re-

spectively, and α ≥ 0 and β ≥ 0 are adjustable parameters.

More details about the estimator’s architecture and its train-

ing procedure can be found in the supplemental material.

6. Experimental Results

We compare our method against state-of-the-art SR and

resampling methods. For all experiments our method was

trained on the DIV2K dataset consisting of 800 high resolu-

tion training images. We compare two different versions of

our method: direct color prediction and kernel prediction.

Our models are trained in a fully supervised way: First, we

sample a random projective transform W which has local
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bilinear none so so + J

P×2 25.44 24.77 30.66 30.95

P×3 23.36 22.68 27.14 27.25

Table 1. Effect of providing geometric information to the model

measured in PSNR. All models are trained on projective trans-

forms using a fixed reconstruction and anti-aliasing kernel. The

second column refers to our method without access to any geomet-

ric information. The third and fourth column show our method’s

performance when it is given access respectively to the sampling

offsets, and both the sampling offsets and the local Jacobian.

scaling factors in the range [1, 4]. Second, we sample two

random kernels KR and KA. Third, we sample a random

high resolution image I . The kernel map KW and the input

image I ′ are then created as described in section 4.1.

6.1. Ablation Study

In this ablation study we evaluate the two key contribu-

tions of the proposed resampling model: the parametriza-

tion of the geometric transform in the model and the degra-

dation map provided along with the image.

Local Distortion. As detailed in section 4.3 the resam-

pling layer, in addition to warping the features, computes

additional geometric information about the warp. To ana-

lyze the effect of this information we train 2 other models:

one where no geometric information is provided and an-

other where only the sampling offsets are given. For this

experiment the models are trained on projective transforms

using a bilinear reconstruction kernel and a bicubic anti-

aliasing kernel. As the kernels are not varied during training

no degradation map is provided to the models. The mod-

els are evaluated on two fixed sets of projective transforms.

One with an average local scaling factor of 2 (P×2), the

other with an average local scaling factor of 3 (P×3). Re-

sults of this evaluation are provided in Table 1. Here simple

bilinear interpolation serves as a baseline. Access to ge-

ometric information helps producing better results, in par-

ticular adding the sampling offsets induces a large boost in

performance. Providing the Jacobian yields a smaller but

consistent improvement and is the parametrization we use.

Degradation Map. The second aspect of this ablation

study is to understand the importance of providing informa-

tion about the degradation process to the method. We train

three models on projective transforms. The first is trained

using a fixed reconstruction kernel (bilinear) and a fixed

anti-aliasing kernel (bicubic). The second and third model

are trained with varying reconstruction and anti-aliasing

kernels but only the third model has access to the degra-

dation map.

For the evaluation we choose two fixed sets of projec-

tive transforms. One with an average local scaling factor

of 2 (P×2), the other with an average local scaling factor

bilinear fixed deg (m) variable deg deg aware

P×2 s 26.27 25.70 29.61 29.96

P×2 m 25.44 30.95 29.69 30.33

P×2 l 23.40 24.71 24.98 27.86

P×3 s 23.89 22.48 26.15 26.39

P×3 m 23.36 27.25 26.35 26.81

P×3 l 21.70 22.65 22.96 25.38

Table 2. Effect of providing the degradation map to the model

measured in PSNR. All models are trained on projective trans-

forms. The second column refers to our model trained with fixed

reconstruction and anti-aliasing kernels. The third and fourth col-

umn refer to our method trained with varying reconstruction and

anti-aliasing kernels, respectively without and with access to the

degradation map.

bilinear LIIF SRWarp KARL c KARL k KARL c KARL k

est. deg est. deg

×1.5 25.25 27.29 27.37 30.43 30.85 28.01 28.41

×2.0, 1.5 24.75 26.23 26.28 29.14 29.43 27.70 27.64

×2.0 24.37 25.53 25.49 28.56 28.64 27.13 27.39

×2.5, 2.0 23.32 24.22 24.27 27.36 27.46 25.93 26.59

×2.5 22.64 23.40 23.46 26.57 26.64 25.52 26.00

×3.0 21.70 22.17 22.23 25.37 25.38 24.23 24.86

×3.5 21.05 21.34 21.36 24.33 24.40 23.27 24.03

×4.0 20.79 20.97 20.88 23.48 23.48 22.00 22.13

P
×2 25.06 25.70 25.76 28.56 28.78 27.06 27.02

P
×3 22.77 22.45 22.70 25.53 25.59 24.38 24.50

Table 3. Comparison of our method to LIIF and SRWarp on a

range of different upscaling and projective transformation tasks

(using PSNR). Both the direct color prediction variant (KARL c)

and the kernel pediction variant (KARL k) of our method are eval-

uated, once by providing the kernel map used to generate the low

resolution images, and once by estimating it (est. deg).

of 3 (P×3). We fix the reconstruction kernel to bilinear

and choose three bicubic kernels of different sizes (small,

medium, large) for the anti-aliasing kernel. The medium

size kernel corresponds to the one that is used to train the

model in the second column.

Results in Table 2 show that the model trained using the

medium kernel performs well when evaluated on the same

settings, however, performance drops significantly on other

types of blur kernels. Training a model with varying ker-

nels (column 3) makes it more robust but it performs over-

all worse. Column 4 shows the results when providing the

degradation map, it performs better overall and even reaches

competitive results against the more specialized model on

the medium size kernel.

6.2. Quantitative Results

To the best of our knowledge only SRWarp [15] targets

the image resampling problem. It’s the only method against

which a full quantitative comparison can be run. Since ar-

bitrary super-resolution is also part of the tasks of image

resampling, we additionally compare our model against the

state-of-the-art super-resolution model for non integer scal-

ing factors LIIF [2]. LIIF can also, without major modifica-

tions, be used for projective transforms.
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Figure 5. Comparison of our method against LIIF and SRWarp for x2 upscaling. The first row shows the results on an image that was

downscaled using a small Lanczos kernel. The image in the middle row was downscaled using standard bicubic interpolation. This

corresponds to the setting that LIIF and SRWarp were trained for. The last row shows the results for an image that was downscaled using a

large Gaussian kernel.

All methods are evaluated on standard SR as well as pro-

jective transformations. For SR we choose a number of dif-

ferent scaling factors between ×1.5 and ×4 and a range of

different reconstruction kernels. For the projective trans-

formations we choose two sets of transforms with average

local scaling factors of 2 and 3. For projective transforma-

tions we choose a range of different anti-aliasing kernels.

The reconstruction kernel is fixed to bilinear.

The evaluation is done on 100 crops of size 512 × 512
from DIV2Ks test set (one crop per image). The crops were

specifically chosen to be hard examples. A hard example is

defined as one where simple bilinear upscaling produces a

large error. We evaluate two versions of our method. One

that predicts the output color directly (KARL c) and one that

predicts a kernel to be applied to the input image (KARL k).

Each method is evaluated using the correct kernel map KW

as well as using an estimated kernel map (est. deg).

Results are shown in table 3: for each type of transform

the results over a wide range of different kernels are aver-

aged. We can see that, even when the kernel map is esti-

mated, our method manages to outperform both LIIF and

SRWarp in every test case. When the correct kernel map

is provided our method’s performance is further improved

by 1-1.5dB. A full breakdown of table 3 into the different

kernels that were used can be found in the supplemental

material. SRWarp and LIIF are only able to narrowly out-

perform our method when evaluated on the kernel that they

were trained on (bicubic m).

LIIF SRWarp KARLc KARLk

Rectification 0.68 s 1.49 s 0.10 s 0.10 s

SR (×2) 0.98 s 1.08 s 0.11 s 0.10 s

Table 4. Runtime comparison on an Nvidia RTXA6000

Computational Cost Table 4 shows our methods infer-

ence time compared to SRWarp and LIIF. Due to our much

leaner architecture our method enjoys significantly reduced

inference times. Estimating the degradation requires and
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Figure 6. Comparison on real image rectification. The unknown kernel maps are estimated for the results generated by our method. We

show the results both when predicting the output color directly (KARL c) and when predicting a 5 × 5 kernel that is applied to the input

image (KARL k). Both methods produce visually more appealing results than LIIF and SRWarp.
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Figure 7. Upscaling a rendered image with normal information (×2). Our method predicts kernels based on the input image colors. The

predicted kernels are then applied to the colors and the normals to produce the upscaled result.

additional ∼ 30s and ∼ 110s for the SR and rectification

test respectively. This time is, however, amortized when

working on images with shared degradation maps like video

sequences.

6.3. Qualitative Results

Super-resolution. Figure 5 shows a comparison of our

method against LIIF and SRWarp for the case of ×2 upscal-

ing. Here high resolution images were downscaled using

blur kernels of different sizes. We can see that both LIIF

and SRWarp perform well on the bicubic (medium) exam-

ple but are not able to generalize to the other cases. Our

method produces high quality results in all situations.

Image Rectification. Figure 1 shows an example where

a natural image is rectified. As the kernel map is unknown it

is estimated for our method. The KARL column shows the

results of our method with degradation map estimation. Our

approach produces a visually more appealing and sharper

result than LIIF and SRWarp. The sharpness can be further

increased and the result is shown in the last column. Fig-

ure 6 shows another rectification example of a natural im-

age. Here we show the results of our method when predict-

ing colors directly (KARL c) and when predicting a kernel

to be applied to the input image (KARL k). Both versions

produce a visually more appealing and sharper result than

LIIF and SRWarp.

Rendered content. Rendered content often contains ad-

ditional channels such as normals. Our methods kernel pre-

diction variant naturally generalizes to types of data that

were not seen during training. This is illustrated in figure 7,

where we upscale the colors and the normals of a rendered

image. In this example we feed the input image (RGB chan-

nels) into our model which produces a kernel map. This

kernel map is then applied to input image to produce the

upscaled image. Then, the same kernel map is applied to

the input normals to produce the upscaled normals.

7. Conclusion

In this paper we have presented a deep learning frame-

work for kernel aware image resampling, that carefully

models the image warping process. Using a spatially variant

degradation map as conditioning for the resampling model,

we can address with the same model both global transfor-

mations, such as upscaling or rotation, and locally varying

transformations such as removing lens distortion. We are

also able to automatically estimate a suitable conditioning

for the model to produce sharp results on complex transfor-

mations on images with unknown distortions.

Finally, we also introduce a variant that predicts kernels

instead of colors. We show that this variant generalizes to

image data types unseen during training, and produces best

results on standard resampling tasks. Future works could

improve the degradation estimation process, reducing the

gap in performance between the estimated degradation and

the correct one.
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